Hydrological modelling over the Tibetan Plateau: Current status and Perspective

  • Wang Lei ,
  • Li Xiuping ,
  • Zhou Jing ,
  • Liu Wenbin ,
  • Yang Kun
Expand
  • Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China

Online published: 2014-06-10

Abstract

This paper describes the current status and perspective for the hydrological modelling over the Tibetan Plateau (TP). Hydrological models, as primary tools to study hydrological processes, can provide theoretical and decision support for water resources management as well as disaster prevention and mitigation in river basins. As is known, the first-generation hydrological models are “lumped”, and the second-generation hydrological models are “distributed”. However, most of the above models mainly describe the “precipitation-to runoff” water transport processes (“hydrosphere”) without carefully addressing the special role of vegetation in the water and energy exchanges in the landatmosphere interactions (“biosphere-atmosphere”). Over the past decade, in the context of climate change, with the vibrant developments of atmospheric science and ecology, distributed hydrological models began to describe the biosphereatmosphere interactions by improving the water and energy cycle formulations between the land and atmosphere, as well as enhancing the descriptions of physiological processes of vegetation. Up to now, a comprehensive description of hydrosphere-biosphere-atmosphere interactions in river basins has been realized by the hydrological community. However, regarding TP with a large portion of cryosphere land cover, the detailed cryospheric processes are of essence to be further considered in the multi-sphere hydrological modeling over TP. This will largely contribute to studies of the interaction mechanism among the cryosphere and other spheres (hydrosphere /biosphere /atmosphere), and thus improve the predictive ability of the region’s water resources and water-related disasters.

Cite this article

Wang Lei , Li Xiuping , Zhou Jing , Liu Wenbin , Yang Kun . Hydrological modelling over the Tibetan Plateau: Current status and Perspective[J]. Advances in Earth Science, 2014 , 29(6) : 674 -682 . DOI: 10.11867/j.issn.1001-8166.2014.06.0674

References

[1] Yongjian. Response of cryosphere to climatic warming since 1980 over the Northern Hemisphere[J]. Journal of Glaciology and Geocryology, 1996, 18(2): 132-138.[丁永建. 1980年以来冰冻圈对气候变暖响应的若干证据[J]. 冰川冻土, 1996, 18(2): 132-138.]
[2] Shiyin, Ding Yongjian, Li Jing, et al. Glaciers in response to recent climate warming in western China[J]. Quaternary Sciences, 2006, 26(5): 762-771.[刘时银, 丁永建, 李晶, 等. 中国西部冰川对近期气候变暖的响应[J]. 第四纪研究, 2006, 26(5): 762-771.]
[3] Anxin, Yao Tandong, Wang Lihong, et al. Study on the fluctuations of typical glaciers and lakes in the Tibetan Plateau using remote sensing[J]. Journal of Glaciology and Geocryology, 2005, 27(6): 783-792.[鲁安新, 姚檀栋, 王丽红, 等. 青藏高原典型冰川和湖泊变化遥感研究[J]. 冰川冻土,2005, 27(6): 783-792.]
[4] Ninglian, He Jianqiao, Pu Jianchen, et al. Variations in equilibrium line altitude of the Qiyi Glacier, Qilian Mountains, over the past 50 years[J]. Chinese Science Bulletin, 2010, 55(32): 3 107-3 115.[王宁练, 贺建桥, 蒲健辰, 等. 近50年来祁连山七一冰川平衡线高度变化研究[J]. 科学通报, 2010, 55(32): 3 107-3 115.]
[5] Liping, Xie Manping, Wu Yanhong. Quantitative analysis of lake area variations and the influence factors from 1971 to 2004 in the Nam Co Basin of the Tibetan Plateau[J]. Chinese Science Bulletin, 2010, 55(13):1 294-1 303.
[6] Jiawen, Ye Baisheng, Ding Yongjian, et al. Initial estimate of the contribution of cryospheric change in China to sea level rise[J]. Chinese Science Bulletin, 2011, 56(14):1 084-1 087.[任贾文, 叶柏生, 丁永建, 等. 中国冰冻圈变化对海平面上升潜在贡献的初步估计[J]. 科学通报, 2011, 56(14):1 084-1 087.]
[7] Tandong, Wang Youqing, Liu Shiyin, et al. Recent glacial retreat in High Asia in China and its impact on water resource in Northwest China[J]. Science in China (Series D), 2004, 47(12): 1 065-1 075.
