Review of Progress in Serpentinization Research of Oceanic Peridotites
Received date: 2009-06-22
Revised date: 2010-03-31
Online published: 2010-06-10
Serpentinization of peridotites is a non-negligibly important geologic process in the oceans, which has attracted widespread attention in recent years. Serpentinization of the oceanic peridotites occurred largely in tectonic settings of mid-ocean ridges and convergent margins. A typical abyssal serpentinite is made up of serpentine minerals ± magnetite ± talc ± brucite ±amphibole. The three dominant species of serpentine minerals are lizardite, chrysotile and antigorite. Serpentine textures under the polarizing microscope can be divided into three categories: pseudomorphic textures, non-pseudomorphic textures and transitional textures. The physical properties of abyssal peridotites are strongly modified by serpentinization: serpentinization is responsible for a strong decrease in density and seismic velocities, furthermore, the magnetic properties of peridotites are also strongly affected by serpentinization; in addition, serpentinization of peridotites also changes the rheology of the altered rocks. The discovery of ultramafic hosted hydrothermal systems further arouses the interest of researchers in serpentinization of oceanic peridotites. Vent fluids associated with serpentinization of peridotites contain high concentrations of H2 and CH4. Serpentinization is an exothermic reaction and can drive hydrothermal circulation, resulting in the occurrence of low-medium temperature hydrothermal system like Lost City.
Key words: Peridotite; Serpentinization; Mineral; Petrophysical property; Hydrothermal system
Wang Xiaomei,Zeng Zhigang,OuYang Hegen,Wang Xiaoyuan,Chen Shuai,Zhang Guolinag . Review of Progress in Serpentinization Research of Oceanic Peridotites[J]. Advances in Earth Science, 2010 , 25(6) : 605 -616 . DOI: 10.11867/j.issn.1001-8166.2010.06.0605
[1] Iyer K, Austrheim H, John T, et al. Serpentinization of the oceanic lithosphere and some geochemical consequences: Constraints from the Leka Ophiolite Complex, Norway[J].Chemical Geology, 2008, 249: 66-90.
[2] Mével C. Serpentinization of abyssal peridotites at mid-ocean ridges[J].Comptes Rendus Geosciences,2003, 335: 825-852.
[3] Renard A F. Perodotit von der St. Pauls Insel in Atlantischen Ozean [J]. Neues Jahrbuch für Mineralogie Abhandlungen,1879, 1: 390-394.
[4] Fryer P. Recent Studies of Serpentinite Occurrences in the Oceans: Mantle-Ocean Interactions in the Plate Tectonic Cycle[J].Chemie der Erde,2002, 62: 257-302.
[5] Shand S J. Rocks of the mid-Atlantic Ridge[J].Journal of Geology, 1949, 57 (1): 89-92.
[6] Udintsev G B, Dmitriev L V. Ultrabasic rocks[C]//Maxwell A E, eds. The Sea, Ideas and Observations on Progress in the Study of the Seas 4. Wiley-Interscience, 1971:521-573.
[7] Hekinian R, Bideau D, Cannat M,et al. Volcanic activity and crust mantle exposure in the ultrafast Garret transform fault near 13°28'S in the Pacific[J].Earth and Planetary Science Letters, 1992, 108: 259-275.
[8] Lonsdale P. Structural pattern of the Galapagos microplate and evolution of the Galapagos triple junctions[J].Journal of Geophysical Research,1988, 93 (11): 13 551-13 574.
[9] Hekinian R, Bideau D, Francheteau J,et al. Petrology of the East Pacific Rise crust and upper mantle exposed in Hess Deep (eastern Equatorial Pacific)[J].Journal of Geophysical Research, 1993, 98 (5): 8 069-8 094.
[10] von Heune R, Aubouin J, Sci Shipboard Party. Site 567 [R]. Deep Sea Drilling Project Initial Reports Volume 84,Washington DC (US Govenment Printing Office), 1985:111-166.
[11] Bowin C O, Nalwalk A J, Hersey J B. Serpentinized peridotite from north wall of the Puerto Rico Trench[J].Geological Society of America Bulletin, 1966, 77: 257-270.
[12] Fisher R L, Engel C G. Ultramafic and Basaltic Rocks Dredged from the Nearshore Flank of the Tonga Trench[J].Geological Society of America Bulletin, 1969, 80: 1 373-1 378.
