Growth Rate Hypothesis Research Progresses: Implications for Zooplankton

  • Su Qiang
Expand
  • 1. Key Laboratory of Computational Geodynamics, Chinese Academy of Sciences, Beijing 100049, China;2. University of Chinese Academy of Sciences, Beijing 100049, China

Received date: 2012-04-05

  Revised date: 2012-08-20

  Online published: 2012-11-10

Abstract

All organisms are composed of the same major elements, which uptakes, incorporation and storage would affect the organism growth, reproduction and metabolism processes. Phosphorus (P) determined the amount of rRNA in many organisms, which would constrain consumer concentrations of ribosome and thus protein synthesis and growth rate. P content increase and thus decreased C: [P and N: P ratios in many biota have been hypothesized to reflect P-rich ribosomal RNA at different growth rates(the Growth Rate Hypothesis, GRH). The GRH denoted that the C:P and N:P homeostasis in zooplankton fed with low C: ]P and high P food would deviate and increase allocation to Prich RNA to meet the protein synthesis demands of rapid growth; otherwise, secondary production would decrease and reduce C assimilation and transfer efficiency which would strongly bear on the sequestration of C in ecosystems. This paper reviews the framework of GRH in zooplankton, which aims to enhance the insight for C cycling and sequestration in ecosystems and their future tendency.

Cite this article

Su Qiang . Growth Rate Hypothesis Research Progresses: Implications for Zooplankton[J]. Advances in Earth Science, 2012 , 27(11) : 1204 -1210 . DOI: 10.11867/j.issn.1001-8166.2012.11.1204

References

[1]Elser J J, Hamilton A. Stoichiometry and the new biology—The future is now[J].PLOS Biology,2007,5(7): 1 403-1 405.

[2]Wang Shaoqiang, Yu Guirui. Ecological stoichiometry characteristics of ecosystem carbon, nitrogen and phosphorus elements[J].Acta Ecologica Sinica, 2008, 28(8): 3 937-3 947.[王绍强, 于贵瑞. 生态系统碳氮磷元素的生态化学计量学特征[J]. 生态学报, 2008, 28(8): 3 937-3 947.]

[3]Hall E K, Maixner F, Franklin O, et al. Linking microbial and ecosystem ecology using ecological stoichiometry: A synthesis of conceptual and empirical approaches[J].Ecosystems,2011, 14(2): 261-273.

[4]Jeyasingh P D, Weider L J. Fundamental links between genes and elements: Evolutionary implications of ecological stoichiometry[J]. Molecular Ecology, 2007, 16(22): 4 649-4 661.

[5]Schade J D, Macneill K, Thomas S A, et al. The stoichiometry of nitrogen and phosphorus spiralling in heterotrophic and autotrophic streams[J].Freshwater Biology, 2011, 56(3): 424-436.

[6]He Jinsheng, Han Xingguo. Ecological stoichiometry: Searching for unifying principles from individuals to ecosystems[J].Chinese Journal of Plant Ecology, 2010,34(1): 2-6.[贺金生, 韩兴国. 生态化学计量学:探索从个体到生态系统的统一化理论[J]. 植物生态学报, 2010,34(1): 2-6.]

[7]Tsoi W Y, Hadwen W L, Fellows C S. Spatial and temporal variation in the ecological stoichiometry of aquatic organisms in an urban catchment[J]. Journal of the North American Benthological Society, 2011, 30(2): 533-545.

[8]Elser J. Biological stoichiometry: A chemical bridge between ecosystem ecology and evolutionary biology[J].American Naturalist, 2006, 168(6): S25-S35.

[9]Kyle M, Acharya K, Weider L J, et al. Coupling of growth rate and body stoichiometry in Daphnia: A role for maintenance processes?[J]. Freshwater Biology, 2006, 51(11): 2 087-2 095.

[10]Hessen D O. Nutrient element limitation of zooplankton production[J]. American Naturalist, 1992, 140(5): 799-814.

[11]Saikia S K, Nandi S. C and P in aquatic food chain: A review on C∶ [KG-*2]P stoichiometry and PUFA regulation[J]. Knowledge and Management of Aquatic Ecosystems,2010,398(3):1-14.

