Articles

Advance in Polar Subglacial Biogeochemistry Process

Expand
  • SOA Key Laboratory for Polar Science, Polar Research Institute of China, Shanghai200136,China

Received date: 2011-11-02

  Revised date: 2012-01-09

  Online published: 2012-02-10

Abstract

The present research shows that life exists in subglacial environment. Biogeochemistry process, by means of its unique view, which combines the biology with the geochemistry, provides a new way to explain the existence of microbe in subglacial environment and their impact on the global climate change. At present, the study of  the subglacial life mostly focuses on the temperature glaciers and polythermal glaciers, whereas on cold-based glaciers, the studies of  the origination of life, the living conditions, the energy transform, the distribution characteristics, as well as the characterization of microbial community, are all at the preparatory stage. Based on the elucidation of the development of chemical weathering mechanism, this paper reviewc the latest progress of research in the application of biogeochemistry to explore the subglacial environment. Additionally, Future studies regarding the microbial survival in subglacial environment, the release of greenhouse, paleoclimate mutation exploration, and life exploration in other planet are discussed and recommended.

Cite this article

Ma Hongmei, Sun Bo, Jiang Su, An Chunlei, Shi Guitao, Li Yuansheng . Advance in Polar Subglacial Biogeochemistry Process[J]. Advances in Earth Science, 2012 , 27(2) : 147 -153 . DOI: 10.11867/j.issn.1001-8166.2012.02.0147

