Received date: 2000-08-17
Revised date: 2001-01-20
Online published: 2001-08-01
On the basis of mineralogy, petrology, carbon, oxygen and strontium isotopes and the relationship between carbonatite and mineralizations, the originand features of carbonatite is summarized. The carbonatites mainly occurred in the rift zones of cratons and within plates. They are often associated with mafic, ultramafic and alkaline rocks as a ring complex. The carbonatites might be accompanied by various mineralizations of Nb, Ta, P, REE, F, Ba and etc.Carbon and oxygen isotopic studies show that most of carbonatites are derived from the mantle, and they are in agreement to the associated maficultramafic rocks in C and O isotopic features. The initial Sr ratios of carbonatites are similar to that of mantle, except for some due to the crustal contamination. In combination with experimental petrology, fluid inclusions and the property of CO2-H2O-NaCl fluid system, the carbonatitic magma is inferred being generated from the mantle except for those of remelting type. The CO2 and H2O play an important role in the generation and formation of carbonatitic magma during metasomatism and partial melting in the mantle. The investigation on melt/fluid inclusions of carbonatites revealed a whole evolutional order from magmatic to hydrothermal stages. Experimental studies confirmed the evolution series from early magmatic system typical with K, Na, Ca and Mg to the hydrothermal system with alkaline ions such as Na and K. The fenitization of wall rocks occurred in later hydrothermal stage. The formation of carbonatites includes at least three stages: the magmatic crystallization stage, the post-magmatic (gaseous carbonatitic) stage, and the
metasomatic carbonatitic stage. And the mafic, ultramafic and alkaline rocks, closely related to carbonatite in space and origin, are suffered the immiscible phase segregation, the differentiation of magma, the crystallization and the fenitization.
Key words: Isotopes; Magma-hydrothermal solution evolution; Carbonatite; Inclusions; Origin
QIN Chaojian,QIU Yuzhuo . RECENT PROGRESS IN CARBONATITIE RESEARCH[J]. Advances in Earth Science, 2001 , 16(4) : 501 -507 . DOI: 10.11867/j.issn.1001-8166.2001.04.0501
[1] Carmichael L S E, Turner F J, Verhoogen J,等著.火成岩石学[M].丛柏林,等译.北京:地质出版社,1982.351-355.
[2] Sun Nai, Peng Yaming . Igneous Petrology[M]. Beijing: Geological Publishing House. 1985,181-1186. [孙鼐, 彭亚明 主编. 火成岩石学[M]. 北京: 地质出版社, 1985. 181-186.]
[3] Kurszlaukis A S, Franz L, Ntry G P. The Blue Hill intrusive complex in Southern Namibia relationship between carbonatite and monticellite picrites[J]. Chemical Geology, 1999,160:1-18.
[4] Bai Ge, Yuan Zhongxin,Wu Chengyu, et al. Demonstration on the geological features and genesis of the Bayan Obo ore deposit[M]. Beijing: Geological Publishing House. 1996,92.[白鸽,袁忠信,吴澄宇,等.白云鄂博矿床地质特征和成因论证[M]. 北京:地质出版社, 1996. 92.]
[5] Liu Yan, Zhao Shanren, Sun Shihua. Reseach status of igneous carbonatites[A]. In: Oyang Ziyuan (Chief Editor). Studies and prospects on petrology, mineralogy and geochemistry at the transition of centuries[C]. Beijing: Nuclear Publishing House. 1998, 131-135.[刘焰,赵善仁,孙世华.火成碳酸岩研究现状
[A].见:欧阳自远 主编.世纪之交岩石学矿物学地球化学的研究与展望[C].北京:原子能出版社,1998.131-135.]
[6] Institute of Geochemistry, Chinese academy of Sciences. Geochemistry of Bayan Obo ore deposit [M]. Beijing: Science Press. 1988, 232-285. [中国科学院地球化学研究所.白云鄂博矿床地球化学[M].北京:科学出版社,1988.232-285.]
[7] Bell K, Keller J. Carbonatite volcanism: Oldoinyo Lengai and the Petrogenesis of Matrocarbonatites[M]. Berlin, Heidelberg, New York: Springer, 1995.
