Articles

THE IDENTIFICATION OF THE FOSSIL BLACK SMOKER CHIMNEY AND ITS IMPLICATION FOR SCIENTIFIC RESEARCH

Expand
  • School of Earth and Space Sciences, Peking University, Beijing 100871,China

Received date: 2003-04-07

  Revised date: 2003-09-11

  Online published: 2003-02-01

Abstract

The present day black smoker chimneys and mounds have been widely found in the settings of mid-oceanic ridge, backarc basin, shallow sea and continental rift, which result in the formation of massive sulfide deposits at the vent sites. Moreover, these deep vents support chemosynthetic metabolizing bacteria. The modern sulfide chimneys commonly show evident columnar to conical geometry, characterized with the concentric mineralogical zonation around a central conduit. The black smoker chimney is formed when the mineral laden hydrothermal fluid is mixed with the surrounding ocean water.  It begins to grow by the instant precipitation around outer wall, followed by the crystallization of polymetal sulphide on inner wall of conduits. The deeply seated magma as heat source, hydrothermal fluid concentrated within fissures and continuous eruption are favorable to the creation of a giant black smoker chimney. The drilling  in sulphide mounds at the ocean bottom and their comparison with VMS (volcanogenic massive sulfide) indicate that they have similar internal structures and mineral zonation. The sulphide mounds of economic value are built with the accumulation of collapsed chimney and breccias, reworked by replacement and recrystalization. Finally, the identification of chimney structures within VMS is very important for the understanding of the process of minerallization and the origin of life.

Cite this article

LI Jianghai, NIU Xianglong,FENG Jun . THE IDENTIFICATION OF THE FOSSIL BLACK SMOKER CHIMNEY AND ITS IMPLICATION FOR SCIENTIFIC RESEARCH[J]. Advances in Earth Science, 2004 , 19(1) : 17 -025 . DOI: 10.11867/j.issn.1001-8166.2004.01.0017

