Estimating Terrestrial Ecosystems Evapotranspiration: A Review on Methods of Integrateing Remote Sensing and Ground Observations
Received date: 2011-04-21
Revised date: 2011-10-10
Online published: 2011-12-10
Generally, the two basic study ways to complete the estimate of terrestrial ecosystems evapotranspiration, ground observation and remote sensing simulation have their own advantages and disadvantages and are complementary to each other. Therefore, how to extend the surface flux (e.g. latent heat flux) from ground observations to large scale (regional and global scale) through combining remote sensing and ground observations has become a scientific focus. In view of this, we review the four aspects of progress based on this research ideas: ① simple empirical regression model; ② surface energy balance methods; ③land surface process model; ④ land data assimilation, and discuss the main problems currently and possible solutions.
Yu Tengfei,Feng Qi,Si Jianhua,Xi Haiyang,Chen Lijuan . Estimating Terrestrial Ecosystems Evapotranspiration: A Review on Methods of Integrateing Remote Sensing and Ground Observations[J]. Advances in Earth Science, 2011 , 26(12) : 1260 -1268 . DOI: 10.11867/j.issn.1001-8166.2011.12.1260
[1]Stocker T F, Raible C C. Climate change water cycle shifts gear[J]. Nature, 2005, 434:830-833.
[2]Houghton J T, Jenkins G J, Ephrayms J J. Climate Change: The IPCC Scientific Assessment[M]. Cambridge: Cambridge University Press, 1990.
[3]Yu G R, Wen X F, Sun X M, et al. Overview of China FLUX and evaluation of its eddy covariance measurement[J]. Agricultural and Forest Meteorology, 2006, 137:125-137.
[4]Yunusa I A M, Walker R R, Lu P. Evapotranspiration components from energy balance, sapflow and microlysimetry techniques for an irrigated vineyard in inland Australia[J]. Agricultural and Forest Meteorology,2004, 127: 93-107.
[5]Nizinski J, Morand D, Fournier C. Actual evapotranspiration of a thorn scrub with Acacia tortilis and Balanites aegyptiaca (North Senegal)[J]. Agricultural and Forest Meteorology,1994, 72: 93-111.
[6]Omar M H, Mehanna A M. Measurements and estimates of potential evapotranspiration over Egypt[J]. Agricultural and Forest Meteorology, 1984, 31: 117-129.
[7]Teixeira A H de C, Bastiaanssen W G M, Ahmad M D, et al. Reviewing SEBAL input parameters for assessing evapotranspiration and water productivity for the Low-Middle São Francisco River Basin, Brazil Part B: Application to the regional scale[J]. Agricultural and Forest Meteorology, 2009, 149: 477-490.
[8]Dobrowski S Z, Abatzoglou J T, Greenberg J A, et al. How much influence does landscape-scale physiography have on air temperature in a mountain environment?[J].Agricultural and Forest Meteorology,2009, 149(10): 1 751-1 758.
[9]Alton P B, North P. Interpreting shallow, vertical nitrogen profiles in tree crowns: A three-dimensional, radiative-transfer simulation accounting for diffuse sunlight[J].Agricultural and Forest Meteorology,2007, 145:110-124.
[10]Irmak S, Mutiibwa D, Irmak A, et al. On the scaling up leaf stomatal resistance to canopy resistance using photosynthetic photon flux density[J].Agricultural and Forest Meteorology,2008, 148: 1 034-1 044.
[11]Jung M, Reichstein M, Ciais P, et al. Recent decline in the global land evapotranspiration trend due to limited moisture supply[J].Nature,2010, 467: 951-954.
[12]Si Jianhua, Feng Qi, Zhang Xiaoyou, et al. Research progress on surveying and calculation of evapotranspiration of plants and its prospects[J]. Advances in Water Science,2005, 16(3): 450-459.[司建华, 冯起, 张小由, 等. 植物蒸散耗水量测定方法研究进展[J]. 水科学进展, 2005, 16(3): 450-459.]
