Progress and Environmental Effect in Seafloor Anaerobic Oxidation of Methane
Received date: 2012-10-08
Revised date: 2012-10-31
Online published: 2012-11-10
As a crucial part of the global carbon cycle, microbially mediated anaerobic oxidation of methane (AOM) moderates the input of methane to the atmosphere and helps regulate Earth’s climate by consuming methane produced in various marine, terrestrial, and subsurface environments. It remains one of the most tantalizing and controversial scientific issues in both microbial ecology and environmental science since more than three decades when this process has been recognized. Recently, numerous researches have been carried out to investigate the reaction especially in the marine sediments associated with methane seeps. Unfortunately, there is still a gap to fully understand this reaction mechanism. In this paper, the recent progress in modern seafloor AOM including reaction mechanism, substrate, kinetics and energy yield, electron accepters and the involved methanotrophic archaea (ANME) and other microbes are reviewed. Furthermore, the role of AOM in environmental effects and climate changes in the past, present and future is illustrated and highlighted and the future challenges are given in the last part of this paper. We hope that this review will shed new light on an improved understanding of the AOM process in marine sediments.
Wang Feng , Sun Zhilei , He Yongjun , Li Jun , Huang Wei , Li Qing , Li Jiwei . Progress and Environmental Effect in Seafloor Anaerobic Oxidation of Methane[J]. Advances in Earth Science, 2012 , 27(11) : 1262 -1273 . DOI: 10.11867/j.issn.1001-8166.2012.11.1262
[1]Widdel F, Knittel K, Galushko A. Anaerobic Hydrocarbon-Degrading Microorganisms: An Overview[M]∥Timmis K N ed. Handbook of Hydrocarbon and Lipid Microbiology. Springer-Verlag Berlin Heidelberg, 2010: 1 997-2 021.
[2]Buffett B, Archer D. Global inventory of methane clathrate: Sensitivity to changes in the deep ocean[J]. Earth and Planetary Science Letters, 2004, 227(3/4):185-199.
[3]Regnier P, Dale A W, Arndt S, et al. Quantitative analysis of anaerobic oxidation of methane (AOM) in marine sediments: A modeling perspective[J]. Earth-Science Reviews, 2011, 106(1/2):105-130.
[4]Reeburgh W S. Oceanic methane biogeochemistry [J]. Chemical Reviews, 2007, 107(2):486-513.
[5]Torres M E, Kastner M. Data report: Clues about carbon cycling in methane-bearing sediments using stable isotopes of the dissolved inorganic carbon, IODP Expedition 311[C]∥ Riedel M, Collett T S, Malone M J, et al. Proceedings of the Integrated Ocean Drilling Program, 311. Washington DC (Integrated Ocean Drilling Program Management International, Inc.), 2009, 311:1-8.
[6]Wehrmann L M, Risgaard-Petersen N, Schrum H N, et al. Coupled organic and inorganic carbon cycling in the deep subseafloor sediment of the northeastern Bering Sea Slope (IODP Exp. 323)[J]. Chemical Geology, 2011, 284(3/4):251-261.
[7]Wu Zijun, Zhou Huaiyang, Peng Xiaotong, et al. Anaerobic oxidation of methane: Geochemical evidence from pore-water in coastal sediments of Qi’ao Island, southern China[J]. Chinese Science Bulletin, 2006, 51(17): 2 052-2 059.[吴自军, 周怀阳, 彭晓彤,等. 甲烷厌氧氧化作用: 来自珠江口淇澳岛海岸带沉积物间隙水的地球化学证据 [J].科学通报, 2006,51(17):2 052-2 059.]
[8]Wu Zijun, Zhou Huaiyang, Peng Xiaotong. Anaerobic oxidation of methane in sediments from Guishan Island in Pearl River estuary[J]. Progress in Natural Science, 2007, 17(7):905-912.[吴自军, 周怀阳, 彭晓彤. 珠江口桂山岛沉积物甲烷厌氧氧化作用研究 [J]. 自然科学进展, 2007, 17(7):905-912.]