References

[1]Scott S. Minerals on land, minerals in the sea[J]. Geotimes, 2002, 47:1-8.
[2] Rona P A, Scott S D. A special issue on seafloor hydrothermal mineralization: New perspectives, preface[J]. Economic Geology,1993,88: 1 935-1 975.
[3] Rona P A, Hannington M D, Raman C V, et al. Active and relict seafloor hydrothermal mineralization at the TAG hydrothermal field,MidAtlantic ridge[J]. Economic Geology,1993,88:1 989-2 017.
[4] Wu Shiying(吴世迎).The Hydrothermal Sulphide Resource at Sea Floor of the World[M]. Beijing:Oceanic Press,2000.1-290(in Chinese).
[5] Zhang Yun(张昀). Biological Evolution[M]. Beijing: Beijing University Press,1998.41-86(in Chinese).
[6] Rona P A. Mineral deposits from seafloor hot spring[J]. Scientific American,1986,254:84-92.
[7] Fouquet Y. Where are the large hydrothermal sulphide deposits in the oceans?[A]. In: Cann J R, Elderfield H, Laughton A,eds. Mid Ocean Ridges: Dynamics of Processes Associated with Creation of New Ocean Crust[C]. Cambridge: Cambridge University Press, 1999.211-224.
[8] Fouquet Y, Stackelberg U, Charlou J L, et al. Hydrothermal activity in the Lau backarc basin: Sulfides and water chemistry[J]. Geology, 1991,19: 303-306.
[9] Fouquet Y, Stackelberg U, Charlou J L, et al. Metallogenesis in backarc environments: The Lau Basin example[J]. Economic Geology, 1993,88: 2 154-2 181.
[10] Fouquet Y, Wafik A, Cambon P,et al.Tectonic setting and mineralogical and geopchemical zonation in the Snake pit sulfide deposit(MidAtlantic ridge at 23°N)[J].Economic Geology, 1993,88: 2 018-2 036.
[11] Halbach P, Blum N, Munch U, et al. Formation and decay of a modern massive sulfide deposit in the Indian Ocean[J]. Mineralium Deposita, 1998,33: 302-309.
[12] Halbach P, Pracejus B. Geology and Minerallogy of massive sulfide ores from the central Okinawa trough, Japan[J].Economic Geology, 1993,88: 2 210-2 225.
[13] Bendel V, Fouquet Y, Auzende J, et al. The White Lady hydrothermal field, North Fiji backarc basin,Southwest Pacific[J].Economic Geology, 1993,88: 2 237-2 249.
[14] Goodfellow W G, Franklin J M.Geology, mineralogy and chemistry of sedimenthosted clastic massive sulfides in shallow cores, Middle Valley, Northern Juan de Fuca Ridge[J]. Economic Geology, 1993, 88:2 037-2 068.
[15] Zierenberg R A, Koski R A, Morton J L, et al. Genesis of  massive sulfide deposits on a sedimentcovered spreading center,Escanaba Trough, southern Gorda Ridge[J]. Economic Geology, 1993, 88:2 069-2 098.
[16] Crane K. Hydrothermal vents in Lake Baikal[J]. Nature, 1991,350: 281.
[17] Shanks W C, Callender E. Thermal springs in Lake Baikal[J].Geology, 1992,20: 495-497.
[18] Tiercelin J, Pflumio C, Castrec M, et al. Hydrothermal  vents in lake Tanganyika,East African rift system[J]. Geology, 1993,21: 499-502.
[19] Lalou C, Reyss J L, Brichet E.Age of subbottom sulfides samples at the TAG active mound[A]. In:  Herzig P M, Humphris S E, Miller D J, eds.  Proceedings of The Ocean Drilling Program[C]. Scientific Results, 1998,158:111-117.
[20] Herzig P M, Hannington M D, Fouquet Y, et al. Goldrich polymetallic sulphides from the Lau backarc and implications for the geochemistry of gold in seafloor hydrothermal systems of the southwest Pacific[J]. Economic Geology, 1993,88: 2 182-2 209.
[21] Tunnicliffe V, Fowler C M R, Mcarthur A G. Plate tectonic history and hot vent biogeography[A].  In: Macleod C J, Tyler P A, Walker C L, eds. Tectonic, Magmatic, Hydrothermal and Biological Segmentation of MidOcean Ridges[C].Geological Society, London Special Publication, 1996,118: 225-238.
[22] Rona P A.Marine minerals for the 21st centry[J]. Episodes,2002,25: 2-12.
[23] Von Damm K L. Lost city found[J]. Nature, 2001,412: 127-128.
[24] Kelley D S, Karson J A, Blackman D K, et al. An offaxis hydrothermal vent field near the midatlantic Ridge at 30°N[J]. Nature, 2001,412:145-149.
[25] Hannington M D, Galley A G, Herzig P M, et al.Comparison of the TAG mound and stockwork complex with Cyprustype massive sulfide deposits[A]. In: Herzig P M, Humphris S E,  Miller D J, eds.  Proceedings of The Ocean Drilling Program[C]. Scientific Results,1998,158:389-415.
[26] James R H, Duckworth R C, Palmer M R, et al. Drillling of sedimenthosted massive sulphide deposits at the middle valley and Escanaba trough spreading centers:ODP leg 169[A]. In: Mills R A, Harrison K, eds.Modern Ocean Floor Processes and the Geological Record[C]. Geological Society, London, Special Publication, 1998,148:177-199.
[27] You C F, Bickle M J. Evolution of an active seafloor massive sulphide deposit[J]. Nature, 1998,394: 668-671.