[8] Xin, Cheng Guodong, Kang Ersi, et al. Digital Heihe River Basin. 3: Model integration[J]. Advances in Earth Science, 2010, 25(8):851-865.[李新, 程国栋, 康尔泗, 等. 数字黑河的思考与实践3:模型集成[J].地球科学进展,2010, 25(8):851-865.]
[9] Rensheng, Liu Shiyin, Kang Ersi, et al. Daily glacier runoff estimation methods—A case study of Koxkar Glacier[J]. Advances in Earth Science, 2008, 23(9):942-951.[陈仁升, 刘时银, 康尔泗, 等. 冰川流域径流估算方法探索——以科其喀尔巴西冰川为例[J]. 地球科学进展, 2008, 23(9):942-951.]
[10] Qian, Sun Shufen. Deveolopment of the universal and simplified soil model coupling heat and water transport[J]. Science in China (Series D), 2008, 51(1): 88-102.
[11] M, Wang L, Koike T, et al. Improving the snow physics of WEB-DHM and its point evaluation at the SnowMIP sites[J]. Hydrology and Earth System Sciences, 2010, 14:2 577-2 594, doi:10.5194/hess-14-2577-2010.
[12] D M,Slater A G. Incorporating organic soil into a global climate model[J]. Climate Dynamics, 2008, 30(2/3): 145-160, doi:10.1007/s00382-007-0278-1.
[13] Dawen, Li Chong, Ni Guangheng, et al. Application of a distributed hydrological model to the Yellow River Basin[J]. Acta Geographica Sinica, 2004, 59(1):143-154.[杨大文, 李翀, 倪广恒, 等. 分布式水文模型在黄河流域的应用[J]. 地理学报, 2004, 59(1):143-154.]
[14] Yongjian, Zhou Chenghu, Shao Ming’an, et al. Studies of earth surface processes: Progress and prospect[J]. Advances in Earth Science, 2013, 28(4): 407-419.[丁永建, 周成虎, 邵明安, 等. 地表过程研究进展与趋势[J].地球科学进展,2013, 28(4): 407-419.]
[15] Jiemin. Land surface process experiments and interaction study in China—From HEIFE to IMGRASS and GAME-Tibet/TIPEX[J]. Plateau Meteorology, 1999, 18(3): 280-294.[王介民.陆面过程实验和地气相互作用研究——从HEIFE到IMGRASS和GAME-Tibet/TIPEX[J]. 高原气象, 1999, 18(3):280-294.]
[16] N, Linsley R. Digital simulation in hydrology: Stanford watershed model IV[M]∥Technical Report No. 39, Department of Civil Engineering. Califormia: Stanford University, 1966.
[17] M. Tank model and its application to Bird Creek, Wollombi Brook, Bikin River, Kitsu River, Sanaga River and Nam Mune[M]. Tokyo: National Research Center for Disaster Prevention, 1974.
[18] R J, Zhang Y L, Fang L R, et al. The Xinanjiang model[C]∥Hydrological Forecasting Proceedings Oxford Symposium.Wallingford: IAHS, 1980.
[19] Changming, Zheng Hongxing, Wang Zhonggen. Distributed Simulation of Water Cycle[M]. Zhengzhou: Yellow River Water Conservancy Press, 2006.[刘昌明,郑红星,王中根. 流域水循环分布式模拟[M]. 郑州:黄河水利出版社, 2006.]
[20] Yangwen, Wang Hao, Ni Guangheng, et al. Principles and Practice of Distributed Hydrological Model[M]. Beijing:China Water & Power Press, 2005.[贾仰文, 王浩, 倪广恒, 等. 分布式流域水文模型原理与实践[M]. 北京:中国水利水电出版社, 2005.]
[21] R A, Harlan R L. Blueprint for a physically based digitally simulated hydrological response model[J]. Journal of Hydrology, 1969, 9(3): 237-258, doi:10.1016/0022-1694(69)90020-1.
[22] K, Kirkby M J. A physically based variable contributing area model of basin hydrology[J]. Hydrological Sciences Bulletin, 1979, 24(1): 43-69.
[23] M B, Bathurst J C, Cunge J A, et al. An introduction to the European hydrological system—Systeme Hydrologique Europeen, SHE, 2. Structure of a physically based distributed modeling system[J]. Journal of Hydrology, 1986, 87(1/2): 61-77, doi:10.1016/0022-1694(86)90115-0.