[13] Maekawa H, Fryer P, Ozaki M. Incipient blueschist-facies metamorphism in the active subduction zone beneath the Mariana Forearc[C]//Taylor B, Natland J, eds.Active Margins and Marginal Basins of the Western Pacific. AGU Monograph Series, 1995, 88: 281-290.
[14] Fryer P, Lockwood J, Becker N, et al. Significance of serpentine and blueschist mud volcanism in convergent margin settings[C]//Dilek Y, Moores E M, Elthon D,et al,eds.Ophiolites and Oceanic Crust: New Insights from Field Studies and Ocean Drilling Program. Geological Society America Special Paper, 2000, 349: 35-51.
[15] Iyer K. Mechanisms of Serpentinization and Some Geochemical Effects[D]. Oslo: Department of Physics, University of Oslo, 2007.
[16] Coulton A J, Harper G D. Timing of serpentinization in the Josephine ophiolite: Implications for the oceanic Moho[J]. EOS, Transactions American Geophysical Union,1992, 73(43): 537.
[17] Früh-Green G L, Weissert H, Bernoulli D A. Multiple Fluid History Recorded in Alpine Ophiolites[J].Journal of the Geological Society,1990, 147: 959-970.
[18] O'Hanley D S. Serpentinites: Records of Tectonic and Petrological History[M]. New York: Oxford University Press, 1996.
[19] Schroeder T, John B, Frost B R. Geologic implications of seawater circulation through peridotite exposed at slow-spreading mid-ocean ridges[J].Geology, 2002, 30: 367-370.
[20] Shervais J W, Kolesar P, Andreasen K. A field and chemical study of serpentinization-Stonyford, California: Chemical flux and mass balance[J]. International Geology Review, 2005, 47: 1-23.
[21] Hirth G, Kohlstedt D L. Water in the oceanic upper mantle; implications for rheology, melt extraction and the evolution of the lithosphere[J]. Earth and Planetary Science Letters,1996, 144(1/2): 93-108.
[22] Hirth G, Kohlstedt D L. Rheology of the upper mantle and the mantle wedge: A view from the experimentalists[C]//Eiler J, ed. Inside the Subduction Factory. AGU Geophysical Monograph Series, 2004: 83-106.
[23] Escartín J, Hirth G, Evans B. Nondilatant brittle deformation of serpentinites: Implications for Mohr-Coulomb theory and the strength of faults[J]. Journal of Geophysical Research,1997, 102: 2 897-2 913.
[24] Escartín J, Hirth G, Evans B. Effects of serpentinization on the lithospheric strength and the style of normal faulting at slow-spreading ridges[J].Earth and Planetary Science Letters,1997, 151: 181-189.
[25] Bach W, Paulick H, Garrido C J. Unraveling the sequence of serpentinization reactions: Petrography, mineral chemistry, and petrophysics of serpentinites from MAR 15°N (ODP Leg 209, Site 1274) [J].Geophysical Research Letters,2006: 33.L13306.doi:10.102912806GL025681.
[26] Ranero C R, Morgan J P. McIntosh K Bending-related faulting and mantle serpentinization at the Middle America trench[J]. Nature,2003, 425: 367-373.
[27] Barnes J D, Straub S M. Chorine stable isotope variations in Izu Bonin tephra: Implications for serpentinite subduction[J]. Chemical Geology,2010, 272: 62-74.
[28] Klein F, Bach W, Jöns N, et al. Iron partitioning and hydrogen generation during serpentinization of abyssal peridotites from 15°N on the Mid-Atlantic Ridge [J]. Geochimica et Cosmochimica Acta,2009, 73: 6 868-6 893.
[29] Tivey M K. Generation of seafloor hydrothermal vent fluids and associated mineral deposits[J].Oceanography,2007, 20: 50-65.
[30] Barnes J D, Paulick H, Sharp Z D, et al. Stable isotope (δ18O, δD, δ37Cl) evidence for multiple fluid histories in mid-Atlantic abyssal peridotites (ODP Leg 209) [J].Lithos,2009, 110: 83-94.
[31] Dias S, Mills R A, Ribeiro da Costa I,et al. Tracing fluid-rock reaction and hydrothermal circulation at the Saldanha hydrothermal field [J]. Chemical Geology,2010,273(3/4):168-179.