[12]Elser J J, Dobberfuhl D R, Mackay N A, et al. Organism size, life history, and N∶ [KG-*2]P stoichiometry[J].Bioscience,1996, 46(9): 674-684.

[13]Elser J J, O’brien W J, Dobberfuhl D R, et al. The evolution of ecosystem processes: Growth rate and elemental stoichiometry of a key herbivore in temperate and arctic habitats[J]. Journal of Evolutionary Biology, 2000, 13(5): 845-853.

[14]Elser J J, Sterner R W, Gorokhova E, et al. Biological stoichiometry from genes to ecosystems[J]. Ecology Letters, 2000, 3(6): 540-550.

[15]Elser J J, Acharya K, Kyle M, et al. Growth rate-stoichiometry couplings in diverse biota[J]. Ecology Letters, 2003, 6(10): 936-943.

[16]Zeng Dehui, Chen Guangsheng. Ecological stoichiometry: A science to explore the complexity of living systems[J]. Acta Phytoecologica Sinica, 2005, 29(6): 1 007-1 019.[曾德慧, 陈广生. 生态化学计量学:复杂生命系统奥秘的探索[J]. 植物生态学报, 2005, 29(6): 1 007-1 019.]

[17]Li Ying. Carbon, Nitrogen and Phosphorus Stoichimetry of Freshwater Zooplankton in Guangdong Province, South China[D]. Guangzhou: Jinan University, 2011.[李莹. 南亚热带地区主要浮游动物种类C、N、P营养元素计量学研究[D]. 广州: 暨南大学,2011.]

[18]Cai Wenxiang. The Application of Biological Stoichiometry in the Biology Mathematics[D]. Changchun: Northeast Normal University, 2006.[蔡文香. 化学计量学原理在生物数学中的应用[D]. 长春: 东北师范大学, 2006.]

[19]Sterner R W, Elser J J. Ecological Stoichiometry: The Biology of Elements from Molecules to the Biosphere[M]. Princeton: Princeton University Press, 2002.

[20]Weider L J, Glenn K L, Kyle M, et al. Associations among ribosomal (r)DNA intergenic spacer length, growth rate, and C∶ [KG-*2]N∶ [KG-*2]P stoichiometry in the genus Daphnia[J].Limnology and Oceanography, 2004, 49(4): 1 417-1 423.

[21]Weider L J, Elser J J, Crease T J, et al. The functional significance of ribosomal (r)DNA variation: Impacts on the evolutionary ecology of organisms[J]. Annual Review of Ecology Evolution and Systematics, 2005, 36: 219-242.

[22]Leonardos N, Geider R J. Elemental and biochemical composition of Rhinomonas reticulata (Cryptophyta) in relation to light and nitrate-to-phosphate supply ratios[J].Journal of Phycology,2005, 41(3): 567-576.

[23]Hillebrand H, Frost P, Liess A. Ecological stoichiometry of indirect grazer effects on periphyton nutrient content[J]. Oecologia,2008, 155(3): 619-630.

[24]Zhang Guangtao. Community Ecology of Meso-and Macro-zooplankton in Prydz Bay, Antarctica[D]. Qingdao: Institute of Oceanology, Chinese Academy of Sciences, 2000.[张光涛. 南极普里兹湾大、中型浮游动物群落生态学研究[D]. 青岛: 中国科学院海洋研究所, 2000.]

[25]Elser J J, Watts T, Bitler B, et al. Ontogenetic coupling of growth rate with RNA and P contents in five species of Drosophila[J].Functional Ecology, 2006, 20(5): 846-856.

[26]Ferrao A D, Tessier A J, Demott W R. Sensitivity of herbivorous zooplankton to phosphorus-deficient diets: Testing stoichiometric theory and the growth rate hypothesis[J]. Limnology and Oceanography, 2007, 52(1): 407-415.

[27]Acharya K, Jack J D, Smith A S. Stoichiometry of Daphnia lumholtzi and their invasion success: Are they linked?[J]. Archiv Fur Hydrobiologie, 2006, 165(4): 433-453.

