Received date: 2000-07-26
Revised date: 2000-12-22
Online published: 2001-08-01
The progress in research on porphyry copper deposit is viewed, including the following five aspects: (1) It has been proved that porphyry copper deposit is related to oxidized-type granite magma. And some new symbol which can be used to determine the redox state of magmas have been established. (2) The contents and solubility of sulfur and chlorine in magma are very important to the mineralization of porphyry copper deposit. (3) It has been illustrated that the earlier reached the oversaturation of water during magmatism, the more advantageous for the mineralizatuon. (4) Mantale metasomatism and magma mixing plays an important role in the origin of the magma which relate to the deposit. (5) Some new kinds of alteration in the deposit, such as magnetite alteration facies and Na-Ca alteration, have been discovered and studied.
Key words: Porphyry copper deposit; Mineralization; Research progress
WANG Jiangzhen, LI Chaoyang,HU Ruizhong . RESEARCH PROGRESS IN PORPHYRY COPPER DEPOSIT[J]. Advances in Earth Science, 2001 , 16(4) : 514 -519 . DOI: 10.11867/j.issn.1001-8166.2001.04.0514
[1] Ishihara S. The magnetite-series and ilmentite-series granitic rocks[J].Mining Geology, 1977, 27:293-305.
[2] Ishihara S. The granitoid series and mineralization [J]. Economic Geology,1981, 75th Anniversary Volume: 458-484.
[3] Takagi T, Tsukimura K. Genesis of oxidized-and reduced-type granite[J].Economic Geology,1997,92:81-86.
[4] Whitney J A. Fugacities of sulfurous gases in pyrrhotite-bearing magmas[J].American Mineralogist, 1984,60:69-78.
[5] Carroll M , Rutherford J M. The stability of igneous anhydrite: experimental results and implications for sulfur behavior in the 1982 El Chichon trachyandesite and other evolved magmas[J]. Journal of Petrology, 1987,28:781-801.
[6] Carroll M R, Rutherford M J. Sulfide and sulfate saturation in hydrous silicate melts [J]. Journal of Geophysics Researcher ,1985,90:C601-612
[7] Luhr J F. Experimental phase relations of water -and -sulfur-saturatured arc magmas and the 1982 eruptions of El Chichon volcano[J]. Journal of Petrology ,1990,31:1 071-1 114.
[8] Streck J M, Dilles J H. Sulfur evolution of oxidized arc magmas as recorded in apatite from a porphyry copper batholith[J].Geology,1998,26:523-526.
[9] Imai A, Listanco E L, Fujii T. Petrologic and sulfur isotopic significance of highly oxidized and sulfur-rich magma of Mt.Pinatubo, Philippines [J].Geology ,1993,21:699-702.
[10] Peng G, Luhr J F, McGee J J. Factors controlling sulfur concentrations in volcanic apatite[J]. American Mineralogist,1997,82:1 210-1 224.
[11] Piccoli P, Candela P. Apatite in felsic rocks:A model for the estimation of initial halogen concentrations in the Bishop Tuff(Long Valley)and Tuolumne lntrusive suite(Sierra Nevada batholith) magmas[J]. American Journal of Sciences,1994,294:92-135.
[12] Lynton S J ,Candela P A, Piccoli P M. An experimental study of the partitioning of copper between pyrrhotite snd a high silica rhyolitic melt[J].Economic Geology,1993,88:901-915.
[13] Candela P A. Magmatic ore-forming fluids: Thermodynamic and mass transfer calculation of melt concentrations[J]. Review Economic Geology,1989,4:203-221.
[14] Sillitoe R H. Characteristics and controls of the largest porphyry copper-gold and epithermal gold deposits in the circum-Pacific region[J]. Australian Journal of Earth Sciences, 1997, 44: 373-388.
[15] Tarkian M, Stribrny B. Platinum-group elements in porphyry copper deposit, a reconnaissance study [J]. Mineralogy and Petrology,1999,65:161-183.
[16] Gammons C H, Bloom M S, Yu Y. Experimental investigation of the hydrothermal geochemistry of platinum and palladium,I, Solubility of platinum and palladium sulphide minerals in NaCl/H2SO4 solutions at 300℃[J]. Geochimica et Cosmochimica Acta, 1992,56:3 881-3 894.
[17] Pasteris J D. Mount Pinatubo volcano and “negative”porphyry copper deposits[J]. Geology, 1996, 24:1 075-1 078.
