Spatial and Temporal Variations of Seasonally Frozen Ground over the Heihe River Basin of Qilian Mountain in Western China

  • Peng Xiaoqing ,
  • Zhang Tingjun ,
  • Pan Xiaoduo ,
  • Wang Qingfeng ,
  • Zhong Xinyue ,
  • Wang Kang ,
  • Mu Cuicui
Expand
  • 1.State Key Laboratory of Frozen Soil Engineering, Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou730000, China;
    2.College of Earth and Environmental Sciences, Lanzhou University, Lanzhou730000, China;
    3. National Snow and Ice Data Center, Cooperative Institute for Research in Environmental Sciences University of Colorado, Boulder,  80309, USA

Received date: 2012-12-18

  Revised date: 2013-02-28

  Online published: 2013-04-10

Abstract

Spatial and temporal variations of seasonally frozen ground extent have important impacts on carbon exchange between the atmosphere and the land surface, surface energy balance, hydrologic cycle, and ecosystems as a whole. By using air temperature and soil temperature at 5 cm depth from 11 meteorological stations for more than 40 years, we established a relationship between mean monthly air temperature and numbers of frozen days within the month. Based on this relationship, grid air temperature data with a resolution of 5 kilometers, and 30m-DEM data, we mapped the monthly seasonally frozen ground distribution over the Heihe River Basin, and three different types of freezing/thawing status can be divided by using the spatial characteristics : complete frozen, incomplete frozen, and not frozen. The results indicate that the maximum area of three different types of soil freezethaw status occur in January, November, and June or July respectively. Over the study period from 2000 through 2009, interannual variations of the complete frozen area extent is large in cold season, vice versa in warm season; there is a huge change in the warmer and catathermal period for incomplete frozen area extent; not frozen area extent has a huge variation in April and October. The maximum of freezing probability occurs in January, while the minimum of probability occurs between June and July. To the spatial perspective, distribution and variation of monthly seasonally frozen ground and freezing probability are mainly controlled by elevation, following by latitude over the Heihe River Basin.

Cite this article

Peng Xiaoqing , Zhang Tingjun , Pan Xiaoduo , Wang Qingfeng , Zhong Xinyue , Wang Kang , Mu Cuicui . Spatial and Temporal Variations of Seasonally Frozen Ground over the Heihe River Basin of Qilian Mountain in Western China[J]. Advances in Earth Science, 2013 , 28(4) : 497 -508 . DOI: 10.11867/j.issn.1001-8166.2013.04.0497

References

[1]Zhang T, Barry R G, Knowles K, et al. Statistics and characteristics of permafrost and ground ice distribution in Northern Hemisphere[J]. Polar Geography, 1999, 23(2): 132-154.

[2]Zhang T, Barry R G, Knowles K, et al. Distribution of seasonally and perennially frozen ground in the Northern Hemisphere[C]∥ Phillips M, Springman S M,  Arenson L U,eds. Proceedings of the 8th International Conference on Permafrost. Zurich: A. A. Balkema Publishers,2003.

[3]Zhou Youwu, Guo Dongxin, Qiu Guoqing, et al. Geocryology in China[M]. Beijing: Science Press, 2000:309-326.[周幼吾,郭东信,邱国庆,等.中国冻土[M]. 北京:科学出版社, 2000:309-326.]

[4]Cheng Guodong, Wang Shaoling. On the zonation of high-altitude permafrost in China[J].Journal of Glaciology and Geocryology, 1982, 4(2): 1-16.[程国栋, 王绍令. 试论中国高海拔多年冻土带的划分[J]. 冰川冻土, 1982, 4(2): 1-16.]

[5]Brown R J E. Permafrost in Canada: Its Influence on Northern Development[M]. Toronto: University of Toronto Press, 1970.

[6]Zhang Tingjun, Barry Roger G,Armstrong Richard L. Application of satellite remote sensing techniques to frozen ground studies[J]. Polar Geography, 2004, 28(3): 163-196.

[7]Zhang T, Barry R G, Knowles K, et al. Statistics and characteristics of permafrost and ground-ice distribution in the Northern Hemisphere[J]. Polar Geography, 2008, 31(1): 47-68.

[8]Cary J W, Campbell G S, Papendick R I. Is the soil frozen? An algorithm using weather record[J].Water Resources Research,1978,14(6):1 117-1 122.

[9]Frauenfeld O W, Zhang Tingjun, McCreight J L. Northern hemisphere freezing/thawing index variarions over the twentieth century[J]. International Journal of Climatology, 2007, 27: 47-63.