[13]Xin Xiaozhou, Tian Guoliang, Liu Qinhuo. A review of researches on remote sensing of land surface evapotranspiration[J].Journal of Remote Sensing,2003, 7(3): 233-240.[辛晓洲, 田国良, 柳钦火. 地表蒸散定量遥感的研究进展[J].遥感学报, 2003, 7(3): 233-240.]
[14]Guo Xiaoyin, Cheng Guodong. Advances in the application of remote sensing to evapotranspiration research[J]. Advances in Earth Science, 2004, 19(1): 107-114.[郭晓寅, 程国栋. 遥感技术应用于地表面蒸散发的研究进展[J]. 地球科学进展, 2004, 19(1): 107-114.]
[15]Deng Fangping, Liu Chuang, Su Gaoli. A review of remote sensing of regional evapotranspiration[J]. Bulletin of Science and Technology, 2008, 24(4): 465-472.[邓芳萍, 刘闯, 苏高利. 区域蒸散的遥感研究进展[J]. 科技通报, 2008, 24(4): 465-472.]
[16]Li Z L, Tang R, Wan Z, et al. A review of current methodologies for regional evapotranspiration estimation from remotely sensed data[J]. Sensors,2009, 9(5): 3 801-3 853.
[17]Dorigo W, Zuritamilla R, Dewit A, et al. A review on reflective remote sensing and data assimilation techniques for enhanced agroecosystem modeling[J]. International Journal of Applied Earth Observation and Geoinformation, 2007, 9(2): 165-193.
[18]Drexler J Z, Snyder R L, Spano D, et al. A review of models and micrometeorological methods used to estimate wetland evapotranspiration[J]. Hydrological Processes, 2004, 18(11): 2 071-2 101.
[19]Li Xin, Huang Chunlin, Che Tao, et al. Development of a Chinese land data assimilation system: Its progress and prospects[J]. Progress in Natural Science, 2007, 17(2): 163-173.[李新, 黄春林, 车涛, 等.中国陆面数据同化系统研究的进展与前瞻[J]. 自然科学进展, 2007, 17(2): 163-173.]
[20]Todd R W, Evett S R, Howell T A. The Bowen ratio-energy balance method for estimating latent heat flux of irrigated alfalfa evaluated in a semi-arid, advective environment[J]. Agricultural and Forest Meteorology,2000, 103:335-348.
[21]Wu Jiabing, Guan Dexin, Zhang Mi, et al. Comparison of eddy covariance and BREB methods in determining forest evapotranspiration—Case study on broad-leaved Korean pine forest in Changbai Mountain[J]. Chinese Journal of Ecology, 2005, 24 (10) : 1 245-1 249.[吴家兵, 关德新, 张弥, 等.涡动相关法与波文比—能量平衡法测算森林蒸散的比较研究——以长白山阔叶红松林为例[J]. 生态学杂志, 2005, 25(10): 1 245-1 249.]
[22]Coops N, Black T, Jassal R, et al. Comparison of MODIS, eddy covariance determined and physiologically modelled Gross Primary Production (GPP) in a Douglas-fir forest stand[J].Remote Sensing of Environment,2007, 107(3):385-401.
[23]Friedl M A, Davis F W, Michaelsen J, et al. Scaling and uncertainty in the relationship between the NDVI and land surface biophysical variables an analysis using a scene simulation model and data from FIFE[J]. Remote Sensing of Environment, 1995, 54: 233-246.
[24]Pamela L N, James C, Edward G, et al. Predicting riparian evapotranspiration from MODIS vegetation indeces and meteorological data[J]. Remote Sensing of Environment, 2005, 94: 17-30.
[25]Zhang J, Hu Y, Xiao X, et al. Satellite-based estimation of evapotranspiration of an old-growth temperate mixed forest[J]. Agricultural and Forest Meteorology,2009, 149: 976-984.
[26]Zhang Y, Wegehenkel M. Integration of MODIS data into a simple model for the spatial distributed simulation of soil water content and evapotranspiration[J].Remote Sensing of Environment,2006, 104(4): 393-408.
