Research on Chlorophyll Concentration Retrieval Models of Keqin Lake based on Genetic Neural Networks
Received date: 2011-08-27
Revised date: 2011-10-16
Online published: 2012-02-10
The concentration of Chlorophyll-a could reflect the water quality of inland lakes to some extent. In order to monitor the concentration of chlorophyll-a, hyperspectral reflectance was measured from July to August in 2010 with ASD FieldSpec HH in Keqin Lake. Concurrently, water samples were collected. Three models including spectral ratio, artificial neural networks, and genetic neural networks were developed by analyzing the correlations between concentration and hyperspectral reflectance data. The results show that spectral ratio gives determination coefficient R2=0.67. Artificial neural networks gives better results with higher determination coefficient R2=0.882 which was further improved to 0.956 after introducing genetic algorithm to neural networks. All of the three models with significance level P<0.01, and are applied to estimate chlorophyll-a concentration. Finally, the author used the predicted results of the GANN model and the Kriging analysis technique to obtain the quantitative estimation of the spatial distribution of Chlorophyll-a in the study area. These algorithms provided a research basis of future large area remote sensing inversion with hyperspectral data in Keqin Lake.
Zhu Zixian, Zang Shuying . Research on Chlorophyll Concentration Retrieval Models of Keqin Lake based on Genetic Neural Networks[J]. Advances in Earth Science, 2012 , 27(2) : 202 -208 . DOI: 10.11867/j.issn.1001-8166.2012.02.0202
[1]Li Suju, Wu Qing, Wang Xuejun, et al. Correlations between reflectance spectra and contents of chlorophyll-a in Chaohu Lake[J]. Journal of Lake Sciences, 2002, 14(3): 228-234.[李素菊,吴情,王学军,等.巢湖浮游植物叶绿素含量与反射光谱特征的关系[J]. 湖泊科学,2002,14(3): 228-234.]
[2]Song Ping, Liu Yuanbo, Liu Chunyan. Advances in satellite retrieval of terrestrial surface water parameters[J].Advances in Earth Science,2011,7(26): 731-740.[宋平,刘元波,刘春燕.陆地水体参数的卫星遥感反演研究进展[J]. 地球科学进展,2011,7(26):731-740.]
[3]Shu Xiaozhou, Yin Qiu, Kuang Dingbo. Relationship between algal chlorophyll concentration and spectral reflectance of inland water[J].Journal of Remote Sensing,2000, 4(1): 41-45.[疏小舟,尹球,匡定波. 内陆水体藻类叶绿素浓度与反射光谱特征的关系[J]. 遥感学报,2000,4(1): 41-45.]
[4]Hoogenboom H J,Dekker A G,Althuis I J A. Simulation of AVIRIS sensitivity for detecting Chlorophyll over coastal and inland waters[J]. Remote Sensing of Environment,1998,65: 333-340.
[5]Frater R N. Hyperspectral remote sensing of turbidity and chlorophyll-a among nebraska sand hills lakes[J].International Journal of Remote Sensing, 1998, 19(8): 1 579-1 589.
[6]Lu Zhijuan, Zhu Ling, Pei Hongping, et al. The model of chlorophyll-a concentration forecast in the West Lake based on wavelet analysis and BP neural networks[J]. Acta Ecological Sinica, 2008, 28(10): 4 965-4 973.[卢志娟,朱玲,裴洪平,等.基于小波分析与BP神经网络的西湖叶绿素a浓度预测模型[J]. 生态学报, 2008,28(10): 4 965-4 973.]
[7]Kong Weijuan, Ma Ronghua, Duan Hongtao. The neural network model for estimation of chlorophyll-a with water temperature in Lake Taihu[J]. Journal of Lake Sciences, 2009, 21(2): 193-198.[孔维娟,马荣华,段洪涛. 结合温度因子估算太湖叶绿素a含量的神经网络模型[J]. 湖泊科学,2009,21(2): 193-198.]
