THE IDENTIFICATION OF THE FOSSIL BLACK SMOKER CHIMNEY AND ITS IMPLICATION FOR SCIENTIFIC RESEARCH
Received date: 2003-04-07
Revised date: 2003-09-11
Online published: 2003-02-01
The present day black smoker chimneys and mounds have been widely found in the settings of mid-oceanic ridge, backarc basin, shallow sea and continental rift, which result in the formation of massive sulfide deposits at the vent sites. Moreover, these deep vents support chemosynthetic metabolizing bacteria. The modern sulfide chimneys commonly show evident columnar to conical geometry, characterized with the concentric mineralogical zonation around a central conduit. The black smoker chimney is formed when the mineral laden hydrothermal fluid is mixed with the surrounding ocean water. It begins to grow by the instant precipitation around outer wall, followed by the crystallization of polymetal sulphide on inner wall of conduits. The deeply seated magma as heat source, hydrothermal fluid concentrated within fissures and continuous eruption are favorable to the creation of a giant black smoker chimney. The drilling in sulphide mounds at the ocean bottom and their comparison with VMS (volcanogenic massive sulfide) indicate that they have similar internal structures and mineral zonation. The sulphide mounds of economic value are built with the accumulation of collapsed chimney and breccias, reworked by replacement and recrystalization. Finally, the identification of chimney structures within VMS is very important for the understanding of the process of minerallization and the origin of life.
LI Jianghai, NIU Xianglong,FENG Jun . THE IDENTIFICATION OF THE FOSSIL BLACK SMOKER CHIMNEY AND ITS IMPLICATION FOR SCIENTIFIC RESEARCH[J]. Advances in Earth Science, 2004 , 19(1) : 17 -025 . DOI: 10.11867/j.issn.1001-8166.2004.01.0017
[1]Scott S. Minerals on land, minerals in the sea[J]. Geotimes, 2002, 47:1-8.
[2] Rona P A, Scott S D. A special issue on seafloor hydrothermal mineralization: New perspectives, preface[J]. Economic Geology,1993,88: 1 935-1 975.
[3] Rona P A, Hannington M D, Raman C V, et al. Active and relict seafloor hydrothermal mineralization at the TAG hydrothermal field,MidAtlantic ridge[J]. Economic Geology,1993,88:1 989-2 017.
[4] Wu Shiying(吴世迎).The Hydrothermal Sulphide Resource at Sea Floor of the World[M]. Beijing:Oceanic Press,2000.1-290(in Chinese).
[5] Zhang Yun(张昀). Biological Evolution[M]. Beijing: Beijing University Press,1998.41-86(in Chinese).
[6] Rona P A. Mineral deposits from seafloor hot spring[J]. Scientific American,1986,254:84-92.
[7] Fouquet Y. Where are the large hydrothermal sulphide deposits in the oceans?[A]. In: Cann J R, Elderfield H, Laughton A,eds. Mid Ocean Ridges: Dynamics of Processes Associated with Creation of New Ocean Crust[C]. Cambridge: Cambridge University Press, 1999.211-224.
[8] Fouquet Y, Stackelberg U, Charlou J L, et al. Hydrothermal activity in the Lau backarc basin: Sulfides and water chemistry[J]. Geology, 1991,19: 303-306.
[9] Fouquet Y, Stackelberg U, Charlou J L, et al. Metallogenesis in backarc environments: The Lau Basin example[J]. Economic Geology, 1993,88: 2 154-2 181.
[10] Fouquet Y, Wafik A, Cambon P,et al.Tectonic setting and mineralogical and geopchemical zonation in the Snake pit sulfide deposit(MidAtlantic ridge at 23°N)[J].Economic Geology, 1993,88: 2 018-2 036.
[11] Halbach P, Blum N, Munch U, et al. Formation and decay of a modern massive sulfide deposit in the Indian Ocean[J]. Mineralium Deposita, 1998,33: 302-309.
[12] Halbach P, Pracejus B. Geology and Minerallogy of massive sulfide ores from the central Okinawa trough, Japan[J].Economic Geology, 1993,88: 2 210-2 225.