[28] Zierenberg R A, Fouquet Y, Miller D J, et al. The  deep structure of a seafloor hydrothermal deposit[J]. Nature, 1998,392: 485-488.
[29] Knott R, Fouquet Y, Honnorez J, et al. Petrology of hydrothermal mineralization: A vertical section through the TAG mound[A]. In: Herzig P M, Humphris S E, Miller D J, eds.Proceedings of the Ocean Drilling Program[C]. Scientific Results, 1998,158: 5-26.
[30] Humphris S E, Tivey M K.A synthesis of geological and geochemical investigations of the TAG hydrothermal field: Insights into fluidflow and mixing processes in a hydrothermal system[A].In: Dilek Y, Moores E, Elthon D,eds. Ophiolites and Oceanic Crust: New Insights from Field Studies and the Ocean Drilling Program[C]. Geological Society of America Special Paper, 2000,34: 213-235.
[31] Humphris S E, Herzig P M, Miller D J. The internal structure of an active seafloor massive sulphide deposit[J].Nature,1995,377: 713-716.
[32] Brown D, McClay K R. Data report: Sulfide textures in the active TAG massive sulfide deposit,260N, midAtlantic ridge[A]. In: Herzig P M, Humphris S E, Miller D J, eds.Proceedings of the Ocean Drilling Program[C]. Scientific Results, 1998,158:193-200.
[33] Nisbet E G, Fowler M R. The hydrothermal imprint on life:  Did heatshock proteins, metalloproteins and photosynthesis begin around hydrothermal vents? [A]. In: Macleod C J, Tyler P A, Walker C L,eds. Tectonic,Magmatic, Hydrothermal and Biological Segmentation of MidOcean Ridges[C]. Geological Society,London, Special Publication,1996,118:239-251.
[34] Russell M J. The generation at hot springs of sedimentary ore deposits, microbialiates and life[J]. Ore Geology Reviews, 1996,10: 199-214.
[35] Haymon  R M, Koski R A, Abrams M J.Hydrothermal discharge zones beneath massive sulfide deposits mapped in the Oman ophiolite[J].Geology, 1989,17: 531-535.
[36] Gibson H L, Morton R I, Hudak G.Submarine volcanic process, deposits and environments favorable for the location of volcanicassociated massive sulfide deposits[A]. In: Barrie C T,Hannington M D,eds. Volcanicassociated Massive Sulfide Deposits: Processes and Examples in Modern and Ancient Settings[C]. Reviews in Economic Geology,1999,8: 13-51.
[37] Sawkins F J. Intergrated tectonicgenetic model for volcanichosted massive sulfide deposits[J].Geology, 1990,18: 1 061-1 064.
[38] Zaykov V V, Maslennikov V V, Zaykov E V,et al. Hydrothermal activity and segmentataion in the MagnitogorskWest Mugodjarian zone on the margins of the Urals palaeoocean[A]. In: Macleod C J, Tyler P A C L, eds.Tectonic,Magmatic, Hydrothermal and Biological Segmentation of MidOcean Ridges[C]. Geological Society Special Publication, 1996,118: 199-210.
[39] Boyle J F, Robertson A H F. Evolving metallogenesis  at the Troodos spreading axis[A]. In: Gass I G, Lippard S J , Shelton A W, eds. Ophiolites and Oceanic Lithosphere[C]. Blackwell Scientific Publications,Oxfords: Geological Society, London,Special Publication, 1984,113: 169-181.
[40] Larter R C L, Boyce A J, Russell M J. Hydrothermal pyrite chimneys from the Ballynoe Baryte Deposit, Silvermines,county Tipperary,Ireland[J]. Mineral Deposita, 1981,16: 309318.
[41] Li Jianghai(李江海),  Feng Jun(冯军), Niu Xianglong(牛向龙), et al. The  preliminary report on the discovery of black smoker chimney within the Mesoproterozoic  sulphide deposit of North China[J].Acta Petrologica Sinica(岩石学报),2003,19:167-168(in Chinese).
[42] Boyce A J, Coleman M L, Russell M J. Formation of fossil hydrothermal chimneys and mounds from Silvermines, Ireland[J].Nature, 1983, 306:545-550. 
[43] Herrington R J, Maslennikov V V, Spiro B, et al. Ancient vent chimney structures in the Silurian massive sulphides of the Urals[A]. In: Mills R A, Harrision K, eds. Modern Ocean Floor Processes and the Geological Record[C].Geological Society, London, Special Publications, 1998,148:241-257.
[44] Vearncombe S, Barley M E, Groves D I,et al.  3.26Ga black smokertype mineralization in the Strelley belt, Pilbara craton, Western Australia[J]. Journal of the Geological Society, London,1995, 152: 587-590.
[45] Little C T S, Cann J R, Herrington R J, et al. Late Cretaceous hydrothermal vent communities from the Troodos ophiolite, Cyprus[J]. Geology, 1999,27:1 027-1 030.
[46] Little C T S, Herrington R J, Maslennikov V V, et al.The fossil record of hydrothermal vent communities[A]. In: Mills R A, Harrison K, eds. Modern Ocean Floor Processes and the Geological Record[C]. Geological Society, London, Special Publication, 1998,148:259-270.

Outlines

/