[24] J C, Wicks J M, O’Connell P E. The SHE/SHESED basin scale water flow and sediment transport modeling system[M]∥Singh V P, ed. Computer Models of Watershed Hydrology. Colo, Littleton: Water Resource Publication, 1995: 563-594.
[25] Xu, Lettenmaier D P, Wood E F, et al. A simple hydrologically based model of land surface water and energy fluxes for general circulation models[J]. Journal of Geophysical Research, 1994, 99(D7):14 415-14 428, doi:10.1029/94JD00483.
[26] M S, Vail L, Lettenmaier D P. A distributed hydrology-vegetation model for complex terrain[J]. Water Resources Research, 1994, 30(6):1 663-1 679.
[27] V Y, Vivoni E R, Bras R L, et al. Catchment hydrologic response with a fully distributed triangulated irregular network model[J]. Water Resources Research, 2004, 40(11): W11102, doi:10.1029/2004WR003218.
[28] D W. Distributed Hydrological Model Using Hillslope Discretization Based on Catchment Area Function: Development and Applications[D]. Tokyo: University of Tokyo, 1998.
[29] D W, Koike T, Tanizawa H. Application of a distributed hydrological model and weather radar observations for flood management in the upper Tone River of Japan[J]. Hydrological Processes, 2004, 18(16): 3 119-3 132, doi:10.1002/hyp.5752.
[30] Zongxue. Hydrological Models[M]. Beijing: Science Press, 2009.[徐宗学. 水文模型[M]. 北京:科学出版社, 2009.]
[31] Siyi, Liu Guowei, Xia Jun, et al. Hydrology and Water Resources[M]∥Frontier in Water Science and Technology.Beijing:China Water & Power Press, 2005.[胡四一,刘国纬,夏军,等. 水文学及水资源[M]∥当代水利科技前沿. 北京:中国水利水电出版社,2005.]
[32] Q H, Oki T, Kanae S. A distributed biosphere hydrological model (DBHM) for large river basin[J]. Annual Journal of Hydraulic Engineering, 2006, 50: 37-42.
[33] L, Koike T, Yang Kun, et al. Development of a distributed biosphere hydrological model and its evaluation with the Southern Great Plains experiments (SGP97 and SGP99)[J]. Journal of Geophysical Research: Atmospheres, 2009, 114: D08107, doi:10.1029/2008JD010800.
[34] L, Koike T, Yang Kun, et al. Assessment of a distributed biosphere hydrological model against streamflows and MODIS land surface temperature in the upper Tone River Basin[J]. Journal of Hydrology, 2009, 377(1/2): 21-34.
[35] L, Koike T, Yang D W, et al. Improving the hydrology of the Simple Biosphere Model 2 and its evaluation within the framework of a distributed hydrological model[J]. Hydrological Sciences Journal, 2009, 54(6): 989-1 006.
[36] Hongkai, He Xiaobo, Ye Baisheng, et al. The simulation of HBV hydrology model in the Dongkemadi Rriver Basin, headwater of the Yangtze River[J]. Journal of Glaciology and Geocryology, 2011, 33(1):171-181.[高红凯, 何晓波, 叶柏生, 等. 1955—2008年冬克玛底河流冰川径流模拟研究[J]. 冰川冻土, 2011, 33(1):171-181.]
[37] Junfeng, Yang Jianping, Chen Rensheng, et al. The simulation of snowmelt runoff model in the Dongkemadi River Basin[J]. Acta Geographica Sinica, 2006, 61(11):1 149-1 159.[刘俊峰, 杨建平, 陈仁升, 等. SRM融雪径流模型在长江源区冬克玛底河流域的应用[J]. 地理学报, 2006, 61(11):1 149-1 159.]
[38] Fangfang, Xu Zongxue. Hydrological response to climate change in headwater catchment of the Yellow River Basin[J]. Resources Science, 2009, 31(5):722-730.[赵芳芳, 徐宗学. 黄河源区未来气候变化的水文响应[J]. 资源科学, 2009, 31(5):722-730.]
[39] Yongyong, Zhang Shifeng, Zhai Xiaoyan, et al. Runoff variation in the three rivers source region and its response to climate change[J]. Acta Geographica Sinica, 2012, 67(1): 71-82.[张永勇, 张士锋, 翟晓燕, 等. 三江源区径流演变及其对气候变化的响应[J]. 地理学报, 2012, 67(1): 71-82.]
