PARTICLE DYNAMICS IN EUPHOTIC ZONE ELUCIDATED FROM 234TH/238U DISEQUILIBRIA:A REVIEW
Received date: 1998-11-20
Revised date: 1999-01-22
Online published: 1999-08-01
Euphotic zone is the most active region for marine organism activities. The particle dynamic processes and their regulation in euphotic zone have great effect on marine biogeochemical cycle of carbon.The study of particle dynamics by radionuclides had become a popular program in international marine science studies. In this paper, we described the principle and development of particle dynamics in euphotic zone via 234Th-238U disequilibria. This parent-daughter pair tracer can be applied to many aspects of oceanography, such as the estimation of POC export flux, the calibration of the capture efficiency of sediment trap, the elucidation of the stratified structure, the particle/solution distribution of particle-reactive elements, the study of marine colloids and the prediction of the fate of pollutants in coastal ecosystems. In
addition, we summarized the research progress of the particle dynamics in our country. In the future research, we should expand the application of 234Th/238U disequilibria in marine research, especially in the study of marine colloids dynamics and organic pollutants. On the other hand, more applied research needs
for a better understanding of the biogeochemistry of marine particles, especially by using new tracers or multi-tracer approaches, such as 210Po/210Pb disequilibria,228Th/228Ra disequilibria and some biomarkers.
CHEN Min, HUANG Yipu . PARTICLE DYNAMICS IN EUPHOTIC ZONE ELUCIDATED FROM 234TH/238U DISEQUILIBRIA:A REVIEW[J]. Advances in Earth Science, 1999 , 14(4) : 365 -370 . DOI: 10.11867/j.issn.1001-8166.1999.04.0365
〔1〕Harding G C H. The food of deep-sea copepods〔J〕. J Mar Biol Assoc UK, 1974, 54: 141~155.
〔2〕Emerson S. Organic carbon preservation in marine sediments
〔A〕. In: Sundqust E T, Broecker W S, eds. The Carbon Cycle and Atmosperic CO2: Natural Variations Archaean to Present〔C〕. American Geophysical Union, Geophysical Monography Series, 1985,32: 78~87.
〔3〕Emerson S, Fischer K, Reimers C,et al. Organic carbon dynamics and preservation in deep-sea sediments〔J〕. Deep-Sea Res, 1985, 32: 1~21.
〔4〕Hodge V F, Koide M, Goldberg E D. Particulate uranium,plutonium and polonium in the biogeochemistries of the coastal zone〔J〕. Nature, 1979, 277: 206~209.
〔5〕Ku T L, Knass K G, Mathiew G G. Uranium in open ocean:concentration and isotopic composition〔J〕. Deep-Sea Res,1977,24:1 005~1 007.
〔6〕Turner D R, Whitfield M, Dickson A G. The equilibrium speciation of dissolved components in freshwater and seawater at 25℃and 1 atm pressure〔J〕. Geochim Cosmochim Acta,1981, 45: 855~881.
〔7〕Bhat S, Lai G B, Rama,et al.234Th/238U ratios in the ocean〔J〕. Earth Planet Sci Lett,1969, 5: 483~491.
〔8〕Broecker W S, Kaufman A, Trier R M. The residence time of thorium in surface seawater and its implications regarding the fate of reactive pollutants〔J〕. Earth Planet Sci Lett, 1973,20: 35~44.
〔9〕Matsumoto E.234Th-238U radioactive disequilibrium in the surface layer of the ocean〔J〕. Geochim Cosmochim Acta,1975, 39: 205~212.
〔10〕Knass K G, Ku T L, Moore W S. Radium and thorium isotopes in the surface waters of the East Pacific and coastal Southern California〔J〕. Earth Planet Sci Lett, 1978,39: 249~253.
〔11〕Kaufman A, Li Y H, Turekian K K. The removal rates of 234Th and 228Th from waters of the New York Bight〔J〕.Earth Planet Sci Lett, 1981, 54: 385~392.
〔12〕Santschi P H, Li Y H, Bell J J. Natural radionuclides in Narragansett Bay〔J〕. Earth Planet Sci Lett, 1979, 47: 201~213.
〔13〕Bacon M P, Anderson R F. Distribution of thorium isotopes between dissolved and particulate forms in the deep sea〔J〕. J Geophys Res, 1982, 87: 2 045~2 056.
〔14〕Coale K H, Bruland K W.234Th/238Udisequilibria within the California Current〔J〕. Limnol Oceanogr, 1985, 30: 22~23.
〔15〕Coale K H, Bruland K W. Oceanic stratified euphotic zone as elucidated by 234Th∶238U disequilibria〔J〕. Limnol Oceanogr, 1987, 32(1): 189~200.