[9]Yin Xijie, Chen Jian, Guo Yingying, et al. Sulfate reduction and methane anaerobic oxidation: Isotope geochemical evidence from the pore water of coastal sediments in the Jiulong Estuary[J]. Acta Oceanologica Sinica, 2011, 33(4):121-128.[尹希杰, 陈坚, 郭莹莹, 等.九龙江河口沉积物中硫酸盐还原与甲烷厌氧氧化:同位素地球化学证据[J]. 海洋学报, 2011, 33(4):121-128.]
[10]Guo Yingying, Chen Jian, Yin Xijie, et al. Spatial distribution of methane in surface water and sediment of Jiulongjiang estuary and the effect environment factors of it[J]. Environmental Science, 2012, 33(2): 558-564.[郭莹莹, 陈坚, 尹希杰, 等. 九龙江河口表层水体及沉积物中甲烷的分布和环境控制因素研究[J]. 环境科学, 2012, 33(2): 558-564.]
[11]Caldwell S L, Laidler J R, Brewer E A, et al. Anaerobic oxidation of methane: Mechanisms, bioenergetics, and the ecology of associated microorganisms[J]. Environmental Science & Technology, 2008, 42(18): 6 791-6 799.
[12]Alperin M, Hoehler T. The ongoing mystery of sea-floor methane[J]. Science, 2010, 329(5 989): 288-289.
[13]Knittel K, Boetius A. Anaerobic oxidation of methane: Progress with an unknown process[J]. Annual Review of Microbiology, 2009, 63(2): 311-34.
[14]Claypool G E, Kaplan I R. The origin and distribution of methane in marine sediments[C]∥ Kaplan I R ed. Natural Gases in Marine Sediments. Plenum, New York, 1974: 99-139.
[15]Barnes R O, Goldberg E D. Methane production and consumption in anaerobic marine sediments[J]. Geology,1976, 4(5):297-300.
[16]Reeburgh W S. Methane consumption in Cariaco Trench waters and sediments[J]. Earth and Planetary Science Letters, 1976, 28(3): 337-344.
[17]Alperin M J, Reeburgh W S. Inhibition experiments on anaerobic methane oxidation[J]. Applied and Environmental Microbiology, 1985, 50(4): 940-945.
[18]Iversen N, Jrgensen B B. Anaerobic methane oxidation rates at the sulfate-methane transition in marine sediments from Kattegat and Skagerrak (Denmark)[J]. Limnology and Oceanography, 1985, 30(5): 944-955.
[19]Devol A H, Anderson J J. A model for coupled sulfate reduction and methane oxidation in the sediments of Saanich Inlet[J]. Geochimica et Cosmochimica Acta, 1984, 48(5): 993-1 004.
[20]Niewhner C, Hensen C, Kasten S, et al. Deep sulfate reduction completely mediated by anaerobic methane oxidation in sediments of the upwelling area off Namibia[J]. Geochimica et Cosmochimica Acta, 1998, 62(3): 455-464.
[21]Reeburgh W S. Anaerobic methane oxidation: Rate depth distributions in Skan Bay sediments[J]. Earth and Planetary Science Letters, 1980, 47(3): 345-352.
[22]Paull C K, Chanton J P, Neumann A C, et al. Indicators of methane-derived carbonates and chemosynthetic organic carbon deposits: Examples from the Florida Escarpment[J]. Paliaos, 1992, 7(4):361-375.
[23]Elvert M, Suess E, Whiticar M J. Anaerobic methane oxidation associated with marine gas hydrates: Superlight C-isotopes from saturated and unsaturated C20 and C25 irregular isoprenoids[J]. Naturwissenschaften, 1999, 86(6): 295-300.
[24]Hinrichs K U, Hayes J M, Sylva S P, et al. Methane-consuming archaebacteria in marine sediments[J]. Nature, 1999, 398(6 730): 802-805.
