Received date: 2012-10-08
Revised date: 2012-10-31
Online published: 2012-11-10
Since the Industrial Revolution a large amount of carbon dioxide (CO2) as a result of human activities has been released into the atmosphere. Dissolution of CO2 into seawater reduced the ocean pH and changed the balance of the ocean carbonate system. Ocean acidification threatens the marine ecosystems, especially calcifying organisms. Coccolithophore are major calcification plankton and play an important role in the ocean carbon cycle. Most of the culture experiments showed that the rise of CO2 concentration would promote photosynthesis in coccolithophores. Ocean acidification has various effects on the calcification of different coccolithophore species or strains.
Su Xiang , Liu Chuanlian , LU Riyu , FU Yuanhai . Effects of Ocean Acidification on Coccolithophores[J]. Advances in Earth Science, 2012 , 27(11) : 1274 -1280 . DOI: 10.11867/j.issn.1001-8166.2012.11.1274
[1]Solomon S, Qin D, Manning M, et al. Climate Change 2007: The Physical Science Basis: Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change[M]. New York: Cambridge University Press, 2007.
[2]Revelle R, Suess H E. Carbon dioxide exchange between atmosphere and ocean and the question of an increase of atmospheric CO2 during the past decades[J]. Tellus, 1957, 9: 18-27.
[3]Caldeira K, Wickett M E. Anthropogenic carbon and ocean pH[J]. Nature,2003, 425: 365.
[4]Hnisch B, Ridgwell A, Schmidt D N, et al. The geological record of ocean acidification[J]. Nature, 2012, 335(6 072): 1 058-1 063.
[5]Tyrrell T, Holligan P M, Mobley C D. Optical impacts of oceanic coccolithophore blooms[J]. Journal of Geophysical Research, 1999, 104: 3 223-3 241.
[6]Broecker W, Clark E. Ratio of coccolith CaCO3 to foraminifera CaCO3 in late Holocene deep sea sediments[J]. Paleoceanography, 2009, 24, PA3205, doi:10.1029/2009PA001731.
[7]Hutchins D A. Forecasting the rain ratio[J]. Nature, 2011, 476: 41-42.
[8]Sabine C L, Feely R A, Gruber N, et al. The oceanic sink for anthropogenic CO2[J]. Science, 2004, 305: 367-371.
[9]Orr J C, Fabry V J, Aumont O, et al. Anthropogenic ocean acidification over the twenty-first century and its impact on calcifying organisms[J]. Nature, 2005, 437: 681-686.
[10]Feeley R A, Doney S C, Cooley S R. Ocean acidification: Present conditions and future changes in a high-CO2 world[J]. Oceanography, 2009, 22(4): 36-47.
[11]Kleypas J A, Langdon C. Overview of CO2-induced changes in seawater chemistry[C]∥Proceeding 9th International Coral Reef Symposium. Bali Indonesia,2001.
[12]Gattuso J P, Allemad D, Frankignoulle M. Photosynthesis and calcification at cellular, organismal and community levels in croal reefs: A review on interactions and control by carbonate chemistry[J]. American Zoologist, 1999, 39: 160-183.
[13]Volk T, Hoffert M I. Ocean carbon pumps: Analysis of relative strengths and efficiencies in ocean-driven atmospheric CO2 changes[C]∥Sundquist E T, Broecker W S, eds. The Carbon Cycle and Atmospheric CO2: Natural Variations Archean to Present. Wasnington DC: American Geophysical Union, 1985: 99-110.
[14]de Vargas C, Aubry M-P, Probert I, et al. Origin and evolution of coccolithophores: From coastal hunters to oceanic farmers[C]∥Falowski P, Knoll A H, eds. Evolution of Primary Producers in the Sea. New York: Elsevier, 2007: 251-286.
[15]Archer D, Maier-Reimer E. Effect of deep-sea sedimentary calcite preservation on atmospheric CO2 concentration[J]. Nature, 1994, 367: 260-263.
[16]Sekino K, Shiraiwa Y. Accumulation and utilization of dissolved inorganic carbon by a marine unieullular coccolithophorid Emiliania huxleyi[J]. Plant Cell Physiol, 1994, 35: 353-361.
[17]Riebesell U, Zondervan I, Rost B, et al. Reduced calcification of marine plankton in response to increased atmospheric CO2[J]. Nature, 2000, 407: 364-367.
[18]Zondervan I, Rost B, Riebesell U. Effect of CO2 concentration on the PIC/POC ratio in the coccolithophore Emiliania huxleyi grown under light-limiting conditions and different daylengths[J]. Journal of Experimental Marine Biological Ecology, 2002, 272: 55-70.
[19]Feng Y, Warner M, Zhang Y, et al. Interactive effects of increased pCO2, temperature and irradiance on the marine coccolithophore Emiliania huxleyi (Prymnesiophyceae)[J]. European Journal of Phycology, 2008, 43: 87-98.
[20]Barcelos e Ramos J, Müller M N, Riebesell U. Short term response of the coccolithophore Emiliania huxleyi to an abrupt change in seawater carbon dioxide concentrations[J]. Biogeosciences, 2010, 7: 177-186.
[21]Shi D, Xu Y, Morel F M M. Effects of the pH/pCO2 control method on medium chemistry and phytoplankton growth[J]. Biogeosciences, 2009, 6: 1 199-1 207.
[22]Müller M N, Schulz K G, Riebesell U. Effects of longterm high CO2 exposure on two species of coccolithophores[J]. Biogeosciences, 2010, 7: 1 109-1 116.