[18] Whitney J A, Stomer J C. Igneous sulfides in the Fish canyon tuff and the role of S in calc-alkaline magmas [J]. Geology,1983, 11:99-102.
[19] Mysen B O , Popp R K. Solubility of sulfur in CaMgSi2O6 and NaAlSi3O8 melts at high pressure and temperature withcontrolled O2 and S2 [J]. American Journal of Science,1981,280:78-92.
[20] Mathez E A.Sulfur solubility and magmatic sulfides in submarine basalt glass[J]. Journal of Geophysical Research,1976,81:4 269-4 276.
[21] Carroll M R, Rutherford M J. Sulfur solubility and anhydrite saturation in hydrous magmas[J].Lunar Planet Science Confference,1984,XV:139-140.
[22] Wendlandt R F. Sulfur saturation of basalt and andesite melts at high pressures and temperatures [J]. American Mineralogist , 1982,67:877-885.
[23] Mavrogenes J A, O'Nell H St C. The relative effects of pressure, temperature and oxygen fugacity on the solubility of sulfide in mafic magmas.[J]. Geochimica et Cosmochimica Acta,1999,63:1 173-1 180.
[24] Carroll M R, Webster J D. Solubilities of sulfur, noble gases, nitrogen, chlorine, and fluorine in magmas[J]. Reviews in Mineralogy,1994,30:231-271.
[25] Sasaki A, Ishihara S. Sulfur isotopic composition of the magnetite-series and ilmenite-series granitoids in Japan[J]. Contributions to Mineralogy and Petrology,1979,68:107-115.
[26] Ishihara S, Sasaki A. Sulfur isotopic ratios of the magnetite-series and ilmenite-series granitoids of the sierra Nevada batholith—a reeconnaissance study[J]. Geology,1989,17:788-791
[27] Rye R O, Luhr J F, Wasserman M D. Sulfur and oxygen isotopic systematics of the 1982 eruptions of El Chichon volcano,Chiapas,Mexioco
[J]. Journal of Vocanology and Geothermal Research,1984,23:109-123.
[28] Arancibia O N, Clark A H. Early magnetite-amphibole-plagioclase alteration-mineralization in the Island Copper porphyry copper-gold-molybdenum deposit,British Columbia[J]. Economic Geology,1996,91:402-438.
[29] Hattori K. High-sulfur magma,a product of fluid discharge from underlying mafic magma:evidence from Mount Pinatubo,Philippines[J]. Geology ,1993, 21:1 083-1 086.
[30] Sigurdsson H. Pre-eruption compositional grasients and mixing of andesite and dacite magma erupted from Nevado del Ruiz Vilcano,Colombia in 1985[J]. Journal of Vocanology and Geothermal Research, 1990, 41:127-151.
[31] Pallister J S. A basalt trigger for the 1991 eruptions of Pinatubo volcano?[J]. Nature ,1992,356:426-428.
[32] Burnham C W, Ohmoto H. Later-stage processes of felsic magmatism[J]. Mining Geology (Special Issue),1980,8:1-11.
[33] Candela P A. Toward a thermodynamic model for the halogens in magmatic systems: Anapplication to melt-vapour-apatite equilibria[J]. Chemical Geology,1986,57:289-301.
[34] Webster J D. Fluid-melt interaction involving Cl-rich granites:Experimental study from 2 to 8 kbar[J]. Geochimica et Cosmochimica Acta ,1992,56:659-678.
[35] Webster J D. Water solubility and chlorine partitioning in Cl-rich granitcsystems: Effects of melt composition at 2 kbar and 800℃[J]. Geochimica et Cosmochimica Acta,1992,56:679-687.
[36] Webster J D, Holloway J R. Experimental constrains on the partitioning of Cl between topaz rhyolite melt and H2O and H2O+CO2 fluids:New implications granitic differentiation and ore deposition [J]. Geochimica et Cosmochimica Acta ,1988,52:2 091-2 105.
[37] Shinohara H. Exsolution of immiscible vapor and liquid phases froma crystallizing silicate melt: Implications for chlorine and metal transport[J]. Geochimica et Cosmochimica Acta ,1994, 58: 5 215-5 224.
[38] Metrich N, Rutherford M J. Experimental study of chlorine behavior in hydrous silicic melts[J]. Geochimica et Cosmochimica Acta ,1992,56:607-616.