[25]Pancost R D, Sinninghe Damste J S, de Lint S, et al. Biomarker evidence for widespread anaerobic methane oxidation in Mediterranean sediments by a consortium of methanogenic Archaea and Bacteria[J]. Applied and Environmental Microbiology, 2000, 66(3):1 126-1 132.
[26]Boetius A, Ravenschlag K, Schubert C J, et al. A marine microbial consortium apparently mediating anaerobic oxidation of methane[J]. Nature, 2000, 407(6 804): 623-626.
[27]Michaelis W, Seifert R, Nauhaus K, et al. Microbial reefs in the Black Sea fueled by anaerobic oxidation of methane[J]. Science, 2002, 297(5 583):1 013-1 015.
[28]Nauhaus K, Boetius A, Krüger M, et al. In vitro demonstration of anaerobic oxidation of methane coupled to sulphate reduction in sediment from a marine gas hydrate area[J]. Environmental Microbiology, 2002, 4(5): 296-305.
[29]Orphan V J, House C H, Hinrichs K U, et al. Multiple archaeal groups mediate methane oxidation in anoxic cold seep sediments[J]. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99(11):7 663-7 668.
[30]Knittel K, Lsekann T, Boetius A. Diversity and distribution of methanotrophic archaea at cold seeps[J]. Applied and Environmental Microbiology, 2005, 71(1):467-479.
[31]Valentine D L, Reeburgh W S. New perspectives on anaerobic methane oxidation[J]. Environmental Microbiology, 2000, 2(5):477-484.
[32]Martinez R J, Mills H J, Story S, et al. Prokaryotic diversity and metabolically active microbial populations in sediments from an active mud volcano in the Gulf of Mexico [J]. Environmental Microbiology, 2006, 8(10):1 783-1 796.
[33]Orphan V J, House C H, Hinrichs K U, et al. Methane-consuming archaea revealed by directly coupled isotopic and phylogenetic analysis[J]. Science, 2001, 293(5 529):484-487.
[34]Knittel K, Boetius A, Lemke A, et al. Activity, distribution, and diversity of sulfate reducers and other bacteria in sediments above gas hydrate (Cascadia margin, Oregon)[J]. Geomicrobiology Journal, 2003, 20(4):269-294.
[35]Treude T, Orphan V, Knittel K, et al. Consumption of methane and CO2 by methanotrophic microbial mats from gas seeps of the anoxic Black Sea[J]. Applied and Environmental Microbiology, 2007, 73(7): 2 271-2 283.
[36]Pernthaler A, Dekas A E, Brown C T, et al. Diverse syntrophic partnerships from deep-sea methane vents revealed by direct cell capture and metagenomics[J]. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105(19):7 052-7 057.
[37]Zehnder A J, Stumm W. Geochemistry and biogeochemistry of anaerobic habitats[C]∥Zehnder A ed. Biology of Anaerobic Microorganisms. New York: Wiley, 1988: 1-38.
[38]Schink B. Energetics of syntrophic cooperation in methanogenic degradation [J]. Microbiology and Molecular Biology Reviews, 1997, 61(2): 262-280.
[39]Stams A J, Plugge C M, de Bok F A, et al. Metabolic interactions in methanogenic and sulfate-reducing bioreactors[J]. Water Science and Technology, 2005, 52(1/2):13-20.
[40]Alperin M J, Hoehler T M. Anaerobic methane oxidation by archaea/sulfate reducing bacteria aggregates: 1. Thermodynamic and physical constraints[J]. American Journal of Science, 2009, 309(10): 869-957.
[41]Srensen K B, Finster K, Ramsing N B. Thermodynamic and kinetic requirements in anaerobic methane oxidizing consortia exclude hydrogen, acetate, and methanol as possible electron shuttles[J]. Microbial Ecology, 2001, 42(1):1-10.
[42]Nauhaus K, Albrecht M, Elvert M, et al. In vitro cell growth of marine archaeal-bacterial consortia during anaerobic oxidation of methane with sulfate[J]. Environmental Microbiology, 2007, 9(1): 187-96.