[32] Kelley D S, Karson J A, Früh-Green G L. A sepentinite-hosted ecosystem: The Lost City hydrothermal field[J]. Science,2005, 307: 1 428-1 434.
[33] Lowell R P, Germanovich L N. On the temporal evolution of high-temperature hydrothermal systems at ocean ridge crests[J]. Journal of Geophysical Research-Solid Earth,1994, 99: 565-575.
[34] Lister C R B. On the penetration of water into hot rock[J].Geophysical Journal of the Royal Astronomical Society,1974, 39: 465-509.
[35] Bach W, Banerjee N R, Dick H J B. Discovery of ancient and active hydrothermal systems along the ultra-slow spreading Southwest Indian Ridge 10~16°E[J]. Geochemistry Geophysics Geosystems,2002, 3(7): 1 044.
[36] Cannat M. Emplacement of mantle rocks in the seafloor at mid-ocean ridges[J]. Journal of Geophysical Researchs, 1993, 98 (3): 4 163-4 172.
[37] Karson J A, Thompson G, Humphris S E. Along-Axis variations in sea-floor spreading in the Mark area[J].Nature,1987, 328: 681-685.
[38] MacDonald K C. Mid-Ocean Ridges: Fine Scale Tectonic, Volcanic and Hydrothermal Processes within the Plate Boundary Zone[J]. Annual Review of Earth and Planetary Sciences,1982, 10: 155-190.
[39] Harper G D. The Josephine Ophiolite, Northwestern California [J]. Geological Society of America Bulletin,1984, 95: 1 009-1 026.
[40] Mével C, Cannat M, Gente P. Emplacement of deep crustal and mantle rocks on the west median valley wall of the Mark area (MAR, 23°N)[J]. Tectonophysics, 1991, 190: 31-53.
[41] Bougault H, Charlou J L, Fouquet Y, et al. Fast and slow spreading ridges: Structure and hydrothermal activity, ultramafic topographic highs and CH4 output [J].Journal of Geophysical Research, 1993, 98: 9 643-9 651.
[42] Hebert R, Bideau D, Hekinian R. Ultramafic and mafic rocks from the Garret Transform Fault near 13°30′S on the East Pacific Rise: Igneous petrology[J]. Earth and Planetary Science Letters,1983, 65: 107-125.
[43] Agrinier P, Hekinian R, Bideau D, et al. O and H stable isotope compositions of oceanic crust and upper mantle rocks exposed in the Hess Deep near the Galapagos Triple Junction[J].Earth and Planetary Science Letters,1995, 136: 183-196.
[44] Fryer P, Fryer G J. Origins of non-volcanic seamounts in forearc environments[C]//Keating B H, Fryer P, Batiza R, et al,eds.Seamount Islands and Atolls. Washington DC: AGU Geophysical Monograph, 1987, 43: 61-69.
[45] Ewans J, Hawkins J. Petrology of “seamounts” on the trench slope break[J]. EOS,1979, 60: 968.
[46] Boillot G, Grimaud S, Mauffret A, et al.Ocean-continent boundary off the Iberian margin: A serpentinite diapir west of the Galicia bank, Earth Planet[J]. Earth and Planetary Science Letters, 1980, 48: 23-34.
[47] Boillot G, Girardeau J, Kornprobst J. Rifting of the Galicia margin: Crustal thinning and emplacement of mantle rocks on the seafloor[C]//Boillot G, Winterer E L,eds. Proceedings ODP Scientific Results, Ocean Drilling Program, College Station, 1988,103: 741-756.
[48] Boillot G, Féraud G, Recq M, et al. Undercrusting by serpentinites beneath rifted margins[J]. Nature,1989, 341: 523-525.
[49] Bonatti E, Seyler M, Channel J, et al. Peridotites drilled from the Tyrrhenian sea[C]//Kasten K A, Mascle J,eds. Proceedings ODP Scientific Results,Ocean Drilling Program, College Station, 1990,107: 37-47.
[50] Moody J B. Serpentinization: A review[J]. Lithos,1976, 9: 125-138.
[51] O'Hanley D S. Solution to the volume problem in serpentinization[J].Geology,1992, 20: 705-708.