[8] Le Bas M J. Diversification of carbonatite[A]. In: Bell K,ed. Carbonatites[C]. London: Unwin Hyman, 1989.428-447.
[9] Ray J S, Ramesh R, Pande K. Carbon isotopes in Kerguelen plume-drived carbonatites: evidence for recycled inorganic carbon[J]. Earth Planet Sci Lett, 1999, 170: 205-214.
[10] Nykanen J, Laajoki K, Karhu J. Geology and geochemistry of the early Proterozoic Kortejarvi and Laivajoki carbonatite, Central Fennos candian shield, Finland[J]. Bulletin of the Geoloical Society of Finland,1997,69(1-2):5-30.
[11] Riley T R, Bailey D K, Harmer R E, et al. Isotopic and geochemical investigation of a carbonatite-syenite-phonolite, West Eifel(Germany)[J]. Min Mag, 1999, 63 (5): 615-631.
[12] Demeny A, Ahijado A, Casillas R, et al. Crustal contamination and Fluid/Rock interaction in the carbonatites of Fuerterentura, Canary Islands,Spain: A C, H, O isotope study[J]. Lithos, 1998, 44: 101-115.
[13] Benito R, Lopoz-Ruiz J, Cebria J M, et al. Sr and O isotope constraint on source and crustal contamination in the high-K calc-alkaline and shoshonitic Neogene volcanic rocks of S E Spain[J]. Lithos, 1999, 46: 773-802.
[14] Wu Liangshi. Mesozoic alkaline magmatism and metallization in Southeast Mongolia[J]. Geology-Geochemistry, 1998, 26(2): 97-102. [吴良士.蒙古东南部中生代碱性岩浆活动与成矿[J].地质地球化学,1998,26(2):97-102.]
[15] Jovoy M, Pineau F, Staudacher T, et al. Mantle volatiles sampled from a continental rift: the 1988 eruption of Oldoinyo Lengai[J]. Terra abstr, 1989, 1: 324.
[16] Deines P. Stable isotope variations in carbonatites[A]. In:Bell K ed. Carbonatites[C]. London: Unwin Hyman, 1989. 301-357.
[17] Hoefs J. Stable isotope geochemistry(3rd ed) [M]. Berlin Heidelberg, New York: Springer, 1987. 241.
[18] Chen Yongjian, Liu Deliang, Yang Xiaoyong et al. a primary study on the relationship between the Tancheng-Lujiang fault system and mantle-derived magmatogenetic CO2 in East China [J]. Geology-Geochemistry. 1999,27(1): 38-48.[陈永见,刘德良,杨晓勇,等. 郯庐断裂系统与中国东部幔源岩浆成因CO2关系的初探[J]. 地质地球化学, 1999, 27(1): 38-48.]
[19] Open Laboratory of Ore Deposit Geochemistry, Chinese academy of Sciences. Ore Deposit Geochemistry [M]. Beijing: Geological Publishing House. 1997.481-500.[中国科学院矿床地球化学开放研究实验室. 矿床地球化学[M]. 北京: 地质出版社, 1997.481-500.]
[20] Roedder E. 流体包裹体(下)[M]. 卢焕章,王卿铎,等译. 长沙: 中南工业大学出版社, 1986.46-174.
[21] Stoppa F, Wooley a R. The Italian carbonatites: field occurrence, petrology and regional significance[J]. Mineral and Petrol, 1997, 59: 43-67
[22] Zhu Xun,ed. Status of Mineral Resources of China (Volume 2: Metallic minerals)[M]. Beijing: Science Press. 1999,631-665.[朱训,主编. 中国矿情(第二卷 金属矿产)[M]. 北京: 科学出版社, 1999. 631-665.]
[23] Wall F, Williams C T, Woolley A R. Pyrochlore from weathered carbonatite at Lueshe, Zaire[J]. Min Mag, 1996, 60: 731-750.
[24] Veksler H V, Kepper H. Partitioning of Mg,Ca and Na between carbonatite melt and hydrous fluid at 0.1~0.2 Gpa[J]. Contrib Mineral Petrol,2000,138:27-34.