[13] Bendel V, Fouquet Y, Auzende J, et al. The White Lady hydrothermal field, North Fiji backarc basin,Southwest Pacific[J].Economic Geology, 1993,88: 2 237-2 249.
[14] Goodfellow W G, Franklin J M.Geology, mineralogy and chemistry of sedimenthosted clastic massive sulfides in shallow cores, Middle Valley, Northern Juan de Fuca Ridge[J]. Economic Geology, 1993, 88:2 037-2 068.
[15] Zierenberg R A, Koski R A, Morton J L, et al. Genesis of massive sulfide deposits on a sedimentcovered spreading center,Escanaba Trough, southern Gorda Ridge[J]. Economic Geology, 1993, 88:2 069-2 098.
[16] Crane K. Hydrothermal vents in Lake Baikal[J]. Nature, 1991,350: 281.
[17] Shanks W C, Callender E. Thermal springs in Lake Baikal[J].Geology, 1992,20: 495-497.
[18] Tiercelin J, Pflumio C, Castrec M, et al. Hydrothermal vents in lake Tanganyika,East African rift system[J]. Geology, 1993,21: 499-502.
[19] Lalou C, Reyss J L, Brichet E.Age of subbottom sulfides samples at the TAG active mound[A]. In: Herzig P M, Humphris S E, Miller D J, eds. Proceedings of The Ocean Drilling Program[C]. Scientific Results, 1998,158:111-117.
[20] Herzig P M, Hannington M D, Fouquet Y, et al. Goldrich polymetallic sulphides from the Lau backarc and implications for the geochemistry of gold in seafloor hydrothermal systems of the southwest Pacific[J]. Economic Geology, 1993,88: 2 182-2 209.
[21] Tunnicliffe V, Fowler C M R, Mcarthur A G. Plate tectonic history and hot vent biogeography[A]. In: Macleod C J, Tyler P A, Walker C L, eds. Tectonic, Magmatic, Hydrothermal and Biological Segmentation of MidOcean Ridges[C].Geological Society, London Special Publication, 1996,118: 225-238.
[22] Rona P A.Marine minerals for the 21st centry[J]. Episodes,2002,25: 2-12.
[23] Von Damm K L. Lost city found[J]. Nature, 2001,412: 127-128.
[24] Kelley D S, Karson J A, Blackman D K, et al. An offaxis hydrothermal vent field near the midatlantic Ridge at 30°N[J]. Nature, 2001,412:145-149.
[25] Hannington M D, Galley A G, Herzig P M, et al.Comparison of the TAG mound and stockwork complex with Cyprustype massive sulfide deposits[A]. In: Herzig P M, Humphris S E, Miller D J, eds. Proceedings of The Ocean Drilling Program[C]. Scientific Results,1998,158:389-415.
[26] James R H, Duckworth R C, Palmer M R, et al. Drillling of sedimenthosted massive sulphide deposits at the middle valley and Escanaba trough spreading centers:ODP leg 169[A]. In: Mills R A, Harrison K, eds.Modern Ocean Floor Processes and the Geological Record[C]. Geological Society, London, Special Publication, 1998,148:177-199.
[27] You C F, Bickle M J. Evolution of an active seafloor massive sulphide deposit[J]. Nature, 1998,394: 668-671.
[28] Zierenberg R A, Fouquet Y, Miller D J, et al. The deep structure of a seafloor hydrothermal deposit[J]. Nature, 1998,392: 485-488.
[29] Knott R, Fouquet Y, Honnorez J, et al. Petrology of hydrothermal mineralization: A vertical section through the TAG mound[A]. In: Herzig P M, Humphris S E, Miller D J, eds.Proceedings of the Ocean Drilling Program[C]. Scientific Results, 1998,158: 5-26.
[30] Humphris S E, Tivey M K.A synthesis of geological and geochemical investigations of the TAG hydrothermal field: Insights into fluidflow and mixing processes in a hydrothermal system[A].In: Dilek Y, Moores E, Elthon D,eds. Ophiolites and Oceanic Crust: New Insights from Field Studies and the Ocean Drilling Program[C]. Geological Society of America Special Paper, 2000,34: 213-235.
[31] Humphris S E, Herzig P M, Miller D J. The internal structure of an active seafloor massive sulphide deposit[J].Nature,1995,377: 713-716.