[40] Zhigang, Liu Xiaodong, Fan Guangzhou, et al. Trends in runoff of the source region of the Yangtze River and the Yellow River for 21st century[J]. Resources and Environment in the Yangtze Basin, 2010, 19(11):1 333-1 339.[程志刚, 刘晓东, 范广洲, 等. 21世纪长江黄河源区径流量变化情势分析[J]. 长江流域资源与环境, 2010, 19(11):1 333-1 339.]
[41] Cuo, Zhang Yongxin, Gao Yanhong, et al. The impacts of climate change and land cover/use transition on the hydrology in the upper Yellow River Basin, China[J]. Journal of Hydrology, 2013, 502:37-52.
[42] Bin, Zhang Wanchang, Liu Chuansheng. Advances in the coupling study of hydrological models and land-surface models[J]. Journal of Glaciology and Geocryology, 2006, 28(6): 961-970.[雍斌, 张万昌, 刘传胜. 水文模型与陆面模式耦合研究进展[J]. 冰川冻土, 2006, 28(6): 961-970.]
[43] P J, Randall D A, Collatz G J, et al. A revised land surface parameterization (SiB2) for atmospheric GCMs, Part I: Model formulation[J]. Journal of Climate, 1996, 9(4): 676-705.
[44] R E, Shaikh M, Bryant R, et al. Interactive canopies for a climate model[J]. Journal of Climate, 1998, 11(11): 2 823-2 836.
[45] M, Wang L, Koike T, et al. Modeling the spatial distribution of snow cover in the Dudhkoshi region of the Nepal Himalayas[J]. Journal of Hydrometeorology, 2012, 13(1):204-222.
[46] L, Koike T, Yang K, et al. Frozen soil parameterization in a distributed biosphere hydrological model[J]. Hydrology and Earth System Sciences, 2010, 14(6):557-571.
[47] B L, Wang L, Yang K, et al. Modeling the land surface water and energy cycle of a mesoscale watershed in the central Tibetan Plateau with a distributed hydrological model[J]. Journal of Geophysical Research: Atmospheres, 2013, 118: 8 857-8 868, doi:10.1002/jgrd.50696.
[48] Yongjian, Xiao Cunde. Challenges in the study of cryospheric changes and their impacts[J]. Advances in Earth Science, 2013, 28(10): 1 067-1 076.[丁永建, 效存德. 冰冻圈变化及其影响研究的主要科学问题概论[J].地球科学进展,2013, 28(10): 1 067-1 076.]
[49] R. Temperature index melt modeling in mountain areas[J]. Journal of Hydrology, 2003, 282(1/4):104-115.
[50] S Q, Kang S C, Gao T G, et al. Response of Zhadang glacier runoff in Nam Co Basin, Tibet, to changes in air temperature and precipitation form[J]. Chinese Science Bulletin, 2010, 55(20): 2 103-2 110.
[51] J, Farinotti D, Jonas T, et al. Quantitative evaluation of different hydrological modeling approaches in a partly glacierized Swiss watershed[J]. Hydrological Processes, 2011, 25(13):2 071-2 084.
[52] W, Guo X F, Yao T D, et al. Summertime surface energy budget and ablation modeling in the ablation zone of a maritime Tibetan glacier[J]. Journal of Geophysics Research, 2011, 116 (D14),doi:10.1029/2010JD015183.
[53] J A, McKendry I G. A review of turbulence in the very stable nocturnal boundary layer and its implications for air quality[J]. Progress in Physical Geography, 2005, 29(2):171-188.
[54] W S B. The Physics of Glaciers[M]. Amsterdam: Butterworth Heinemann, 1994:480.
[55] Tandong. Dynamic Characteristics of the Cryosphere on the Central Tibetan Plateau[M]. Beijing: Geological Publishing House, 2002.[姚檀栋. 青藏高原中部冰冻圈动态特征[M]. 北京:地质出版社, 2002.]
[56] Liang, Duan Keqin, Wang Ninglian, et al. Characteristics of the surface energy balance of the Qiyi Glacier in Qilian Mountains in melting season[J]. Journal of Glaciology and Geocryology, 2007, 29(6): 882-888.[陈亮, 段克勤, 王宁练, 等. 祁连山七一冰川消融期间的能量平衡特征[J]. 冰川冻土, 2007, 29(6):882-888.]