[25] Zhao Lunshan, Zhang Benren ,ed. Geochemistry [M]. Beijing: Geological Publishing House. 1988,293-326.[赵仑山,张本仁 ,等编. 地球化学[M]. 北京: 地质出版社, 1988. 293-326.]
[26] Samson I M, Liu W, Williams-Jones A E. The nature of orthomagmatic hydrothermal fluid in the Oka carbonatite, Quebec, Canada: Evidence from fluid inclusions[J]. Geoch et Cos Acta, 1995, 59(10): 1963-1977.
[27] Palmer D A S, Williams-Jones A W. Genesis of the carbonatite-hosted fluorite deposit at amba Dongar, India: Evidence from fluid inclusions stable isotopes, and whole rock-mineral geochemistry[J]. Economic Geology, 1996, 91: 934-950.
[28] Rankin A H. Fluid inclusion evidence for the formation conditions of apatite from the Tororo carbonatite complex of eastern Uganda[J]. Min Mag, 1977, 41: 155-164.
[29] Anderson T. Magmatic fluids in the Fen carbonatite-complex, SE Norway: Evidence of mid-crustal fractionation 15 from solid and fluid inclusions in apatite[J]. Contrib Mineral Petrol, 1986, 93: 491-533.
[30] Rankin A H. Fluid inclusion studies in apatite from carbonatite of the Wasaki area of Western Kenya[J]. Lithos, 1975, 8: 123-136.
[31] Rankin A H, Le Bas M J. Liquid immiscibility between silicate and carbonate melts in naturally occurring ijolite magma[J]. Nature, 1974, 250: 206-209.
[32] Nesbitt B E, Kelty W C. Magamaticand hydrothermal inclusions in carbonatite of the Magnet Cove complex, arkansas[J]. Contrib Mineral Petrol, 1977, 63: 271-294.
[33] Ni Pei, Shen Kun. Progress of studies on inclusions in carbonatite-alkaline complexes [A]. In: Oyang Ziyuan . Studies and prospects on petrology, mineralogy and geochemistry at the transition of centuries[C]. Beijing: Nuclear Publishing House. 1998,127-130.[倪培,沈昆. 碳酸岩—碱性杂岩体中包裹体的研究进展[A]. 见: 欧阳自远 主编. 世纪之交岩石学矿物学地球化学的研究与展望[C]. 北京: 原子能出版社, 1998. 127-130.]
[34] Wallace M E, Green D H. an experimental determination of primary carbonatite composition[J]. Nature, 1988, 335: 343-346.
[35] Sweeney R. Carbonatite melt compositions in the earth's mantle[J]. Earth Planet Sci Lett, 1994, 128: 259-270.
[36] Lee W J, Wyllie P J. Liquid immiscibiliy between nephelinite and carbonatite from 1.0 to 2.5 GPa compared with mantle melt compositions
[J]. Contrib Mineral Petrol, 1997, 127: 1-16.
[37] Wyllie P J, Huang W L. Carbonatition and melting reactions in the system CaO-MgO-SiO2-CO2 at mantle pressures with geophysical and petrological applications[J]. Contri Mineral Petrol, 1976, 54: 79-107.
[38] Baker M B, Wyllie P J. Liquid immiscibity in a nephelinite-carbonate system at 25 kbar and implications for carbonatite origin[J]. Nature, 1990, 246: 168-170.
[39] Ting W, Burke E a J, Rankin a H, et al. Characteristics and petrogenetic significance of CO2, H2O and CH4 fluid inclusions in apatite from the Sukulu carbonatite, Uganda[J]. Eur J Mineral, 1994, 6: 787-803.
[40] Roedder E. Fluid inclusions from the fluorite deposits associated with carbonatite of amba Dongar, India, and Okorusu, Southwest africa[J]. Inst Mining Metall Trans, sect, 1973, 199: 135-137.
[41] 杰尔诺夫—佩加列夫B Φ, 哈拉尔莫夫E C. 人造方解石晶体和天然方解石晶体中的包裹体温度与碳酸岩形成条件的某些问题[M].见:陈安福,卢焕章,余铁阶,等编译. 矿物中的包裹体[C]. 北京:科学出版社,1989.35-40.
/
| 〈 |
|
〉 |