Orginal Article

Metallogenic Regulations, Controlling Factors, and Evolutions of Iron Oxide Copper and Gold Deposits in Chile

  • Weixuan Fang ,
  • Jianxu Li
Expand
  • Beijing Mineral and Geology Institute, Beijing 100012

Received date: 2014-05-15

  Revised date: 2014-08-25

  Online published: 2014-09-10

Copyright

地球科学进展 编辑部, 2014, This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Abstract

The Mesozoic metallogenic belt of iron-oxide copper and gold (IOCG) deposits is located at the Coastal Cordillera Range in Northern Chile. IOCG system, porphyry Cu-Au and epithermal Au-Ag systems consist of co-associations of metallogenic system on the Andean-type active continental margin. However, metallogenic ages of IOCG deposits may be classified into three main groups from 175.6~141 Ma BP, 140~100 Ma BP, and 99~66 Ma BP. IOCG deposits are located at front-arc basin, main arc zone, and back-arc basin, whereas the Cretaceous porphyry Cu-Au and epithermal Au-Ag systems, as a pair of the IOCG system, are located at the deformation of the main arc zone and the back-arc basin. After reviews on the study and exploration achievement for IOCG deposits, it may be considered that the end member of the Chilean IOCG deposits might have been formed by eruption of the Fe-rich magma, mixing of magmatic and basin-fluids, and magmatic fluids. The Jurassic-Cretaceous front-arc basin, main arc zone, and back-arc basin may be the fifth-order tectonic unit for the location-controlling tectonics of IOCG deposits during evolutions of the Andean-type active continental margin. The Andean continental margin might have changed from extensional realm into strike-slip transpression realm after inversion by the end of the Late Cretaceous time. At the same time, Acatama fault system (AFZ) were onset paralleling to the main arc zone. Therefore, all of them, the front-arc and back-basin, and main arc zone, were undergone their deformation by AFZ activity as well as syntectonic magmatic intrusions. Magmatic intrusion of the Jurassic-Cretaceous main arc zone was aborted, and the Late Cretaceous magmatic intrusions were east-directed migration. Simultaneously, superimposing system of IOCG deposits might form in the deformations of the main arc and back-arc basin by different superimposing degrees of tectonic deformation and magmatic intrusion during their inversion processes. Moreover, porphyry Cu-Au and epithermal Au-Ag systems, as pairs of the metallogenic zones at the east part of the IOCG system, were formed in the calc-alkaline magmatic zone. It suggested that the relationships among the Fe-rich basic to ultrabasic rocks, IOCG deposits and porphyry Cu-Au deposits related to dynamics for tectonic deformation of the back-arc basin should be focused on the study in the future.

Cite this article

Weixuan Fang , Jianxu Li . Metallogenic Regulations, Controlling Factors, and Evolutions of Iron Oxide Copper and Gold Deposits in Chile[J]. Advances in Earth Science, 2014 , 29(9) : 1011 -1024 . DOI: 10.11867/j.issn.1001-8166.2014.09.1011