[52] Wicks F J, Whittaker E J W. A reappraisal of the structure of serpentine minerals[J].Canadian Mineralogist,1975, 13: 227-243.
[53] Uehara S, Shirozu H. Variations in chemical compositions and structural properties of antigorite[J]. Mineralogical Journal,1985, 12: 299-318.
[54] Bailey S W. Structures and compositions of other trioctahedral 1:1 phyllosilicates[C]//Bailey S W, ed. Hydrous Phyllosilicates Other than Micas Reviews in Mineralogy,1988, 19: 169-188.
[55] Miyashiro A, Shido F, Ewing M. Composition and origin of serpentinites from the Mid-Atlantic Ridge near 24 and 30°N[J].Contributions to Mineralogy and Petrology, 1969, 23: 117-127.
[56] Prichard H M. A petrographic study of the process of serpentinization in ophiolites and the ocean crust[J].Contributions to Mineralogy and Petrology, 1979, 68: 231-241.
[57] Hébert R, Adamson A C, Komor S C. Metamorphic petrology of ODP Leg 109, Hole 670A, serpentinized peridotites: Serpentinization processes at a slow spreading ridge environment[C]//Detrick R, Honnorez J, Bryan W B,et al,eds. Proceedings ODP Scientific Results, Vols. 106 109, College Station, TX , 1990: 103-113.
[58] Mével C, Stamoudi C. Hydrothermal alteration of the upper mantle section at Hess Deep[C]// vel C M, Gillis K, Allan J, eds. Proceedings ODP Scientific Results, College Station, TX, 1996,147: 293-309.
[59] Oufi O, Cannat M, Horen H. Magnetic properties of variably serpentinized abyssal peridotites[J]. Journal of Geophysical Research, 2002, 107: 1-19.
[60] Gahlan H A, Arai S, Ahmed A H, et al. Origin of magnetite veins in serpentinite from the Late Proterozoic Bou-Azzer ophiolite, Anti-Atlas, Morocco: An implication for mobility of iron during serpentinization[J]. Journal of African Earth Sciences,2006, 46: 318-330.
[61] Toft P B, Hamed J A, Haggerty S E. The effects of serpentinization on density and magnetic susceptibility: A petrophysical model[J]. Physics of the Earth and Planetary Interiors,1990, (1/2): 137-157.
[62] Bach W, Garrido C J, Paulick H, et al. Seawater-peridotite interactions: First insights from ODP Leg 209, MAR 15°N [J]. Geochemistry, Geophysics, Geosystems (G3), 2004, 5(9):Q09F26.
[63] Beard J S, Frost B R, Fryer P,et al. Onset and Progression of Serpentinization and Magnetite Formation in Olivine-richTroctolite from IODP Hole U1309D[J].Journal of Petrology, 2009, 50: 387-403.
[64] Wang X, Zeng Z, Chen J. Serpentinization of peridotites from the southern Mariana forearc[J].Progress in Natural Science, 2009,19: 1 287-1 295.
[65] Bideau D, Hébert R, Hékinian R, et al. Metamorphism of deep seated rocks from the Garrett ultrafast transform (East Pacific Rise near 1325′S) [J]. Journal of Geophysical Research, 1991, 96: 10 079-10 099.
[66] Kimball K L, Spear F S, Dick H J B. High temperature alteration of abyssal ultramafics from the Islas Orcadas Fracture Zone, South Atlantic[J].Contributionsto Mineralogy Petrology,1985, 91: 307-320.
[67] Wicks F J, Whittaker E J W. Serpentine textures and serpentinization[J]. Canadian Mineralogist,1977, 15: 459-488.
[68] Wicks F J,Plant A G. Electron-microprobe and X-ray microbeam studies of serpentine textures[J].Canadian Mineralogist,1979, 17: 785-830.
[69] Gleuher Le, Livi M, Veblen K J T, et al.Serpentinization of enstatite from pernes, France: Reaction microstructures and the role of system openness [J]. American Mineralogist,1990, 75: 813-824.
[70] Viti C, Mellini M, Rumori C. Exsolution and hydration of pyroxenes from partially serpentinized harzburgites[J].Mineralogical Magazine,2005, 69: 491-507.
