Articles

PRIMARY DISCUSSION ON EARTH'S INTERIOR FLUIDS AND GEOLOGICAL FUNCTION: THINKS FOR STUDIES OF MODERN GEOSCIENCE

Expand
  • Gold Geological Institute of MMI, Langfang, Hebei Province 065000

Received date: 1997-04-28

  Revised date: 1997-08-15

  Online published: 1998-04-01

Abstract

Tradition geoscience, which is established in foundation of studies on solid part of Earth, has not placed the Earth's interior fluids in an important position, except its beginning—sedimentary geology and its end—metallogenetic geology. Explanation methods and integral answers for many important questions, such as transformation, exchange of Earth's substance and energy, can't be found in its knowledge system. Developping modern geoscience have been thinking of Earth's interior fluids as main study object, and playing it in all fields of geoscience. The basic points of modern geoscience may be as fellow: fluids exist widely and move incessantly in all round of the Earth, it is as important as solid part of the Earth, and must be accepted as the main study object of modern geoscience. The Earth's interior fluids not only play an important role in various geological functions, but also can be viewed as a primary reason of all geological functions, that is to say, it penetrate from beginning to ending of all geological functions (such as tectonic movement, magmatic activity, metamorphism, sedimentation, mineralization and geological calamity). All geological functions occured in Earth's interior are united organically by the Earth's interior fluid. Accoding to the relationships between fluid and special geological function, Earth's interiour fluid can be devided into three types with the natures of obtainning-circularing: beginning fluid, process fluid and ending fluid. The role of beginning fluid in a geological event are discussed and a new basic concept of united geological science of Earth's interior fluid is put forward in this paper.

Cite this article

Ge Liangsheng,Guo Xiaodong,Zou Yilin . PRIMARY DISCUSSION ON EARTH'S INTERIOR FLUIDS AND GEOLOGICAL FUNCTION: THINKS FOR STUDIES OF MODERN GEOSCIENCE[J]. Advances in Earth Science, 1998 , 13(2) : 129 -139 . DOI: 10.11867/j.issn.1001-8166.1998.02.0129

References

[1] Wyllie P J. Magmatic consequences of rolatile fluids from the mantle. In:Perchnk L L,ed.Progress in metamorphic and magmatic petrology. London: Cambridge University Press, 1991. 477~503.
[2] 陶于祥, 谢鸿森. 地质流体与构造运动. 地球科学进展, 1994, 9(3): 24~29.
[3] 沈照理,钟佐燊,文冬光,等. 地质流体研究新进展——1993年国际地质流体会议剖析. 地球科学进展, 1994, 9(3): 43~47.
[4] 杜乐天.烃碱流体地球化学原理——重论岩浆热液及成矿作用.北京:科学出版社,1996.
[5] 李兆麟, 杨荣勇, 李院生, 等. 地质作用中的流体形成演化及成矿作用. 地学前缘, 1996,3(4): 237~244.
[6] 贾跃明. 地壳规模流体的远距离运移不断得到证实. 地学前缘, 1996, 3(3): 18.
[7] 杜乐天. 地壳流体与地幔流体间的关系. 地学前缘, 1996, 3(4):172~180.
[8] Meissner K,Wever R. The possible role of fluids for the structuring of contiental crust. Earth Science Reviews, 1992,32: 19~32.
[9] 贾跃明. 地壳中的流体作用. 见: 肖庆辉主编. 当代地质科学前沿. 武汉: 中国地质大学出版社, 1994. 54~66.
[10] 汤葵联. 地质流体研究及其重要意义. 国外地质科技, 1994, (6): 1~15.
[11] Mian Z U, Tozer D C. No water, no plate tectonics: Convective heat transfer and the planetary surface of Venus and Earth. Terra Nova, 1990, 2:455~459.
[12] 钱维宏. 行星地球动力学引论. 北京: 气象出版社, 1994.
[13] 钱维宏. 地球内部流体运动与全球构造. 地学前缘, 1996, 3(3): 152~160.
[14] Crane K, Hecker B, Gokybev V. Heat flow and hydrothermal vents in Lake Baikal, USSR. EOS, 1991, 72: 585~589.
[15] Wang Chiyuen,Yang Jiaming,Zhu Weilin.Some problems in understanding basin evolution. 地学前缘, 1995, 2(3~4): 29~45.
[16] Dipple G M, Ferry A M. Fluid flow and stable isotopic alteration in rocks at elevated temperatures with applications to metamorphism. Geochmica et Cosmochimica Acta, 1992, 56(9): 3 539~3 550.
[17] Hickman S, Sibson R H, Brunhn R, et al. Introduction to special section; mechamical involvement of fluids in faulting. Journal of Geophysical Research B, 1995, 100(7): 12 831~12 840.
[18] Sibson R H,Crustal Stress. Faulting and fluid flow. In: Parrell J, ed. Geological Society Special Publications.N,78,1994, (78): 69~84.
[19] Cox S F. Faulting processes at high fluid pressures, an example of fault value behavior from the high Wattle Gully Fault, Victoria, Australia. Jounral of Geophysical Reserch B, 1995, 100(7): 12 841~12 859.
[20] 宋子新, 钱祥麟. 花岗岩成因机制研究综述. 地质科技情报, 1996, 15(3):19~34.
[21] 南京大学地球科学系. 华南不同时代花岗岩类及其与成矿关系. 北京: 科学出版社, 1981.
[22] 徐克勤, 涂光炽主编. 花岗岩地质和成矿关系(国际学术会议论文集). 南京: 江苏科技出版社, 1986.
[23] 扎里科夫 B A. 花岗岩形成问题. 国外地质科技, 1988, (7):21~27.
[24] 高俊. 古俯冲带的流体作用综述. 地质科技情报, 1997, 16(1):17~22.
[25] 曹荣龙. 地幔流体的前缘研究. 地学前缘, 1996, 3(4):161~171.
[26] 路凤香. 深部地幔与深部流体. 地学前缘, 1996, 3(4):181~186.
[27] 吴有林, 林舸, 范蔚茗, 等. 地幔交代作用研究综述. 地质科技情报,1996,15(2): 35~39.
[28] 徐学义. 地幔交代作用与地幔流体. 地质科技情报, 1996, 15(1):1~6.
[29] 徐学纯. 变质流体研究新进展. 地学前缘, 1996, 3(4):200~208.
[30] Andersen T, Austrherim H, Burke E A J. Melt-mineral-fluid interaction in high-pressure shear zone in the Bergen harnappe complex, Caledonides of West Norway: Implications for fluid regime in cadedonian eclognite facies metamorphism. Lithos, 1991, 27:187~204.
[31] 杜乐天. 自然灾害的可能深部流体肇因. 地学前缘, 1996, 3(4):298~305.

Outlines

/