References

[1] Sillitoe R H. Iron oxide-copper-gold deposits: An andean view[J]. Mineralium Deposita, 2003, 38: 787-812.
[2] Williams P J, Barton M D, Johnson D A, et al. Iron oxide copper-gold deposits: Geology, space-time distribution, and possible modes of origin[J]. Economic Geology, 2005, 100: 371-405.
[3] Marschik R,Fontboté L.The Candelaria-Punta del Cobre iron oxide Cu-Au (-Zn-Ag) deposits, Chile[J]. Economic Geology, 2001,96: 1 799-1 826.
[4] Marschik R, Söllner F. Early Cretaceous U-Pb zircon ages for the Copiapó plutonic complex and implications for the IOCG mineralization at Candelaria, Atacama region, Chile[J]. Mineralium Deposita, 2006, 41: 785-801.
[5] Carlos A, Grocott J, Martin W, et al. Structural setting of the Candelaria Fe oxide Cu-Au Deposit, Chilean Andes (27°30′S)[J]. Economic Geology, 2006, 101: 819-841.
[6] Benavides J, Kyser T K, Clark A H. The mantoverde iron oxide-Copper-Gold district,III Región, Chile: The role of regionally derived, nonmagmatic fluids in chalcopyrite mineralization[J]. Economic Geology, 2007, 102(3): 415-440.
[7] Vila T, Lindsay N, Zamora R. Geology of the Mantoverde copper deposit, northern Chile: A specularite-rich hydrothermal-tectonic breccia related to the Atacama fault zone[J]. Society of Economic Geologists Special Publication, 1996, 5:157-170.
[8] Ramírez L E, Palacios C, Townley B, et al. The Mantos Blancos copper deposit: An upper Jurassic breccia-style hydrothermal system in the coastal range of northern Chile[J]. Mineral Deposita, 2006, 41: 246-258.
[9] Luis E R, Miguel A P, Carlos P, et al. Magmatic evolution of the Mantos Blancos copper deposit, Coastal Range of northern Chile: Insight from Sr-Nd isotope, geochemical data and silicate melt inclusions[J]. Resource Geology, 2008, 58(2): 124-142.
[10] Chen H Y, Cooke D R, Baker M J. Mesozoic iron oxide copper-gold mineralization in the Central Andes and the Gondwana Supercontinent breakup[J]. Economic Geology, 2013,108: 37-44.
[11] Chen H Y, Clark A H, Kyser T K, et al. Evolution of the giant marcona-mina justa iron oxide-copper-gold district, south-central Peru[J]. Economic Geology, 2010, 105: 155-185.
[12] Fang Weixuan,Liu Yulong,Zhang Shoulin,et al.Three types of continental geodynamics and metallogenic models for IOCG ( Iron Oxide Copper Gold deposits) from the global view[J].Journal of Northwest University (Natural Science Edition),2009,39(3): 404-413.
[12] 方维萱,柳玉龙,张守林,等.全球铁氧化物铜金型 (IOCG) 矿床的3 类大陆动力学背景与成矿模式[J]. 西北大学学报: 自然科学版,2009, 39(3): 404-413.
[13] Shi Junfa,Zhou Ping,Tang Jinrong,et al.Thoughts on developing strategy of key technologies used for deep metallic ore-prospecting[J].Geological Bulletin of China,2009,28(2/3): 198-207.
[13] 施俊法,周平,唐金荣,等. 关于金属矿床深部找矿关键技术发展战略的思考[J].地质通报,2009,28(2/3): 198-207.
[14] Liu Liangming, Cai Ailiang.Deep ore-prospecting: Challenges and solutions in terms of geological theory,exploration technology and investment decision-making[J].Geological Bulletin of China,2009,28(7): 923-932.
[14] 刘亮明,蔡爱良. 深部找矿: 地质理论、勘查技术、投资决策的难题及对策[J].地质通报,2009,28(7): 923-932.
[15] Fang Weixuan. R & D on new mapping technology of geochemical lithofacies in prediction and exploration for Iron-Oxide Copper Gold deposits (IOCG)[J]. Advances in Earth Science,2012, 27(10): 1 178-1 184.
[15] 方维萱. 论铁氧化物铜金型(IOCG) 矿床地球化学岩相学填图新技术研发[J]. 地球科学进展,2012,27(10): 1 178-1 184.
[16] Li Zeqin,Hu Ruizhong,Wang Jiangzhen,et al. Lala Fe-Oxide-Cu-Au-U-REE ore deposit,Sichuan China—An example of superimposed mineralization[J].Bulletin of Mineralogy,Petrology and Geochemistry,2002,21(4): 258-260.
[16] 李泽琴,胡瑞忠,王奖臻,等. 中国首例铁氧化物铜金铀—稀土型矿床的厘定及其成矿演化[J]. 矿物岩石地球化学通报,2002,21(4):258-260.
[17] Zhou Jinsheng, Li Zeqin, Wang Jiangzhen, et al. Calcareous metasomatism in Lala IOCG deposit in Huili, Sichuan[J]. Advances in Earth Science, 2012,27(Suppl.):321-324.
[17] 周金胜,李泽琴,王奖臻,等. 四川会理拉拉铁氧化物—铜—金矿床的钙质交代作用[J]. 地球科学进展,2012,27(增刊):321-324.
[18] Wang Jiangzhen, Li Zeqin, Huang Congjun. The main geological events of the Kangdian proterozoic eon and response from from to the LaLa IOCG deposit[J]. Advances in Earth Science, 2012,27(10): 1 074-1 079.
[18] 王奖臻,李泽琴,黄从俊. 康滇地轴元古代重大地质事件与拉拉IOCG矿床成矿效应[J]. 地球科学进展,2012,27(10): 1 074-1 079.
[19] Nie Fengjun,Jiang Sihong,Lu Yanming. Geological features,ore-forming processes and prospecting model of iron oxide-copper gold deposits[J].Geology in China,2008,35(6): 1 074-1 087.
[19] 聂凤军,江思宏,路彦明. 氧化铁型铜—金( IOCG) 矿床的地质特征、成因机理与找矿模型[J]. 中国地质,2008,35(6):1 074-1 087.
[20] Fang Weixuan.On types of geochemical lithofacies and their applications in basin analysis[J].Geoscience,2012,26(5): 1-12.
[20] 方维萱.论地球化学岩相学类型及在沉积盆地分析中应用[J].现代地质,2012,26(5): 1-12.