[10]Zhang Tingjun, Jin Rui, Gao Feng. Overview of the satellite remote sensing of frozen ground: Passive microwave sensors[J].Advances in Earth Science, 2009, 24(10): 1 073-1 083.[张廷军,晋锐, 高峰. 冻土遥感研究进展:被动微波遥感[J].地球科学进展,2009, 24(10): 1 073-1 083.]

[11]Zhang T, Armstrong R L. Soil freeze/thaw cycles over snow free land detected by passive microwave remote sensing[J]. Geophysical Research Letters, 2001, 28(5): 763-766.

[12]Christoph Oelke, Zhang Tingjun, Serreze Mark C, et al. Regional-scale modeling of soil freeze/thaw over Arctic drainage basin[J]. Journal of Geophysical Research,2003,108(D10): 4314, doi: 10.1029/2002JD002722.

[13]McGuire A D, Apps M, Chapin F S, et al. Land cover and land use change in Alaska and Canada[C]∥Land Change Science: Observing, Monitoring, and Understanding Trajectories of Change on the Earth’s Surface. Dordrecht: Kluuer Academic Publishers,2005.

[14]Jin Rui, Li Xin, Che Tao. A decision tree algorithm for surface freeze/thaw classification using SSM/I[J]. Journal of Remote Sensing, 2009, 13(1): 152-161.[晋锐, 李新,车涛. SSM/I监测地表冻融的决策树算法[J].遥感学报, 2009, 13(1): 152-161.]

[15]Youngwook Kim, Kimball J S, McDonald K C, et al. Developing a global data record of daily landscape freeze/thaw status using satellite passive microwave remote sensing[J]. IEEE Transactions on Geoscience and Remote Sensing, 2011, 49(3): 949-960.

[16]Zhang Tingjun, Jin Rui, Gao Feng. Overview of the satellite remote sensing of frozen ground: Visible-thermal infrared and radar sensor[J]. Advances in Earth Science, 2009, 24(9): 963-972.[张廷军,晋锐,高峰. 冻土遥感研究进展——可见光、红外及主动微波卫星遥感方法[J]. 地球科学进展,2009,24(9):963-972.]

[17]Ma Mingguo, Jiao Yuanmei, Wang Xuemei, et al. TM/ETM+ mosaic image processing and application in the Heihe River Basin [J]. Journal of Glaciology and Geocryology, 2002, 24(4): 452-456.[马明国, 角媛梅, 王雪梅,等. 黑河流域TM/ETM+影像数字镶嵌图的制作与应用研究[J]. 冰川冻土, 2002, 24(4): 452-456.]

[18]Zhao Jing. Terrestrial Water Cycle Scheme in Heihe River Basin and Its Responses to Human Activities[D].Beijing: China University of Geosciences,2010.[赵静. 黑河流域陆地水循环模式及其对人类活动的响应研究[D]. 北京:中国地质大学, 2010.]

[19]Lu Ling, Li Xin, Cheng Guodong. Analysis on the seasonal phenological characteristics of the Heihe River Basin with AVHRR NDVI data set[J]. Journal of Desert Research, 2002, 22(2): 187-191.[卢玲, 李新, 程国栋. 利用NOAA AVHRR植被指数数据分析黑河流域季候特征[J].中国沙漠, 2002, 22(2): 187-191.]

[20]Cao Ling, Dou Yongxiang, Zhang Deyu. Effect of climate change on ecological environment of Heihe field[J]. Arid Meteorology, 2003, 21(4): 45-49.[曹玲, 窦永祥, 张德玉. 气候变化对黑河流域生态环境的影响[J]. 干旱气象, 2003, 21(4): 45- 49.]

[21]Pan Xiaoduo, Li Xin. Validation of WRF model on simulating forcing data for Heihe River Basin [J]. Sciences in Cold and Arid Regions, 2011, 3(4): 344-357.

[22]Li X, Nan Z T, Cheng G D, et al. Toward an improved data stewardship and service for environmental and ecological science data in west China[J]. International Journal of Digital Earth, 2011, 4(4): 347-359.

[23]Chen Donghua, Zou Chen, Wang Suying, et al. Study on spatial interpolation of the average temperature in the Yili River valley based on DEM[J]. Spectroscopy and Spectral Analysis, 2011, 31(7): 1 925-1 929.[陈冬花,邹陈,王苏颖,等.基于DEM的伊犁河谷气温空间插值研究[J].光谱学与光谱分析,2011, 31(7): 1 925-1 929.]

Outlines

/