[57] P S, Neff W D. Boundary layer physics over snow and ice[J]. Atmospheric Chemistry and Physics, 2008, 8: 3 563-3 582.
[58] C, Kilian R, Glaser M. Energy balance in the ablation zone during the summer season at the Gran Campo Nevado Ice Cap in the Southern Andes[J]. Global and Planetary Change, 2007, 59(1/4): 175-188.
[59] F S, Hostetler S, Bidlake W R, et al. Distributed energy balance modeling of South Cascade Glacier, Washington and assessment of model uncertainty[J]. Journal of Geophysical Research, 2008, 113: F02019, doi:10.1029/2007JF000850.
[60] M J,Fountain A G, Liston G E. Surface energy balance and melt thresholds over 11 years at Taylor Glacier, Antarctica[J]. Journal Geophysical Research, 2008, 113: F04014, doi:10.1029/2008JF001029.
[61] R H, van den Broeke M R, Oerlemans J, et al. Surface energy balance in the ablation zone of Midtdalsbreen, a glacier in southern Norway: Interannual variability and the effect of clouds[J]. Journal of Geophysical Research, 2008, 113: D21111, doi:10.1029/2008JD010390.
[62] A M, Willis I C, Arnold N S. Modification and testing of a one-dimensional energy and mass balance model for supraglacial snowpacks[J]. Hydrological Processes, 2008, 22(16):3 194-3 209.
[63] X, Wang N L, He J Q, et al. A distributed surface energy and mass balance model and its application to a mountain glacier in China[J]. Chinese Science Bulletin, 2010, 55(20):2 079-2 087, doi:10.1007/s11434-010-3068-9.
[64] A H, Flowers G E. Spatial and temporal transferability of a distributed energy-balance glacier melt model[J]. Journal of Climate, 2011, 24(5):1 480-1 498.
[65] K, Sharp M, Arnold N, et al. An Integrated approach to modeling hydrology and water quality in glacierized catchments[J]. Hydrological Processes, 1996, 10(4):479-508.
[66] J E, Hock R, Ribstein P, et al. Analysis of seasonal variation in mass balance and meltwater discharge of the tropical Zongo glacier by application of a distributed energy balance model[J]. Journal of Geophysical Research, 2011, 116: D13105, doi:10.1029/2010JD015105.
[67] B, Yang K, Qin J, et al. The dependence of precipitation types on surface elevation and meteorological conditions and its parameterization[J]. Journal of Hydrology, 2014,513:154-163.
[68] Y, Sellers P J, Kinter J L, et al. A simplified biosphere model for global climate studies[J]. Journal of Climate, 1991, 4(3): 345-364.
[69] B, Graf H. Modeling the snow cover in climate studies 1.Long-term integrations under different climatic conditions using a multilayered snow-cover model[J]. Journal of Geophysical Research, 1998, 103(D10):11 313-11 327.
[70] Shufen, Jin Jiming, Wu Guoxiong. A snow model design for coupling with GCM[J]. Acta Meteorologica Sinica, 1999, 57(3):293-300.[孙菽芬, 金继明, 吴国雄. 用于GCM耦合的积雪模型的设计[J]. 气象学报, 1999, 57(3):293-300.]
[71] S F, Jin J M, Xue Y K. A simple snow-atmosphere-soil transfer model[J]. Journal of Geophysical Research, 1999, 104(D16): 19 587-19 597.
[72] M J, Pryor M, Clark D B, et al. The Joint UK Land Environment Simulator (JULES), Model description-Part 1: Energy and water fluxes[J]. Geoscientific Model Development, 2011, 4:595-640, doi:10.5194/gmd-4-677-2011.
[73] R, Bartlett P, MacKay M, et al. Evaluation of snow cover in CLASS for SnowMIP[J]. Atmosphere-Ocean,2006, 44(3): 223-238, doi:10.3137/ao.440302.
[74] K, Lawrence D, Gordon B, et al. Technical description of version 4.0 of the Community Land Model (CLM)[R]∥NCAR Technical Note NCAR/TN-478+STR,doi:10.5065/D6FB50WZ.
[75] E A. A Point Energy and Mass Balance Model of A Snow Cover[R]. Marryland: Office of Hydrology-National Weather Service, 1976.
[76] R. A One-Dimensional Temperature Model for a Snow Cover: Technical Documentation for SNTHERM. 89[R]. Hanaver: Cold Regions Research and Engineering Laboratory, 1991.