[32] Brown D, McClay K R. Data report: Sulfide textures in the active TAG massive sulfide deposit,260N, midAtlantic ridge[A]. In: Herzig P M, Humphris S E, Miller D J, eds.Proceedings of the Ocean Drilling Program[C]. Scientific Results, 1998,158:193-200.
[33] Nisbet E G, Fowler M R. The hydrothermal imprint on life: Did heatshock proteins, metalloproteins and photosynthesis begin around hydrothermal vents? [A]. In: Macleod C J, Tyler P A, Walker C L,eds. Tectonic,Magmatic, Hydrothermal and Biological Segmentation of MidOcean Ridges[C]. Geological Society,London, Special Publication,1996,118:239-251.
[34] Russell M J. The generation at hot springs of sedimentary ore deposits, microbialiates and life[J]. Ore Geology Reviews, 1996,10: 199-214.
[35] Haymon R M, Koski R A, Abrams M J.Hydrothermal discharge zones beneath massive sulfide deposits mapped in the Oman ophiolite[J].Geology, 1989,17: 531-535.
[36] Gibson H L, Morton R I, Hudak G.Submarine volcanic process, deposits and environments favorable for the location of volcanicassociated massive sulfide deposits[A]. In: Barrie C T,Hannington M D,eds. Volcanicassociated Massive Sulfide Deposits: Processes and Examples in Modern and Ancient Settings[C]. Reviews in Economic Geology,1999,8: 13-51.
[37] Sawkins F J. Intergrated tectonicgenetic model for volcanichosted massive sulfide deposits[J].Geology, 1990,18: 1 061-1 064.
[38] Zaykov V V, Maslennikov V V, Zaykov E V,et al. Hydrothermal activity and segmentataion in the MagnitogorskWest Mugodjarian zone on the margins of the Urals palaeoocean[A]. In: Macleod C J, Tyler P A C L, eds.Tectonic,Magmatic, Hydrothermal and Biological Segmentation of MidOcean Ridges[C]. Geological Society Special Publication, 1996,118: 199-210.
[39] Boyle J F, Robertson A H F. Evolving metallogenesis at the Troodos spreading axis[A]. In: Gass I G, Lippard S J , Shelton A W, eds. Ophiolites and Oceanic Lithosphere[C]. Blackwell Scientific Publications,Oxfords: Geological Society, London,Special Publication, 1984,113: 169-181.
[40] Larter R C L, Boyce A J, Russell M J. Hydrothermal pyrite chimneys from the Ballynoe Baryte Deposit, Silvermines,county Tipperary,Ireland[J]. Mineral Deposita, 1981,16: 309318.
[41] Li Jianghai(李江海), Feng Jun(冯军), Niu Xianglong(牛向龙), et al. The preliminary report on the discovery of black smoker chimney within the Mesoproterozoic sulphide deposit of North China[J].Acta Petrologica Sinica(岩石学报),2003,19:167-168(in Chinese).
[42] Boyce A J, Coleman M L, Russell M J. Formation of fossil hydrothermal chimneys and mounds from Silvermines, Ireland[J].Nature, 1983, 306:545-550.
[43] Herrington R J, Maslennikov V V, Spiro B, et al. Ancient vent chimney structures in the Silurian massive sulphides of the Urals[A]. In: Mills R A, Harrision K, eds. Modern Ocean Floor Processes and the Geological Record[C].Geological Society, London, Special Publications, 1998,148:241-257.
[44] Vearncombe S, Barley M E, Groves D I,et al. 3.26Ga black smokertype mineralization in the Strelley belt, Pilbara craton, Western Australia[J]. Journal of the Geological Society, London,1995, 152: 587-590.
[45] Little C T S, Cann J R, Herrington R J, et al. Late Cretaceous hydrothermal vent communities from the Troodos ophiolite, Cyprus[J]. Geology, 1999,27:1 027-1 030.
[46] Little C T S, Herrington R J, Maslennikov V V, et al.The fossil record of hydrothermal vent communities[A]. In: Mills R A, Harrison K, eds. Modern Ocean Floor Processes and the Geological Record[C]. Geological Society, London, Special Publication, 1998,148:259-270.
/
〈 |
|
〉 |