[39] Webster J D. Exsolution of Cl-bearing fluids from chlorine-enriched mineralizing granitic magmas and implications for ore metal transport[J]. Geochimica et Cosmochimica Acta ,1997, 61: 1 017-1 030.
[40] Webster J D . Chloride solubility in felsic melts and the role of chloride in magmatic degassing [J]. Journal of Petrology,1997,38:1 793-1 807.
[41] Webster J D, Rebbert C R. Geochemical evidence of fluid saturation in felsic magma determined through experimental investigation of H2O and Cl solubity in F-enriched rhyolite melts[J]. Contribution to Mineralogy and Petrology, 1998,132:198-207.
[42] Cline J S , Bodnar R J . Can economic porphyry copper mineralization be generated by a typical calc-alkaline melt?[J]. Journal of Geophysical Research,1992,96:8 113-8 126.
[43] Müller D, Groves D I. Direct and indirect association between potassic igneous rocks , shoshonite and gold-copper deposits[J]. Ore Geology Reviews,1993,8:383-406.
[44] Candela P A , Piccoli P M. Moldel ore-metal partitioning from melts into vapor and vapor/brine mixtures [A]. In: Thompson J F H, ed. Magmas,Fluids,and Ore Deposits[C]. Ottawa: Mineralogical Association of Canada,1995.101-127.
[45] Roedder E. Fluid inclusion evidence for immiscibility in magmatic differentiation [J]. Geochimica et Cosmochimica Acta ,1992,56:5-20.
[46] Oxtoby S, Hamilton D L. The discrete association of water with Na2O and SiO2 in NaAl silicate melts[J]. Contrib Mineral Petrol, 1978,66:185-188.
[47] Sheets R W, Nesbitt B E, Muehlenbachs K. Meteroic water component in magmaric fluids from porphyry copper mineralization, Babine Lake area,British Columbia[J].Geology, 1996,24:1 091-1 094.
[48] Bowman J R, Parry W T, Kropp W P, et al. Chemical and isotopic evolution of hydrothermal solutions at Bingham,Utah[J]. Economic Geology ,1987,82:395-428.
[49] Dilles J H, Einaudi M T. Wall-rock alteration and hydrothermal flow paths about the Ann-Mason porphyry copper deposit,Nevada—A 6 km vertical reconstruction[J].Economic Geology, 1987, 87:1 963-2 001.
[50] Dilles J H, Farmer G L, Field C W. Sodium-calcium alteration by non-magmatic saline fluid in porphyry copper deposits:results from Yerington, Nevada[J].Mineralogical Association of Canada Short Cources Series,1995,23:309-339.
[51] Fountain R J. Geological relationships in the Panguna porphyry copper deposit , Bougainville Island,New Guinea.[J]. Economic Geology ,1972,67:1 049-1 064.
[52] Bouse R M, Ruiz J, Tittley S R. Lead isotope compositions of late Cretaceous and Early Tertiary rocks and sulfide minerals in Arizona: Imlications for the sources of plutons and Metals in porphyry copper deposits[J]. Economic Geology ,1999,94:211-244.
[53] Lang J R, Tittley S R. Isotopic and geochemical characteristics of Laramide magmatic systems in Arizona and implications for the genesis of porphyry copper deposits [J]. Economic Geology , 1998,93:138-170.
[54] Liu Xianfan, Zhan Xinzhi, Gao Zhenmin, et al. Deep Xenolithes in alkali porphyry, Liuhe Yunnan, and implications to petrogenesis of alkali porphyry and associated mineralization.[J].Science in China(Ser.D),1999, 29:413-420.[刘显凡,战新志,高振敏,等.云南六合深源包体与富碱斑岩成岩成矿的关系
[J].中国科学(D辑),1999,29:413-420.]
[55] McInnes B I A, Cameron E M. Carbonated,alkaline hybridizing melts from a sub-arc environment:Mantle wedge samples from the Tabar-Lihir_tanga_Feni arc,Papua New Guinea [J].Earth and Planetary Science Letters,1994,122:125-141.
[56] Solomon M. Subduction, arc reversal, and the origin of porphyry copper-gold deposits in island arcs[J]. Geology,1990,18:630-633.
[57] Force R E. Laramide alteration of Proterozic diabase: A likely contributor of copper to porphyry systems in Dripping Spring Mountains area, Southeastern Arizona[J]. Economic Geology,1998,93:171-183.
/
〈 |
|
〉 |