[77] E, Martin E, Simon V, et al. An energy and mass model of snow cover suitable for operational avalanche forecasting[J]. Journal of Glaciology, 1989, 35(121): 333-342.
[78] E, David P, Sudul M, et al. A numerical model to simulate snow-cover stratigraphy for operational avalanche forecasting[J]. Journal of Glaciology, 1992, 38(128):13-22.
[79] P, Lehning M. A physical SNOWPACK model for the Swiss avalanche warning. Part I: Numerical model[J]. Cold Regions Science and Technology, 2002, 35(3):123-145.
[80] R E, Henderson-Sellers A, Kennedy P J. Biosphere-Atmosphere Transfer Scheme (BATS) Version 1e as Coupled to the NCAR Community Climate Model[R]. Colorado: NCAR Technical Note TN-387 1 STR, 1993,doi:10.5065/D67W6959.
[81] Z L, Dickinsion R E, Robock A, et al. Validation of the snow submodel of the biosphere-atmosphere transfer scheme with Russian snow cover and meteorological observational data[J].Journal of Climate, 1997, 10(2): 353-373.
[82] Y L, Cheng G D, Li X, et al. Coupling of a simultaneous heat and water model with a distributed hydrological model and evaluation of the combined model in a cold region watershed[J]. Hydrological Processes, 2013, 27(25):3 762-3 776, doi:10.1002/hyp.9514.
[83] Q, Sun S F. Development of the universal and simplified soil model coupling heat and water transport[J].Science in China (Series D), 2008, 51(1): 88-102.
[84] K, Koike T, Ye B S, et al. Inverse analysis of the role of soil vertical heterogeneity in controlling surface soil state and energy partition[J]. Journal of Geophysics Research, 2005, 110: D08101, doi:10.1029/2004JD005500.
[85] D M, Slater A G. Incorporating organic soil into a global climate model[J]. Climate Dynamics, 2008, 30(2/3): 145-160, doi:10.1007/s0038200702781.
[86] Y Y, Yang K, Tang W J, et al. Parameterizing soil organic carbon’s impacts on soil porosity and thermal parameters for Eastern Tibet grasslands[J]. Science in China (Series D), 2012, 55: 1 001-1 011, doi:10.1007/s11430-012-4433-0.
[87] Sumin, Dou Hongshen. Journal of Chinese Lakes[M]. Beijing: Science Press,1998.[王苏民, 窦鸿身. 中国湖泊志[M].北京:科学出版社, 1998.]
[88] J, Doms G, Schttler U, et al. Meso-gamma scale forecasts using the non-hydrostatic model LM[J]. Meteorology and Atmospheric Physics, 2003, 82(1/4):75-96.[88] [JP3][89]Bowen J D, Hieronymus J W. A CE-QUAL-W2 Model of Neuse Estuary for total maximum daily load development[J]. Journal of Water Resources Planning and Management, 2003, 129(4):283-294.[JP]
[90] J M. A three-dimensional environmental fluid dynamics computer code: Theoretical and computational aspects[R]∥Special Report 317 in Applied Marine Science and Ocean Engineering. The College of William and Mary, Virginia Institute of Marine Sciences, 1992.
[91] B. New formulation of eddy diffusion thermocline models[J]. Applied Mathematical Modelling, 1985, 9(6):441-446.
[92] S W, Bartlein P J. Simulation of lake evaporation with application to modeling lake level variations of Harney-Malheur Lake[J]. Water Resources Research,1990, 26(10):2 603-2 612.
[93] S W. Simulation of lake ice and its effect on the late-Pleistocene evaporation rate of lake Lahontan[J]. Climate Dynamics, 1991, 6(1):43-48.
[94] Shufen, Yan Jinfeng, Xia Nan, et al. Study on heat transfer between land surface water and the atmosphere[J]. Science in China (Series G), 2008, 38(6):704-713.[孙菽芬, 颜金凤, 夏南, 等.陆面水体与大气之间的热传输研究[J]. 中国科学:G辑, 2008, 38(6):704-713.]
[95] L C, Lettenmaier D P. Modeling the effects of lakes and wetlands on the water balance of arctic environments[J]. Journal of Hydrometeorology, 2010, 11(2): 76-95.
[96] Leilei, Su Fengge, Yang Daqing, et al. Discharge regime and simulation for the upstream of major rivers over Tibetan Plateau[J]. Journal of Geophysical Research, 2013, 118(15):8 500-8 518.
Outlines

/