[8]Gao Duo, Fang Shenghui, Zhang Xuehu, et al. Water quality parameter identification of Wuhan Donghu Lake based on genetic algorithm[J]. Journal of Geomatics, 2006, 31(6): 42-44. [高铎,方圣辉,张雪虎,等. 基于遗传算法的东湖水质参数反演方法探讨[J]. 测绘信息与工程, 2006, 31(6): 42-44.]
[9]Yi Weihong, Yang Liu, Zhang Zhengxiang. Method of wetland classification based on Landsat7 ETM+ image[J].Wetland Science, 2004, 2(3):208-212.[衣伟宏,杨柳,张正祥.基于ETM+影像的扎龙湿地遥感分类研究[J]. 湿地科学,2004,2(3): 208-212.]
[10]Tang Junwu, Tian Guoliang, Wang Xiaoyong, et al. The methods of water spectra measurement and analysisⅠ: Above-water method[J]. Journal of Remote Sensing, 2004, 8(1): 37-44.[唐军武,田国良,汪小勇,等.水体光谱测量与分析Ⅰ:水面以上测量法[J]. 遥感学报,2004,8(1): 37-44.]
[11]Jiao Hongbo, Zha Yong, Li Yunmei, et al. Modelling chlorophyll-a concentration in Taihu Lake from hyperspectral reflectance data[J]. Journal of Remote Sensing, 2006, 10(2): 242-248.[焦红波,查勇,李云梅,等. 基于高光谱遥感反射比的太湖水体叶绿素a含量估算模型[J]. 遥感学报,2006,10(2):242-248.]
[12]Oron G,Gitelson A. Real-time quality monitoring by remote sensing of contaminated water-bodies: Waste stabilization pond effluent[J]. Water Research,1996,30(12): 3 106-3 114.
[13]Gitelson A. The peak near 700nm on radiance spectra of algae and water relationships of its magnitude and position with chlorophyll[J]. Internation Journal of Remote Sensing,1993,13(17): 3 367-3 373.
[14]Liu Ying, Wang Ke, Zhou Bin, et al. Preliminary study on hyperspectral remote sensing of Qiandao Lake chlorophyll-a concentration[J].Journal of Zhejiang University (Agriculture & Life Science),2003, 29(6): 621-626.[刘英,王珂,周斌,等. 千岛湖水体叶绿素浓度高光谱遥感检测初报[J]. 浙江大学学报:农业与生命科学版,2003,29(6): 621-626.]
[15]Koponen S,Pulliainen J,Kallio K,et al. Lake water quality classification with airborne hyperspectral spectrometer and simulated MERIS data[J].Remote Sensing of Environment,2002,79:51-59.
[16]Li Weichao, Song Dameng, Chen Bin. Artificial neural network based on genetic algorithm[J]. Computer Engineering and Design, 2006, 27(2): 316-318.[李伟超,宋大盟,陈斌. 基于遗传算法的人工神经网络[J]. 计算机工程与设计,2006,27(2): 316-318.]
[17]Zhou Shiguan, Li Zhongxia. Genetic algorithm for optimization of neural network structure and weight distribution[J]. Measurement and Control Technique,2004, 23(4): 48-49. [周世官,李钟侠.神经网络结构及其权值优化的遗传算法[J]. 测控技术,2004,23(4):48-49.]
[18]Yu Jianli, Kroumov V, Sun Zengqi, et al. Fast algorithm for path planning based on neural network[J]. Robot,2001, 23(3): 150-158.[禹建丽,Kroumov V,孙增圻,等.一种快速神经网络路径规划算法[J]. 机器人,2001,23(3): 150-158.]
[19]Jin Jianbin, Wang Yuanqin, Chen Yuan. Application of artificial neural network based on genetic algorithm to cooperative transport of multi-robots system[J]. Computer and Modernization,2010, 1(9): 88-91.[靳建彬,王元钦,陈源.基于遗传算法的BP神经网络优化策略研究[J]. 计算机与现代化,2010,1(9): 88-91.]
[20]Wang Xuejun. The combination of spatial analysis technique and GIS[J].Geographical Research, 1997, 16(3): 70-74.[王学军. 空间分析技术与地理信息系统的结合[J]. 地理研究,1997,16(3): 70-74.]
/
〈 |
|
〉 |