[28]Iwabuchi T, Urabe J. Phosphorus acquisition and competitive abilities of two herbivorous zooplankton, Daphnia pulex and Ceriodaphnia quadrangula[J]. Ecological Research,2010, 25(3): 619-627.

[29]Makino W, Cotner J B, Sterner R W, et al. Are bacteria more like plants or animals? Growth rate and resource dependence of bacterial C∶ [KG-*2]N∶ [KG-*2]P stoichiometry[J]. Functional Ecology, 2003, 17(1): 121-130.

[30]Demott W R, Pape B J. Stoichiometry in an ecological context: Testing for links between Daphnia P-content, growth rate and habitat preference[J]. Oecologia, 2005, 142(1): 20-27.

[31]Jensen T C, Hessen D O. Does excess dietary carbon affect respiration of Daphnia?[J]. Oecologia, 2007, 152(2): 191-200.

[32]Sterner R W, Forman R, Hendrixson H, et al. Stoichiometric patterns at the small and the large scale[C]∥SICB Annual Meeting & Exhibition Final Program and Abstracts. Toronto, ON, Canada: Annual Meating and Exlibition of the SICB,2003.

[33]Hawkins A J S. Protein-turnover-a functional appraisal[J]. Functional Ecology, 1991, 5(2): 222-233.

[34]Matzek V, Vitousek P M. N∶ [KG-*2]P stoichiometry and protein: RNA ratios in vascular plants: An evaluation of the growth-rate hypothesis[J]. Ecology Letters, 2009, 12(8): 765-771.

[35]Yu Q, Chen Q, Elser J J, et al. Linking stoichiometric homoeostasis with ecosystem structure, functioning and stability[J]. Ecology Letters, 2010, 13(11): 1 390-1 399.

[36]Persson J, Fink P, Goto A, et al. To be or not to be what you eat: Regulation of stoichiometric homeostasis among autotrophs and heterotrophs[J].Oikos,2010, 119(5): 741-751.

[37]Nakazawa T. The ontogenetic stoichiometric bottleneck stabilizes herbivore-autotroph dynamics[J]. Ecological Research,2011, 26(1): 209-216.

[38]Small G E, Pringle C M. Deviation from strict homeostasis across multiple trophic levels in an invertebrate consumer assemblage exposed to high chronic phosphorus enrichment in a Neotropical stream[J].Oecologia,2010, 162(3): 581-590.

[39]Acharya K, Kyle M, Elser J J. Biological stoichiometry of Daphnia growth: An ecophysiological test of the growth rate hypothesis[J]. Limnology and Oceanography, 2004, 49(3): 656-665.

[40]Makino W, Cotner J B. Elemental stoichiometry of a heterotrophic bacterial community in a freshwater lake: Implications for growth-and resource-dependent variations[J]. Aquatic Microbial Ecology, 2004, 34(1): 33-41.

[41]Ferrao A D, Demott W R, Tessier A J. Responses of tropical cladocerans to a gradient of resource quality[J]. Freshwater Biology, 2005, 50(6): 954-964.

[42]Gillooly J F, Allen A P, Brown J H, et al. The metabolic basis of whole-organism RNA and phosphorus content[J]. Proceedings of the National Academy of Sciences of the United States of America,2005, 102(33): 11 923-11 927.

[43]Main T M, Dobberfuhl D R, Elser J J. N∶ [KG-*2]P stoichiometry and ontogeny of crustacean zooplankton: A test of the growth rate hypothesis[J]. Limnology and Oceanography,1997, 42(6): 1 474-1 478.

[44]Vandonk E, Lurling M, Hessen D O, et al. Altered cell wall morphology in nutrient-deficient phytoplankton and its impact on grazers[J]. Limnology and Oceanography,1997, 42(2): 357-364.

[45]Hessen D O, Rukke N A. The costs of moulting in Daphnia: Mineral regulation of carbon budgets[J].Freshwater Biology,2000,45(2):169-178.

Outlines

/