[43]Dale A W, Regnier P, Van Cappellen P. Bioenergetic controls on anaerobic oxidation of methane (AOM) in coastal marine sediments: A theoretical analysis[J]. American Journal of Science, 2006, 306(4): 246-294.
[44]Orcutt B, Meile C. Constraints on mechanisms and rates of anaerobic oxidation of methane by microbial consortia: Process-based modeling of ANME-2 archaea and sulfate reducing bacteria interactions[J]. Biogeosciences, 2008, 5(6): 1 587-1 599.
[45]Strous M, Jetten M S. Anaerobic oxidation of methane and ammonium[J]. Annual Review of Microbiology, 2004, 58:99-117.
[46]Shima S, Thauer R K. Methyl-coenzyme M reductase and the anaerobic oxidation of methane in methanotrophic Archaea[J]. Current Opinion in Microbiology, 2005, 8(6):643-648.
[47]Raghoebarsing A A, Pol A, van de Pas-Schoonen K T, et al. A microbial consortium couples anaerobic methane oxidation to denitrification[J]. Nature, 2006, 440(7 086):918-921.
[48]Knab N J, Dale A W, Lettmann K, et al. Thermodynamic and kinetic control on anaerobic oxidation of methane in marine sediments[J]. Geochimica et Cosmochimica Acta, 2008, 72(15): 3 746-3 757.
[49]Joye S, Boetius A, Orcutt B N, et al. The anaerobic oxidation of methane and sulfate reduction in sediments from Gulf of Mexico cold seeps[J]. Chemical Geology, 2004, 205(3/4): 219-238.
[50]Orcutt B N, Boetius A, Lugo S K , et al. Life at the edge of methane ice: Microbial cycling of carbon and sulfur in Gulf of Mexico gas hydrates[J]. Chemical Geology, 2004, 205(3/4): 239-251.
[51]Kniemeyer O, Musat F, Sievert S M, et al. Anaerobic oxidation of short-chain hydrocarbons by marine sulphate-reducing bacteria[J]. Nature, 2007, 449(7 164): 898-901.
[52]Moran J J, Beal E J, Vrentas J M, et al. Methyl sulfides as intermediates in the anaerobic oxidation of methane[J]. Environmental Microbiology, 2008, 10(1): 162-173.
[53]Wegener G, Niemann H, Elvert M, et al. Assimilation of methane and inorganic carbon by microbial communities mediating the anaerobic oxidation of methane[J]. Environmental Microbiology, 2008, 10(9): 2 287-2 298.
[54]Brysch K, Schneider C, Fuchs G, et al. Lithoautotrophic growth of sulfate-reducing bacteria, and description of Desulfobacterium autotrophicum gen. nov., sp. nov [J]. Archives of Microbiology, 1987, 148(4): 264-274.
[55]Ettwig K F, Shima S, van de Pas-Schoonen K T, et al. Denitrifying bacteria anaerobically oxidize methane in the absence of Archaea[J]. Environmental Microbiology, 2008, 10(11): 3 164-3 173.
[56]Beal E J, House C H, Orphan V J. Manganese-and iron-dependent marine methane oxidation[J].Science,2009, 325(5 937): 184-187.
[57]Alperin M J, Reeburgh W S, Whiticar M J. Carbon and hydrogen isotope fractionation resulting from anaerobic methane oxidation[J]. Global Biogeochemmical Cycles, 1988, 2(3):279-288.
[58]Martens C S, Albert D B, Alperin M J. Stable isotope tracing of anaerobic methane oxidation in the gassy sediments of Eckernfoerde Bay, German Baltic Sea[J]. American Journal of Science, 1999, 299(7/9): 589-610.
[59]Sommer S, Pfannkuche O, Linke P, et al. Efficiency of the benthic filter: Biological control of the emission of dissolved methane from sediments containing shallow gas hydrates at Hydrate Ridge[J]. Global Biogeochemical Cycles, 2006, 20: GB2019, 14 PP, doi:10.1029/2004GB002389.