[27]Liu Feng, Li Cunjun, Li Rui, et al. Method for the establishment of the land data assimilation system and its application in agriculture[J]. Transactions of the Chinese Society of Agricultural Engineering, 2008, 24(Suppl.2): 347-352.[刘峰, 李存军, 黎锐, 等. 陆面数据同化系统构建方法及其农业应用[J]. 农业工程学报, 2008, 24(增刊2): 347-352.]
[28]Yi Yonghong, Yang Dawen, Liu Yu, et al. Review of study on regional evapotranspiration modeling based on remote sensing[J]. Journal of Hydraulic Engineering,2008, 39(9): 1 118-1 124.[易永红, 杨大文, 刘钰, 等. 区域蒸散发遥感模型研究的进展[J]. 水利学报, 2008, 39(9): 1 118-1 124.]
[29]Jackson R D, Reginato R J, Idso S B. Wheat canopy temperature: A practical tool for evaluating water requirements[J].Water Resources Research,1977, 13: 651-656.
[30]Neimain R R, Running S W. Estimation of regional surface resistance to evaportranspriation from NDVI and thermal-IR AVHRR data[J].Journal of Applied Meteorology,1989, 28: 276-284.
[31]Price J C. Using spatial context in satellite data to infer regional scale evapotranspiration[J]. IEEE Transactions on Geoscience and Remote Sensing,1990, 28: 940-948.
[32]Moran M S, Clarke T R, Inoue Y. Estimationg crop water deficit using the relation between surface air temperature and spectural vegetation index[J]. Remote Sensing of Environment, 1994, 49: 246-263.
[33]Ptihofko L, Goward S N. Estimating of air temperature from remote sensed surface observations[J]. Remote Sensing of Environment, 1997, 60: 335-346.
[34]Boegh E, Soegaard H, Hanan N, et al. A remote sensing study of the NDVI-Ts relationship and transpiration from sparse vegetation in the Sahel based on high-resolution satellite data[J]. Remote Sensing of Environment, 1999, 69: 224-240.
[35]Jiang L,Islam S. A methodology for estimation of surface evapotranspiration over large areas using remote sensing observations[J].Geophysical Research Letters, 1999, 26: 2 773-2 776.
[36]Nishida K, Nemani R R, Running S W, et al. An operational remote sensing algorithm of land surface evaporation[J].Journal of Geophysical Research,2003, 108(D9): 4 270.
[37]Han Lijuan, Wang Pengxin, Wang Jindi, et al. A study of characterspatial of vegetation index-land surface temperature[J].Science in China (Series D),2005, 35(4) : 371-377.[韩丽娟,王鹏新,王锦地,等.植被指数—地表温度构成的特征空间研究[J]. 中国科学:D辑, 2005, 35(4): 371-377.]
[38]Chávez J L, Gowda P H, Howell T A, et al. Estimating hourly crop ET using a two-source energy balance model and multispectral airborne imagery[J].Irrigation Science,2009, 28(1): 79-91.
[39]Chen Y H,Li X, Li J, et al. Estimation of daily evapotranspiration using a twolayer remote sensing model[J].International Journal of Remote Sensing,2005, 26: 1 755-1 762.
[40]Li F, Kustas W P, Prueger J H, et al. Utility of remote sensing-based two-source energy balance model under low-and high-vegetation cover conditions[J].Journal of Hydrometeorlogy,2005, 6(6): 878-891.
[41]Norman J, Kustas W P, Humes K S. Source approach for estimating soil and vegetation energy fluxes in observations of directional radiometric surface temperature[J]. Agricultural and Forest Meteorology,1995, 77:263-293.
[42]Yao W, Han M, Xu S. Estimating the regional evapotranspiration in Zhalong wetland with the Two-Source Energy Balance (TSEB) model and Landsat7/ETM+ images[J].Ecological Informatics,2010, 5(5):348-358.