[71] Miller D J, Christensen N I. Seismic velocities of lower crustal and upper mantle rocks from the slow-spreading Mid-Atlantic Ridge, South of the Kane transform zone (MARK area)[C]//Karson J A, Cannat M, Miller D J,et al,eds. Proceeding of ODP, Science Results,College Station, TX, 1997.
[72] Komor S C, Elthon D, Casey J F. Serpentinization of cumulate ultramafic rocks from the North Arm mountain massif of the bay of islands ophiolite [J]. Geochimica et Cosmochimica Acta,1985, 49: 2 331-2 338.
[73] Furnes H,Pedersen R B, Stillman C J. The Leka Ophiolite Complex, Central Norwegian Caledonides-field characteristics and geotectonic significance[J]. Journal of the Geological Society,1988, 145: 401-412.
[74] Horen H, Zamora M, Dubuisson G. Seismic wave velocities and anisotropy in serpentinized peridotites from Xigaze ophiolite: Abundance of serpentine in slow spreading ridge[J]. Geophysical Research Letters,1996, 23: 9-12.
[75] Cann J R, Blackman D K, Smith D K, et al. Corrugated slip surfaces formed at North Atlantic ridgetransform intersections[J]. Nature,1997, 385: 329-332.
[76] Carlson R L. The abundance of ultramafic rocks in the Atlantic Ocean crust [J].Geophysical Journal Internationa,2001, 144: 37-48.
[77] Hess H H. History of the ocean basins[C]//Petrologic Studies, Buddington Volume. Geological Society of America, Boulder, CO, 1962: 599-620.
[78] Watanbe T, Oguri H, Yano H,et al. Compressional and shear wave velocities in serpentinized peridotites[C]//American Geophysical Union, Fall Meeting(Abstract). San Francisco, 2007: 671.
[79] Dyment J, ArkaniHamed J, Ghods A. Contribution of serpentinized ultramafics to marine magnetic anomalies at slow and intermediate spreading centres: Insights from the shape of the anomalies[J]. Geophysics Journal International,1997, 129: 691-701.
[80] Pariso J E, Rommevaux C, Sempér J C. Three dimensional inversion of marine magnetic anomalies: implications for crustal accretion along the Mid-Atlantic Ridge (28°~31°30′N) [J].Marine Geophysical Researches, 1996, 18: 85-101.
[81] Dyment J, ArkaniHamed J. Spreading-rate dependent magnetization of the oceanic lithosphere inferred from the anomalous skewness of marine magnetic anomalies[J].Geophysics Journal International,1995, 121: 789-804.
[82] Escartín J, Hirth G, Evans B. Strength of slightly serpentinizedperidotites: Implications for the tectonics of oceanic lithosphere[J].Geology,2001, 29: 1 023-1026.
[83] Fouquet Y,Cherkashov G, Charlou J L,et al. Serpentine cruise-ultramafi c hosted hydrothermal deposits on the Mid-Atlantic Ridge: First submersible studies on Ashadze 1 and 2, Logatchev 2 and Krasnov vent fields[J].InterRidge News,2008, 17: 16-41.
[84] Charlou J L, Donval J P, Konn C, et al. High flux of hydrogen, abiogenic methane and heavier hydrocarbons from the slow-spreading Mid-Atlantic Ridge [J].EGU General Assembley, Journal of Geophysical Research Abstracts, 2008, 10: A-03883.
[85] Douville E, Charlou J L, Oelkers E H, et al. The Rainbow vent fluids (36°14′N, MAR): The influence of ultramafic rocks and phase separation on trace metal content in Mid-Atlantic Ridge hydrothermal fluids[J].Chemical Geology, 2002, 184: 37-48.
[86] Charlou J L, Donval J P, Fouquet Y, et al. Geochemistry of high H2 and CH4 vent fluids issuing from ultramafic rocks at the Rainbow hydrothermal field (36°14′N, MAR) [J].Chemical Geology, 2002, 191(4): 345-359.
[87] Dias A S, Barriga F J. Mineralogy and geochemistry of hydrothermal sediments from the serpentinite-hosted Saldanha hydrothermal field (36°34′N; 33°26′W) at MAR [J]. Marine Geology, 2006, 225: 157-175.
[88] Kelley D S, Karson J A, Blackman D K, et al. An offaxis hydrothermal vent field near the Mid-Atlantic Ridge at 30°N [J].Nature,2001, 412: 145-149.