[60]Solomon E A, Kastner M, MacDonald I R, et al. Considerable methane fluxes to the atmosphere from hydrocarbon seeps in the Gulf of Mexico[J]. Nature Geoscience, 2009, 2: 561-565.
[61]Hoehler T M, Borowski W S, Alperin M J, et al. Model, stable isotope, and radiotracer characterization of anaerobic methane oxidation in gas hydrate-bearing sediments of the Blake Ridge[M]∥Paull C K, Matsumumoto R, Wallace P J, et al. eds. Proceedings of the Ocean Drilling Program, Scientific Results, 164. Ocean Drilling Program, College Station, Texas, 2000: 79-85.
[62]Borowski W S, Paull C K, Ussler III W. Global and local variations of interstitial sulfate gradients in deep-water, continental margin sediments; sensitivity to underlying methane and gas hydrates[J]. Marine Geology, 1999, 159(1/4):31-154.
[63]Reeburgh W S, Ward B B, Whalen S C, et al. Black Sea methane geochemistry[J]. Deep-Sea Research,1991, 38(Suppl.2): S1 189-S1 210.
[64]Kessler J D, Reeburgh W S, Southon J, et al. Basin-wide estimates of the input of methane from seeps and clathrates to the Black Sea[J]. Earth and Planetary Science Letters, 2006, 243(3/4): 366-375.
[65]Gal’chenko V F, Lein A Y, Ivanov M V. Rates of microbial production and oxidation of methane in the bottom sediments and water column of the Black Sea[J]. Microbiology (Translated from Mikrobiologiya), 2004, 73(2): 271-283.
[66]Buffett B A. Clathrate Hydrates[J]. Annual Review of Earth and Planetary Sciences, 2000, 28:477-507.
[67]Maslin M, Owen M, Betts R, et al. Gas hydrates: Past and future geohazard?[J]. Philosphical Transactions of the Royal Society A, 2010, 368(1 919): 2 369-2 393.
[68]Campbell K A, Farmer J D, Des Marais D. Ancient hydrocarbon seeps from the Mesozoic convergent margin of California: Carbonate geochemistry, fluids and paleoenvironments[J]. Geofluids, 2002, 2(2): 63-94.
[69]Campbell K A. Hydrocarbon seep and hydrothermal vent paleoenvironments and paleontology: Past developments and future research directions[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2006, 232(2/4): 362-407.
[70]Birgel D, Himmler T, Freiwald A, et al. A new constraint on the antiquity of anaerobic oxidation of methane: Late Pennsylvanian seep limestones from southern Namibia[J]. Geology, 2008, 36(7): 543-546.
[71]Miller S L, Smythe W D. Carbon dioxide clathrate in the Martian Ice Cap[J]. Science, 1970, 179(3 957): 531-533.
[72]Jakosky B, Henderson B, Mellon M. Chaotic obliquity and the nature of the Martian climate[J]. Journal of Geophysical Research, 1995, 100(E1): 1 579-1 584.
[73]Anbar A D, Holland H D. The photochemistry of manganese and the origin of banded iron formations[J]. Geochimica et Cosmochimica Acta, 1992, 56(7): 2 595-2 603.
[74]Pavlov A A, Hurtgen M T, Kasting J F, et al. Methane-rich Proterozoic atmosphere?[J]. Geology, 2003, 31(1): 87-90.
[75]Sassen R, Joye S, Sweet S T, et al. Thermogenic gas hydrates and hydrocarbon gases in complex chemosynthetic communities: Gulf of Mexico continental slope [J]. Organic Geochemistry, 1999, 30(7): 485-497.
[76]Dale A W, Van Cappellen P, Aguilera D R, et al. Methane efflux from marine sediments in passive and active margins: Estimations from bioenergetic reaction-transport simulations[J]. Earth and Planetary Science Letters, 2008, 265(3/4):329-344.
/
〈 |
|
〉 |