[43]Su Hongbo, Zhang Renhua, Tang Xinzhai, et al. Thermal model for discrete vegetation and its solution on pixel scale using computer graphics[J]. Science in China(Series E), 2000, 43(Suppl.1): 48-54.
[44]Zhang Renhua, Sun Xiaomin, Zhu Zhilin, et al. A remote sensing model for monitoring soil evaporation based on differential thermal inertia and its validation[J]. Science in China(Series D), 2003, 46(4): 342-355.
[45]Kustas W P, Norman J M. A two-source approach for estimating turbulent fluxes using multiple angle thermal infrared observations[J]. Water Resources Research, 1997, 33(6): 1 495-1 508.
[46]Kustas W P, Norman J M. A two-source energy balance approach using directional radiometric temperature observations for sparse canopy covered surfaces[J]. Agronomy Journal, 2000, 92: 847-854.
[47]Kustas W P, Norman J M. Evaluation of soil and vegetation heat flux predictions using a simple two-source model with radiometric temperatures for partial canopy cover[J]. Agricultural and Forest Meteorology, 1999, 94: 13-29.
[48]Claussen M,Brovkin V,Ganapolski A. Biogeophysical versus biogeochemical feedbacks of large-scale land cover change[J]. Geophysical Research Letters, 2001, 28(6): 1 011-1 014.
[49]Brunet Y, Nunez M, Lagouarde J P. A simple method for estimating regional evapotranspiration from infrared surface temperature[J].Photogrammetric Engineering and Remote Sensing,1991, 46: 311-327.
[50]Entin J K, Robock A, Vinnikov K Y, et al. Evaluation of global soil wetness project soil moisture simulation[J].Jounal of the Meteorolgical Society of Japan,1999, 77(1B): 183-198.
[51]Chapin F S. Integrated responses of plants to stress[J].Bioscience,1991, 41: 29-36.
[52]Field C B, Chapin Iii F S, Matson P A. Responses of terrestrial ecosystems to the changing atmosphere-a resource-based apporach[J].Annual Review of Ecology and Systematic,1992, 23: 201-235.
[53]Iwasa Roughgarden Y J. Shoot/root balance of plants: Optimal growth of a system with many vegetative organs[J].Theoretical Population Biology,1984, 25: 78-105.
[54]Rastetter E B, Aber J D, Peters D P C. Turbulence statistics inside and over forest: Influence on foot print prediction[J].Boundary-Layer Meteorology, 2003, 109(2): 163-189.
[55]Xie Xianhong, Zhang Dongxiao. Data assimilation for distributed hydrological catchment modeling via ensemble Kalman filter[J].Advances in Water Resources,2010, 33(6): 678-690.
[56]Clark M P, Rupp D E, Woods R A, et al. Hydrological data assimilation with the ensemble Kalman filter: Use of streamflow observations to update states in a distributed hydrological model[J].Advances in Water Resources,2008, 31(10): 1 309-1 324.
[57]Reichle R H. Data assimilation methods in the Earth sciences[J].Advances in Water Resources,2008, 31(11): 1 411-1 418.
[58]Mathieu P P, O′Neill A. Data assimilation: From photon counts to Earth System forecasts[J].Remote Sensing of Environment,2008, 112(4): 1 258-1 267.
[59]Eckermann S D, Hoppel K W, Coy L, et al. High-altitude data assimilation system experiments for the northern summer mesosphere season of 2007[J].Journal of Atmospheric and Solar-Terrestrial Physics,2009, 71: 531-551.
[60]Li X, Koike T, Pathmathevan M. A Very Fast Simulated re-Annealing (VFSA) approach for land data assimilation[J].Computers & Geosciences,2004, 30(3): 239-248.
[61]Gu J, Li X, Huang C, et al. A simplified data assimilation method for reconstructing time-series MODIS NDVI data[J].Advances in Space Research, 2009, 44(4): 501-509.
[62]Han Y, Zhang Y, Wang Y, et al. A new sequential data assimilation method[J].Science in China (Series E),2008, 52(4):1 027-1 038.