[89] Yves F, Luc J C, Fernando B. Modern Seafloor Hydrothermal Deposites Hosted in Ultramafic Rocks [C]. 2002 Denver Annual Meeting, 2002:194-197.
[90] Marques A F A, Barriga F, Chavagnac V, et al. Mineralogy, geochemistry, and Nd isotope composition of the Rainbow hydrothermal field, Mid-Atlantic Ridge [J]. Mineralium Deposita,2006, 41: 52-67.
[91] Melchert B, Devey C W, German C R, et al. First evidence for high-temperature off-axis venting of deep crustal/mantle heat: The Nibelungen hydrothermal field, southern Mid-Atlantic Ridge[J].Earth Planetary Science Letters,2008, 275: 61-69.
[92] Bogdanov Y, Sagalevitch A M, Chernayev E S, et al.A study of the hydrothermal field at 14°45′N on the Mid-Atlantic Ridge using the “MIR” submersibles[J]. BRIDGE News,1995, 19: 9-13.
[93] Barriga F J A S, Fouquet Y, Almeida A, et al. Discovery of the Saldanha Hydrothermal Field on the Famous Segment of the MAR (36° 30′N) [C]. AGU-Fall Meeting, Eos Transactions, 1998, 79(45): F67.
[94] Früh-Green G, Kelley D S, Bernasconi S M, et al. 30000 years of hydrothermal activity at the Lost City vent field [J]. Science,2003, 301: 495-498.
[95] Allen D, Seyfried W E. Serpentinization and heat generation: Constraints from Lost City and Rainbow hydrothermal systems[J].Geochimica et Cosmochimica Acta, 2004, 67: 1 347-1 354.
[96] Wetzel L R, Shock E L. Distinguishing ultramafic-from basalt-hosted submarine hydrothermal systems by comparing calculated vent fluid compositions[J]. Journal of Geophysical Research-Solid Earth,2000, 105: 8 319-8 340.
[97] Tivey M K.Generation of seafloor hydrothermal vent fluids and associated mineral deposits[J].Oceanography,2007,20:50-65.
[98] Allen D E, Seyfried W E. Compositional controls on vent fluids from ultramafic-hosted hydrothermal systems at mid-ocean ridges: An experimental study at 400℃, 500 bars[J].Geochimica et Cosmochimica Acta,2003, 67: 1 531-1 542.
[99] French B M. Some geological implications of equilibrium between graphite and a C-H-O gas phase at high temperatures and pressures[J].Reviews of Geophysics,1966, 4: 223253.
[100] Neal C, Stanger G. Hydrogen generation from mantle source rocks in Oman[J].Earth and Planetary Science Letters,1983, 66: 315-320.
[101] Berndt M E, Allen D E, Seyfried W E. Reduction of CO2 during serpentinization of olivine at 300℃ and 500 bars[J].Geology,1996, 24: 671-671.
[102] Abrajano T A, Sturchio N C, Bohlke J K, et al.Methane hydrogen gas seeps, zambales ophiolite, philippines-deep or shallow origin[J]. Chemical Geology, 1988, 71: 211-222.
[103] Abrajano T A, Sturchio N C, Kennedy B M, et al. Geochemistry of reduced gas related to serpentinization of the zambales ophiolite, philippines [J]. Applied Geochemistry,1990, 5: 625-630.
[104] Rona P A, Bougault H, Charlou J L, et al. Hydrothermal circulation, serpentinization, and degassing at a rift-Valley Fracture-Zone intersection-Mid-Atlantic ridge near 15°N, 45°W[J].Geology,1992, 20: 783-786.
[105] Charlou J L, Donval J P. Hydrothermal Methane Venting between 12°N and 26°N Along the Mid-Atlantic Ridge[J].Journal of Geophysical Research,1993, 98: 9 625-9 642.
[106] Lowell R P,Rona P A.Scafloor hydrothermal systems driven by the scrpcntinization of periotite[J].Geophysical Research Letters, 2002, 29(26): 1-5.
[107] MacDonald A H, Fyfe W S. Rate of serpentinization in seafloor Hydrothermal Systems[J].Tectonophysics, 1985, 116: 123-l35.
/
〈 |
|
〉 |