[23]Rickaby R E M, Henderiks J, Young J N. Perturbing phytoplankton: Response and isotopic fractionation with changing carbonate chemistry in two coccolithophore species[J]. Climate of the Past, 2010, 6: 771-785.
[24]Langer G, Geisen M, Baumann K-H, et al. Species-specific responses of calcifying algae to changing seawater carbonate chemistry[J]. Geochemistry Geophysics Geosystems, 2006, 7: Q09006.
[25]Sciandra A, Harlay J, Lefevre D, et al. Response of coccolithophorid Emiliania huxleyi to elevated partial pressure of CO2 under nitrogen limitation[J]. Marine Ecology Progress Series, 2003, 261: 111-122.
[26]Lenardos N, Geider R J. Elevated atmospheric CO2 increases organic carbon fixation by Emiliania huxleyi (Haptophyta) under nutrient-limited, high-light conditions[J]. Journal of Phycology, 2005, 41: 1 196-1 203.
[27]Gao K, Ruan Z, Villafane V E, et al.Ocean acidification exacerbates the effect of UV radiation on the calcifying phytoplankter Emiliania huxleyi[J]. Limnology and Oceanography, 2009, 54:1 855-1 862.
[28]Riebesell U, Tortell P D. Effects of ocean acidification on pelagic organisms and ecosystems[M]∥Gattuso J P, Hansson L, eds. Ocean Acidification. New York: Oxford University Press, 2011: 99-121.
[29]Stoll H M, Schrag D P. Coccolith Sr/Ca as a new indicator of coccolithophorid calcification and growth rate[J]. Geochemistry Geophysics Geosystems, 2000, 1 (5):1999GC000015.
[30]Ramaswamy V, Gaye B. Regional variations in the fluxes of foraminifera carbonate, coccolithophorid carbonate and biogenic opal in the northern Indian Ocean[J]. Deep-Sea Research Part I: Oceanographic Research Papers, 2006, 53: 271-293.
[31]Iglesias-Rodriguez M D, Halloran P R, Rickaby R E M,et al. Phytoplankton calcification in a high-CO2 world[J]. Science, 2008, 320: 336-340.
[32]Beaufort L, Heussner S. Coccolithophorids on the continental slope of the Bay of Biscay-Production, transport and contribution to mass fluxes[J]. Deep-Sea Research II, 1999, 46: 2 147-2 174.
[33]Young J, Ziveri P. Calculation of coccolith volume and its use in calibration of carbonate flux estimates[J]. Deep-Sea Research II, 2000, 47: 1 679-1 700.
[34]Beaufort L. Weight estimates of coccoliths using the optical properties (birefringence) of calcite[J]. Micropaleontology, 2005, 51: 289-298.
[35]Dollfus D, Beaufort L. Fat neural network for recognition of position-normalised objects[J]. Neural Networks, 1999, 12: 553-560.
[36]Beaufort L, Dollfus D. Automatic recognition of coccolith by dynamical neural network[J]. Marine Micropaleontology, 2004, 51(1/2): 57-73.
[37]Beaufort L, Probert I, Buchet N. Effects of acidification and primary production on coccolith weight: Implications for carbonate transfer from the surface to the deep ocean[J]. Geochemistry Geophysics Geosystems, 2007, 8: Q08011.
[38]Beaufort L, Couapel M, Buchet N, et al. Calcite production by coccolithophores in the south east Pacific Ocean[J]. Biogeosciences, 2008, 5: 1 101-1 117.
[39]Beaufort L, Probert I, de Garidel-Thoron T, et al. Sensitivity of coccolithophores to carbonate chemistry and ocean acidification[J]. Nature, 2011, 476: 80-83.
[40]Grelaud M, Schimmelmann A, Beaufort L. Coccolithophore response to climate and surface hydrography in Santa Barbara Basin, California, AD 1917-2004[J]. Biogeosciences, 2009, 6: 2 025-2 039.
[41]Zondervan I, Zeebe R E, Rost B, et al. Decreasing marine biogenic calcification: A negative feedback on rising atmospheric pCO2[J]. Global Biogeochemical Cycles, 2001, 15 (2): 507-516.
[42]Delille B, Harlay J, Zondervan I, et al. Reponse of primary production and calcification to changes of pCO2 during experimental blooms of the coccolithophorid Emiliania huxleyi[J]. Global Biogeochemical Cycles, 2005, 19: GB2023.
[43]Engel A, Zondervan I, Aerts K, et al. Testing the direct effect of CO2 concentration on a bloom of the coccolithophorid Emiliania huxleyi in mesocosm experiments[J]. Limnology and Oceanography, 2005, 50: 493-504.
[44]Riebesell U, Bellerby R G J, Engel A, et al. Comment on “Phytoplankton calcification in a high CO2-world”[J]. Science, 2008, 322: 1 466.
[45]Iglesias-Rodriguez M D, Buitenhuis E T, Raven J A, et al. Response to Comment on “Phytoplankton calcification in a high-CO2 world”[J]. Science, 2008, 322: 1 466.
[46]Langer G, Nehrke G, Probert I, et al. Strain-specific responses of Emiliania huxleyi to changing seawater carbonate chemistry[J]. Biogeosciences, 2009, 6: 2 637-2 646.
[47]Kroeker K J, Kordas R L, Crim R N,et al.Meta-analysis reveals negative yet variable effects of ocean acidification on marine organisms[J]. Ecology Letters, 2010, 13: 1 419-1 434.
/
〈 |
|
〉 |