[63]Bobi G, Entekhabi D C F. Land data assimilation with satellite measurements for the estimation of surface energy balance components and surface control on evaporation[J].Water Resources Research,2001, 37: 1 713-1 722.
[64]Pipunic R, Walker J, Western A. Assimilation of remotely sensed data for improved latent and sensible heat flux prediction: A comparative synthetic study[J].Remote Sensing of Environment,2008, 112(4): 1 295-1 305.
[65]Huang C, Li X, Lu L. Retrieving soil temperature profile by assimilating MODIS LST products with ensemble Kalman filter[J].Remote Sensing of Environment,2008, 112(4): 1 320-1 336.
[66]Immerzeel W, Droogers P. Calibration of a distributed hydrological model based on satellite evapotranspiration[J].Journal of Hydrology,2008, 349(4): 411-424.
[67]Jang K, Kang S, Kim J, et al. Mapping evapotranspiration using MODIS and MM5 four-dimensional data assimilation[J].Remote Sensing of Environment,2010, 114(3): 657-673.
[68]Li Xin, Huang Chunlin. Data assimilation: A new means for multi-source geospatial data integration[J]. Science & Technology Review,2004, 12: 13-16.[李新, 黄春林. 数据同化:一种集成多源地理空间数据的新思路[J]. 科技导报, 2004, 12: 13-16.]
[69]Wang Yueshan. Data assimilation: Its origin, meaning and main methods[J].Marine Forecast,1999, 16(1): 11-20.[王跃山. 数据同化——它的缘起、含义及主要方法[J]. 海洋预报, 1999, 16(1): 11-20.]
[70]Li Xin, Toshio Koike, Cheng Guodong. An algorithm for land data assimilation by using simulated annealing method[J].Advances in Earth Science, 2003, 18(4): 632-636.[李新, 小池俊雄, 程国栋. 一个基于模拟退火法的陆面数据同化算法[J]. 地球科学进展, 2003, 18(4): 632-636.]
[71]Huang Chunlin, Li Xin. Experiments of soil moisture data assimilation system based on ensemble Kalman filter[J]. Plateau Meteorology, 2006, 25(4): 665-671.[黄春林, 李新. 基于集合卡尔曼滤波的土壤水分同化试验[J]. 高原气象, 2006, 25(4): 665-671.]
[72]Zhang Li, Wang Shili, He Yanbo, et al. Winter wheat growth simulation under water stress by remote sensing in North China[J]. Acta Agronomica Sinica, 2007, 33(3): 401-410.[张黎, 王石立, 何延波, 等. 遥感信息应用于水分胁迫条件下的华北冬小麦生长模拟研究[J]. 作物学报, 2007, 33(3): 401-410.]
[73]Tian Xiangjun, Xie Zhenghui. A land surface soil moisture data assimilation framework in consideration of the model subgrid-scale heterogeneity and soil water thawing and freezing[J].Science in China (Series D),2008, 38(6): 741-749.[田向军, 谢正辉. 考虑次网格变异性和土壤冻融过程的土壤湿度同化方案[J].中国科学:D辑, 2008, 38(6): 741-749.]
[74]Jin Rui, Li Xin. Improving the estimation of hydrothermal state variables in the active layer of frozen ground by assimilating in situ observations and SSM/I data[J].Science in China (Series D),2009, 39(9):1 120-1 231.[晋锐, 李新. 同化站点观测和SSM/I亮温改善冻土活动层状态变量的模拟精度[J].中国科学:D辑, 2009, 39(9):1 120-1 231.]
[75]Jia Binghao, Xie Zhenghui, Tian Xiangjun,et al. A soil moisture assimilation scheme based on microwave brightness temperature and ensemble Kalman filter[J].Science in China (Series D),2010, 40(4):239-251.[贾炳浩, 谢正辉, 田向军, 等. 基于微波亮温及集合Kalman滤波的土壤湿度同化方案[J].中国科学:D辑, 2010, 40(4): 239-251.]
/
〈 |
|
〉 |