Articles

ADVANCES IN STUDY ON VEGETATION INDICES

Expand
  • 1.Institute of Remote Sensing Applications, Chinese Academy of Sciences, Beijing 100101;2.Department of Resource & Environment Science, Beijing Normal University, Beijing 100875

Received date: 1997-10-20

  Revised date: 1998-02-05

  Online published: 1998-08-01

Abstract

    In the field of remote sensing applications, vegetation indices(VI) have been developed for qualitatively and quantitatively evaluating vegetative covers using spectral measurements. The spectral response of vegetated areas presents a complex mixture of vegetation, soil brightness, environmental effects,shadow, soil color and moisture. Moreover, the VI is affected by spatial-temporal variations of the atmosphere. Overforty vegetaion indices have been developed during the past two decades in order to enhance vegetation response and minimize the effects of the factors described above. Most of the vegetation indices were summarized, discussed, analysed about their applicability and limitations, and simply classificated. Vegetation indices are quantitative measurements indicating the vigor of vegetation. They show better sensitivity than individual spectral bands for green vegetation detection. Their usefulness lies as an aid to remote sensing image interpretation, the detection of land use changes, the evaluation of vegetative cover density, forestry, crop discrimination and crop prediction.
    In general, it can be observed that vegetation indices do not have a standard universal value, research having ofen shown different results. The atmosphere, sensor calibration, sensor viewing conditions, solar illumination geometry, soil moisture, color and brightness seriously affect vegetaion indices. Moreover, in a heterogeneous environment, where there is a mixture of vegetation and other ground elements in the pixels, the study of vegetation indices becomes more complex. However, the choice of a vegetation index as opposed to another, for what ever application, is quit delicate to make. Each environment has its own characteristics and each index is an indicator of green vegetation in its own right. As hyperspectral remote sensing technology (such as AVIRIS) and thermal infrared multi-spectral remote sensing technology (such as ASTER) goes on, many VI will be developed.

Cite this article

Tian Qingjiu,Min Xiangjun . ADVANCES IN STUDY ON VEGETATION INDICES[J]. Advances in Earth Science, 1998 , 13(4) : 327 -333 . DOI: 10.11867/j.issn.1001-8166.1998.04.0327

References

[1] Baret F, Guyot G, Major D J. TSAVI: A vegetation index which minimizes soil brightness effects on LAI and APAR estimation. Proceeings of the 12th Canadian Symposium on Remote Sensing. Vancouver, Canada, 1989. 1 355-1 358.
[2] Miller J R. Quantitative characterizition of the vegetation red edge reflectance: 1. An inverted-Gaussian reflectance model.International Journal of Remote Sensing, 1990, 11(10):1 755-1 773.
[3] Gamon J A. A narrow-waveband spectral index that tracks diurnal changes in photosynt hetic efficiency. Remote Sensing of Envrionment, 1992, 41: 35-44.
[4] Kauth R J, Thomas G S. The tasselled cap-a graphic description of the spectra-temporal development of agriculture crops as seen by Landsat. Pros Symposium on Machine Processing of Remotely Sensed Data. Purdue University, West Lafayette,Indiana, 1976. 41-51.
[5] Richardson A J, Wiegand C L. Distinguishing vegetation from soil background information. Photogrammetric Engineering and Remote Sensing, 1977, 43(12): 1 541-1 552.
[6] Jackson R D. Spectral indices in n-space. Remote Sensing of Environment, 1983, 13: 409-421.
[7] Huete A R. A soil-adjusted vegetaion index(SAVI). Remote Sensing of Environment, 1988, 25: 295-309.
[8] Major D J. A ratio vegetation index adjusted for soil brightness. International Journal of Remote Sensing, 1990, 11(5): 727-740.
[9] Escadafal R. Remote sensing of arid soil surface color with Landsat Thematic Mapper. Adv Space Res, 1989, 9(1): 1159-1163.
[10] Kaufman Y J. Atmospherically resistant vegetation index (ARVI) for EOS-MODIS. IEEE Transactions on Geoscience and Remote Sensing,1992,30(2): 261-270.
[11] Baret F. Contribution au suivi radiometrique de cultures de cereales. These de Doctorat, Universite Paris-Sud Orsay,France, 1986. 182.
[12] Plummer S E, North P R, Briggs S A. The angular vegetation index: an atmospherically resistance index for the second along track scanning radiometer(ATSR-2). Proceedings of the Sixth International Symposium of Physical Measurements and Signatures in Remote Sensing. Vald. Isere, France, 1994.
[13] Jackson R D. Spectral response of architecturally different wheat canopies. Remote Sensing of Environment, 1986, 20: 43-56.
[14] Qi J, Huete A R. Interpretaion of vegetation indices derived from multi-temporal SPOT images. Remote Sensing of Environment, 1993, 44: 89-101.

Outlines

/