References

[1]Sharp M J, Parkes J, Cragg B, et al. Widespread bacterial populations at glacier beds and their relationship to rock weathering and carbon cycling[J].Geology,1999,27(2): 107-110.
[2]Tranter M. Controls on the Chemical Composition of Alpine Glacial Meltwater[D]. Norwich: University of East Anglia, 1982.
[3]Tranter M, Brown G H, Raiswell R, et al. A conceptual model of solute acquisition by Alpine glacial meltwaters[J]. Journal of Glaciology, 1993, 39(133):573-581.
[4]Tranter M, Huybrechts P, Munhoven G, et al. Direct effect of ice sheets on terrestrial bicarbonate, sulphate and base cation fluxes during the last glacial cycle: Minimal impact on atmospheric CO2 concentrations[J]. Chemical Geology, 2002, 190:33-44.
[5]Skidmore M, Foght J, Sharp M J. Microbial life beneath a high Arctic glacier[J]. Applied and Environmental Microbiology, 2000, 66(8):3 214-3 220.
[6]Skidmore M, Anderson S P, Sharp M, et al.Comparison of microbial community compositions of two subglacial environments reveals a possible role for microbes in chemical weathering processes
[J]. Applied and Environmental Microbiology, 2005, 71(11):6 986-6 997.
[7]Mitchell A C, Brown G H. Modelling geochemical and biogeochemical reactions in subglacial environments[J]. Arctic, Antarctic, and Alpine Research, 2008,40(3): 531-547.
[8]Hallbeck L. Microbial Processes in Glaciers and Permafrost[R]. Microbial Analytics Sweden AB, 2009.
[9]Bottrell S H, Tranter M. Sulphide oxidation under partially anoxic conditions at the bed of the Haut Glacier d′Arolla, Switzerland[J].Hydrological Processes,2002,16(12): 2 363-2 368.
[10]Tranter M, Sharp M J, Lamb H R, et al. Geochemical weathering at the bed of Haut Glacier d′Arolla, Switzerland—A new model[J]. Hydrological Processes, 2002,16(5): 959-993. 
[11]Christner B C, Skidmore M L, Priscu J C, et al. Bacteria in subglacial environments[M]Margesin R ed. Psychrophiles: From Biodiversity to Biotechnology, 2008, 2:51-71.
[12]Anderson K K, Azuma N, Barnola J M, et al. High-resolution record of Northern Hemisphere climate extending into the last interglacial period[J].Nature, 2004, 431(7 005):47-51.
[13]Foght J, Aislabie J, Turner S, et al. Cultural bacteria in subglacial sediments and ice from two Southern Hemisphere glaciers[J]. Microbial Ecology,2004,47(4): 329-340, doi:10.1007/s00248-003-1036-5.
[14]Gaidos E, Laniol B, Thorsteinsson T, et al. A viable microbial community in a subglacial volcanic crater lake, Iceland[J].Astrobiology, 2004, 4(3): 327-334.
[15]Kivimaki A L. Presence and Activity of Microbial Populations in Glaciers and Their Impact on Weathering at Glacier Beds[D]. Bristol: University of Bristol, 2004.
[16]Christner B C, Mosely-Thompson E, Thompson L G, et al. Bacterial recovery from ancient glacial ice[J].Environmental Microbiology, 2003,5(5):433-436.
[17]Miteva V L, Sheridan P P, Brenchley J B. Phylogenetic and physiological diversity of microorganisms isolated from a deep Greenland ice-core[J].Applied and Environmental Microbiology, 2004, 70(1):202-213.
[18]Mikucki J A, Foreman C H, Sattler B, et al. Geomicrobiology of Blood Falls: An iron rich saline discharge at the terminus of Taylor Glacier, Antarctica[J]. Aquatic Geochemistry, 2004, 10(3/4):199-220.
[19]Christner B, Royston-Bishop G, Foreman C M, et al. Limnological conditions in Subglacial Lake Vostok, Antarctica[J].Limnology and Oceanography, 2006, 51(6):2 485-2 501.
[20]Karl D M, Bird D F, Bjrkman K, et al. Microorganisms in the accreted ice of Lake Vostok, Antarctica[J]. Science, 1999,286(5 447):2 144-2 147.
[21]Priscu J C, Adams E E, Lyons W B, et al. Geomicrobiology of subglacial Ice above Lake Vostok, Antarctica[J].Science,1999,286(5 447):2 141-2 144.
[22]Christner B C, Mosley-Thompson E, Thompson L G, et al. Isolation of bacteria and 16S rDNAs from Lake Vostok accretion ice[J].Environmental Microbiology, 2001,3(9):570-577.
[23]Skidmore M, Anderson S P, Sharp M, et al. Comparison of microbial community compositions of two subglacial environments reveals a possible role for microbes in chemical weathering Processes[J]. Applied and Environmental Microbiology, 2005, 71(11):6 986-6 997.
[24]Priscu J C, Christner B. Earth′s icy biosphere[M]Bull A T ed. Microbial Diversity and Prospecting.Wiley:  ASM Press, 2004: 130-145.