〔16〕Bruland K W, Coale K H. Surface water 234Th/238Udisequilibria: Spatial and temporal variations of scavenging rates within the Pacific Ocean〔A〕. In: Burton J D, Brewer P G,Chesselet R, eds. Dynamic Process in the Chemistry of the Upper Ocean〔C〕. Plenium Pub Co, 1986. 159~172.
〔17〕Buat-Ménard P, Nguyen H V, Reyss J L,et al. Temporal changes in concentrations and fluxes in the northwestern Mediterranean〔A〕. In: Guary J C,et aleds. Radionuclides:A Tool for Oceanography〔C〕. New York: Elsevier Applied Science, 1988.121~130.
〔18〕Buesseler K O, Bacon M P, Cochran J K,et al. Carbon and nitrogen export during the JGOFS North Atlantic Bloom Experiment estimated from 234Th∶238U disequilibria〔J〕. Deep-Sea Res, 1992, 39: 1 115~1 137.
〔19〕Cochran J K, Bacon M P, Buesseler K O,et al. Thorium isotopes as indicators of particle dynamics in the upper ocean: results from the North Atlantic Bloom Experiment〔J〕.Deep-Sea Res, 1993, 40: 1569~1595.
〔20〕Moran S B, Buesseler K O. Size-fractionated234Th in continental shelf waters off New England: Implications for the role of colloids in oceanic trace metal scavenging〔J〕. J Mar Res, 1993, 51: 893~922.
〔21〕Moran S B, Buesseler K O. Short residence time of colloids in the upper ocean estimated from 238U-234Th disequilibria〔J〕. Nature, 1992, 359: 221~223.
〔22〕Buesseler K O, Andrews J A, Hartman M C,et al. Regional estimates of the export flux of particulate organic carbon derived from thorium-234 during the JGOFS EqPac program〔J〕. Deep-Sea ResⅡ,1995, 42(2~3): 777~804.
〔23〕Eppley R W. New production: History, methods, problems〔A〕.In:Smetacek V, Weffer O, Berger W H, eds. Productivity of the ocean: Present and Past〔C〕. New York: Wiley,1989. 88~97.
〔24〕Murray J W, Downs J N, Strom S,et al. Nutrient assimilation, export production and 234Th scavenging in the eastern equatorial Pacific〔J〕. Deep-Sea Res, 1989, 36: 1 471~1 489.
〔25〕Bacon M P, Cochran J K, Hirschberg D,et al. Export flux of carbon at the equator during the EqPac time-series cruises estimated from 234Th measurements〔J〕. Deep Sea ResⅡ,1996, 43:1 133~1 153.
〔26〕Minagawa M, Tsunogai S. Removal of 234Th from a coastal sea: Funka Bay, Japan〔J〕. Earth Planet Sci Lett, 1980, 47:51~64.
〔27〕Tsunogai S, Taguchi K, Harada T J. Seasonal variation in the difference between observed and calculated particulate fluxes of 234Th in Funka Bay, Japan〔J〕. J Oceanogr Soc Japan, 1986, 42: 91~98.
〔28〕Wei C L, Murray J W. Temporal variations of 234Th activity in the water column of Dabob Bay: Particle scavenging〔J〕.Limnol Oceanogr , 1992, 37(2): 296~314.
〔29〕Buesseler K O. Do upper-ocean sediment traps provide an accurate record of particle flux〔J〕. Nature, 1991, 353: 420~423.
〔30〕Buesseler K O, Michael A F, Siegel D A,et al. A three dimensional time-dependent approach to calibrating sediment trap flux〔J〕. Global Biogeochem Cycles, 1994, 8(2): 179~193.
〔31〕Hung C C, Wei C L.234Th scavenging in the water column off southwestern Taiwan〔J〕. TAO, 1992, 3(2): 183~197.
〔32〕Honeyman B D, Balistrieri L, Murray J W. Oceanic trace metal scavenging: the importance of particle concentration〔J〕. Deep-Sea Res,1988, 35: 227~246.
〔33〕Baskaran M, Santschi P H. The role of particles and colloids in the transport of radionuclides in coastal environments of texas〔J〕. Mar Chem, 1993, 43: 95~114.
〔34〕Honeyman B D, Santschi P H. A Brownian-pumping model for trace metal scavenging: evidence from Th isotopes〔J〕. J Mar Res, 1989, 47(4): 950~995.
〔35〕Santschi P H, Honeyman B D. Are thorium scavenging and particle fluxes in the ocean regulated by coagulation?〔A〕.In: Kershaw P J, Woodhead D S, eds. Radionuclides in the study of marine processes〔C〕. New York: Elsevier Applied Science, 1991. 107~115.
〔36〕Moran S B, Moore R M. The distribution of colloidal aluminum and organic carbon in coastal and open ocean waters off Nova Scotia〔J〕. Geochim Cosmochim Acta, 1989, 53: 2519~2 527.