[21] Oliveros V, Tristá-Aguilera D. Time relationships between volcanism plutonism alteration mineralization in Cu stratabound ore deposits from the Michilla mining district, northern Chile: A 40Ar/39Ar geochronological approach[J]. Mineralium Deposita, 2008, 43: 61-78.
[22] Oliveros V. Les Formations Magmatiques Jurassiques et Mineralisation du Nord Chili, Origine, Mise en Place, Alteration, Metamorphisme: Etude Geochronologique et Geochemie[D]. France:Universite de Nice-Sophia Antipolis, 2005.
[23] Chiaradia M, Banks D, Cliff R, et al. Origin of fluids in iron oxide-copper-gold deposits: Constraints from δ37Cl, 87Sr/86Sri and Cl/Br[J]. Mineralium Deposita, 2006, 41: 565-573.
[24] Marschika R, Fontignieb D, Chiaradiab M, et al. Geochemical and Sr-Nd-Pb-O isotope composition of granitoids of the Early Cretaceous Copiapó plutonic complex (27°30′S), Chile[J]. Journal of South American Earth Sciences, 2003, 16: 381-398.
[25] Marschik R,Chiaradia M,Fontboté L. Implications of Pb isotope signatures of rocks and iron oxide Cu-Au ores in the Candelaria-Punta del Cobre district,Chile[J]. Mineralium Deposita, 2003, 38: 900-912.
[26] Mathur R. Age of mineralization of the Candelaria Fe Oxide Cu-Au deposit and the origin of the Chilean Iron Belt, based on Re-Os Isotopes[J]. Economic Geology, 2002, 97(1): 59-71.
[27] Maksaev V, Munizaga F, Valencia V.LA-ICP-MS zircon U-Pb geochronology to constrain the age of post-Neocomian continental deposits of the Cerrillos Formation, Atacama region, northern Chile: Tectonic and metallogenic implications[J]. Andean Geology, 2009, 36(2): 264-287.
[28] Arévalo C. Mapa Geológico de la Hoja Copiapó, Región de Atacama: Documentos de Trabajo 8, Scale 1:100,000[R]. Santiago, Chile: SERNAGEOMIN Press, 1995.
[29] Mathur R, Marschik R, Ruiz J, et al. Age of mineralization of the Candelaria Fe oxide Cu-Au deposit and the origin of the Chilean Iron Belt, based on Re-Os isotopes[J]. Economic Geology, 2002, 97: 59-71.
[30] Kojima S, Aguilera D T, Hayashi K. Genetic Aspects of the Manto-type copper deposits based on geochemical studies of North Chilean deposits[J]. Resource Geology, 2008, 59(1): 87-98.
[31] Boric R,Holmgren C,Wilson N S F,et al. The geology of the El soldado manto type Cu (Ag) deposit, Central Chile[M]∥Porter T M, ed. Hydrothermal Iron Oxide Copper-Gold & Related Deposits: A Global Perspective. Adelaide: PGC Publishing, 2002, 2: 163-184.
[32] Pichowiak S. Early Jurassic to Early Cretaceous magmatism in the Coastal Cordillera and the Central Depression of north Chile[M]∥Reutter K J, Scheuber E, Wigger P J, eds. Tectonics of the Southern Central Andes. New York: Springer, 1994:203-217.
[33] Ardill J, Flint S, Chong G, et al. Sequence stratigraphy of the Mesozoic Domeyko Basin, northern Chile[J]. Journal of the Geological Society, 1998, 155:71-88.
[34] Lopez G. The El Espino Iron-oxide Copper Gold District, Costal Cordillera of North-Central Chile[D]. Colorado ,USA: The Colorado School of Mines, 2014.
[35] Ruiz C, Aguirre L,Corvalan J,et al. Geologíay Yacimientos Metalíferos de Chile[R]. Santiago:Instituto de Investigaciones Geológicas, 1965:305.
[36] Hopper D,Correa A. The Panulcillo and Teresa de Colmo copper deposits: Two contrasting examples of Fe-ox-Cu-Au mineralisation from the Coastal Cordillera of Chile[M]∥Porter T M, ed. Hydrothermal Iron Oxide Copper-Gold and Related Deposits: A Global Perspective.Adelaide: PGC Publishing, 2000: 177-189.
[37] Alexander K R. Geology of the Cerro Negro Norte Fe-Oxide (Cu-Au) District, Coastal Cordillera, Northern Chile[D].Oregon of U.S.A. :Oregon State University, 2001.
[38] Zentilli M. Geological Evolution and Metallogenic Relationships in the Andes of Northern Chile between 26°and 29°[D]. Ontario,UK: Queens University ,1974.
[39] José A N, Fernando H, Jan O N. Subvolcanic contact metasomatism at El Laco Volcanic Complex, Central Andes[J]. Andean Geology, 2010: 37(1): 110-120.
[40] Oyarzun R, Oyarzún J, Ménard J J, et al. The Cretaceous iron belt of northern Chile: Role of oceanic plates, a superplume event, and a major shear zone[J]. Mineralium Deposita, 2003, 38: 640-646, doi:10.1007/s00126-003-0359-y.
[41] Víctor M, Tomás A A,Francisco M, et al. Geochronological and thermochronological constraints on porphyry copper mineralization in the Domeyko alteration zone, northern Chile[J]. Andean Geology, 2010, 37(1): 144-176.
[42] Pollard P J. An intrusion-related origin for Cu-Au mineralization in Iron Oxide-Copper-Gold (IOCG) provinces[J]. Mineralium Deposita, 2006, 41: 179-187.
[43] Tornos F, Velasco F, Barra F, et al. The Tropezon Cu-Mo-(Au) deposit, Northern Chile: The missing link between IOCG and porphyry copper system?[J]. Mineralium Deposita, 2010, doi:10.1007/s00126-010-0277-8.
Outlines

/