[25]Mikucki J A, Priscu J C. Bacterial diversity associated with Blood Falls: A subglacial outflow from the Taylor Glacier, Antarctica[J]. Applied and Environmental Microbiology, 2007, 73(12):4 029-4 039.
[26]Priscu J C, Tulaczyk S, Studinger M, et al. Antarctic subglacial water: Origin, evolution and ecology[M]Vincent W, Laybourn-Parry J, eds. Polar Lakes and Rivers. Oxford: Oxford University Press, 2008: 119-137.
[27]Lanoil B, Skidmore M, Priscu J C, et al. Bacteria beneath the West Antarctic Ice Sheet[J]. Environmental Microbiology, 2009,11(3): 609-615.
[28]Ma L, Catranis C, Starmer W T, et al. Revival and characterization of fungi from ancient polar ice[J]. Mycologist, 1999, 13(2): 70-73.
[29]Tung H C, Bramall N E, Vrdoljak G. Microorganisms metabolising on clay grains in 3-km-deep Greenland basal ice[J]. Astrobiology, 2006,6(1): 69-86.
[30]Boyd E S, Skidmore M, Mitchell A C, et al. Methanogenesis in subglacial sediments[J]. Environmental Microbiology Reports, 2010, 2(5): 685-692.
[31]Wadham J L, Bottrell S, Tranter M, et al. Stable isotope evidence for microbial sulphate reduction at the bed of a polythermal high Arctic glacier[J]. Earth and Planetary Science Letters, 2004, 219(3/4):341-355.
[32]Wynn P, Hodson A, Heaton T. Chemical and isotopic switching within the subglacial environment of a High Arctic glacier[J]. Biogeochemistry, 2006, 78(2): 173-193.
[33]Wadham J L, Tranter M, Tulaczyk S, et al. Subglacial methanogenesis: A potential climatic amplifier?[J].Global Biogeochemical Cycles, 2008, 22, GB2021, doi:10.1029/2007/GB002951.
[34]Mikucki J A, Pearson A, Johnston A D, et al. A contemporary microbially maintained subglacial ferrous “ocean”[J].Science,2009,324(5 925):397-400.
[35]Raiswell R, Tranter M, Benning L G, et al. Contributions from glacially derived sediment to the global iron(oxyhydroxide) cycle: Implications for iron delivery to the oceans[J]. Geochimica et Cosmochimica Acta, 2006, 70(11): 2 765-2 780.
[36]Raiswell R, Benning L G, Tranter M, et al. Bioavailable iron in the Southern Ocean: Significance of the iceberg conveyor belt
[J]. Geochemical Transactions,2008, 9:7, doi:10.1186/1467-4866-9-7.
[37]Raiswell R, Benning L G, Davidson L, et al. Schwertmannite in wet, acid and oxic microenvironments beneath polar and polythermal glaciers[J]. Geology, 2009, 37(5): 431-434.
[38]Föllmi K, Hosein R, Arn K, et al. Weathering and the mobility of phosphorus in the catchments of and forefields of the Rhone and Oberaar glaciers, central Switzerland: Implications for the global phosphorus cycle on interglacial-glacial timescales[J]. Geochimica et Cosmochimica Acta, 2009, 73(8):2 252-2 282.
[39]Bulat S A, Alekhina I A, Blot M, et al. DNA signature of thermophilic bacteria from the aged accretion ice of Lake Vostok, Antarctica: Implications for searching for life in extreme icy environments[J].International Journal of Astrobiology, 2004, 3(1):1-12.
[40]Wadham J L, Tranter M, Skidmore M, et al. Biogeochemical weathering under ice: Size matters[J]. Global Biogeochemical Cycles, 2010, 24, GB3025, doi:10.1029/2009GB003688.
[41]Ullman W J, Kirchmana D L, Welcha S A,et al. Laboratory evidence for microbially mediated silicate mineral dissolution in nature[J].Chemical Geology, 1996, 132(1/4):11-17.
[42]Welch S A, Ullman W J. The effect of microbial glucose metabolism on bytownite feldspar dissolution rates between 5 degrees and 35 degrees Celsius[J].Geochimica et Cosmochimica Acta,1999, 63(19/20):3 247-3 259.
[43]Tranter M, Skimore M, Wadham J L. Hydrological controls on microbial communities in subglacial environments[J]. Hydrological Processes, 2005, 19(4): 995-998.
[44]Hodson A J, Mumford P N, Kohler J, et al. The high Artic glacial ecosystem: New insights from nutrient budgets[J]. Biogeochemistry, 2005, 72(2): 233-256.
[45]Siegert M J, Hindmarsh R, Corr H, et al. Subglacial Lake Ellsworth: A candidate for in situ exploration in West Antarctica[J]. Geophysical Research Letters, 2004, 31(23): 3-6.
[46]Fricker H A, Poweu R, Rriscu J, eds. Chapter 12. Siple Coast Subglacial Aquatic Environments: The Whillans Ice Stream Subglacial Access Research Drilling (WISSARD) project[C].Geophysical Monograph Series,2011,192:199-219.
[47]Carr M H, Belton M J, Chapman C R, et al. Evidence for a subsurface ocean on Europa[J].Nature,1998, 391(6 665):363-365.

Outlines

/