〔37〕Baskaran M, Santschi P H, Benoit G,et al. Scavenging of thorium isotopes by colloids in seawater of the Gulf of Mexico〔J〕. Geochim Cosmochim Acta, 1992, 56:3 375~3 388.
〔38〕Scholkovitz E R. Chemical evolution of rare earth elements:fractionation between colloidal and solution phases of filtered river water〔J〕. Earth Planet Sci Lett, 1992, 114: 77~84.
〔39〕Huh C A, Prahl F G. Role of colloids in upper ocean biogeo-chemistry in the northeast Pacific elucidated from 238U-234Th disequilibria〔J〕. Limnol Oceanogr, 1995, 40: 528~532.
〔40〕Santschi P H,Guo L,Baskaran M,et al. Isotopic evidence for the contemporary origin of high-molecular weight organic matter in oceanic environments〔J〕. Geochim Cosmochim Acta, 1995, 59: 625~631.
〔41〕Aller R C, Cochran J K. 234Th/238Udisequilibrium in nearshore sediment: particle reworking and diagenetic time scales〔J〕. Earth Planet Sci Lett, 1976, 29: 37~50.
〔42〕Santschi P H, Adler D, Amdurer M,et al. Thorium isotopes as analogues for“particle-reactive”pollutants in coastal marine environments〔J〕. Earth Planet Sci Lett, 1980, 47: 327~335.
〔43〕Mckee B A, DeMaster D J, Nittrouer C A. The use of 234Th/238Udisequilibrium to examine the fate of particle-reactive species on the Yangtze continental shelf〔J〕. Earth Planet Sci Lett,1984, 68:431~442.
〔44〕Santschi P H, Adler D, Amdurer M. The fate of particles and particle-reactive trace metals in coastal waters: radioisotope studies in microcosms〔A〕. In: Wong C S, Boyle E,Bruland K W,et aleds. Trace Metals in sea Water〔C〕.New York: Plenum, 1983. 331~349.
〔45〕Santschi P H, Amdurer M, Adler D,et al. Relative mobility of radioactive trace elements across the sediment-water interface in the MERL model ecosystems of Narragansett Bay〔J〕.J Mar Res, 1987, 45:1 007~1 048.
〔46〕Nyffeler U P, Santschi P H, Li Y H. The relevance of scavenging kinetics to modeling of sediment-water interactions in natural waters〔J〕. Limnol Oceanogr, 1986, 131: 277~292.
〔47〕Olsen C R, Larsen I L, Lowry P D,et al. Radionuclide distributions and sorption behavior in the Susquehanna-Chesapeake Bay sustem〔R〕. Maryland Power and Environmental Review Division,Rep. PREP-R-12, Depart of Natural Resources, Ananpolis, MD, 1989. 106.
〔48〕陈敏,黄奕普,邱雨生.天然海水中238U、234Th的富集、纯化与测定〔J〕.同位素,1997, 10(4): 199~204.
〔49〕蔡平河,黄奕普,邱雨生.九龙江河口区水体中238U、234Th地球化学行为的研究〔J〕.海洋学报,1996, 18(5): 52~60.
〔50〕陈敏,黄奕普,陈飞舟,等.真光层的颗粒动力学Ⅱ:南沙海域上层水体中234Th的清除〔A〕.见:中国科学院南沙综合科学考察队.南沙群岛海域的同位素海洋化学〔C〕.北京:海洋出版社, 1996.123~133.
〔51〕黄奕普,陈敏,陈飞舟,等.真光层的颗粒动力学Ⅲ:南沙海域冬季真光层层化结构及输出生产力的研究〔A〕.见:中国科学院南沙综合科学考察队.南沙群岛海域的同位素海洋化学〔C〕.北京:海洋出版社, 1996. 134~144.
〔52〕陈敏,黄奕普,陈飞舟,等.真光层的颗粒动力学IV:应用234Th/238U不平衡估算南沙海域的新生产力〔A〕.见:中国科学院南沙综合科学考察队.南沙群岛海域的同位素海洋化学〔C〕.北京:海洋出版社, 1996.145~153.
〔53〕陈敏,黄奕普,邱雨生,等.真光层的颗粒动力学V:南海上层水体中234Th固/液分配的研究〔A〕.见:中国科学院南沙综合科学考察队.南沙群岛海域的同位素海洋化学〔C〕.北京:海洋出版社, 1996. 154~164.
〔54〕陈敏,黄奕普,陈飞舟,等.真光层的颗粒动力学VI:南海东北部海域上层水体颗粒动力学的示踪研究〔J〕.热带海洋,1997,16(2): 91~103.
〔55〕陈敏,黄奕普.厦门湾颗粒活性污染物归宿的研究〔J〕.海洋学报,1998,20(5): 70~74.
/
〈 |
|
〉 |