Formation Mechanism of Biogenic Fe-Si Oxide Deposits in Seafloor Hydrothermal Systems
Received date: 2010-11-02
Revised date: 2010-11-11
Online published: 2010-12-10
Hydrothermal Fe-Si oxide deposits are ubiquitous in the hydrothermal vent sites at mid-ocean ridge and back-arc seafloor spreading centers. According to the recognitions of micron-scale filamentous textures and the results of molecular biology, neutrophilic Fe-oxidizing bacteria including Gallionella ferruginea, Leptothrix ochracea and the novel Mariprofundus ferrooxydans (PV-1 Strain) are considered to have a significant role in the formations of Fe-Si oxides deposits of the hydrothermal systems. These bacteria are capable of autotrophic metabolism with Fe2+as the sole electron donor, increas the rate of Fe2+oxidation, and then get energy for their growth. Electrostatic attraction along with the organic functional groups lead to the precipitations of iron oxides on the surface of abundant filamentous microbial structure that closely resemble the morphology of the Fe-oxidizing bacteria. Then the filaments were combined together to form a three-dimensional network. Novel observations were made of the Fe-Si framework of the network revealing the composite structure of Fe-rich filamentous in the core and the pure opal crust in the outer to form the “two-generation structure”. This indicates that the large-scale silica precipitation caused by conductive cooling often takes place after the construction of the network. Recent studies about the Banded Iron Formations (BIF) considered to be the analog of modern hydrothermal Fe-Si deposits indicate an ancient hydrothermal origin for the iron. Moreover, owing to the pervasive anoxic state when the BIFs formed, the photosynthetic organisms for instance, cyanobacteria and the neutrophilic Fe-oxidizing bacteria are proposed to be involved in the ancient BIFs formations.
Sun Zhilei, Li Jun, Sun Zhixue, Huang Wei, Cui Ruyong,Li Jiwei . Formation Mechanism of Biogenic Fe-Si Oxide Deposits in Seafloor Hydrothermal Systems[J]. Advances in Earth Science, 2010 , 25(12) : 1325 -1336 . DOI: 10.11867/j.issn.1001-8166.2010.12.1325
[1] Alt J C. Hydrothermal oxide and nontronite deposits on seamounts in the eastern Pacific[J].Marine Geology, 1988,81:227-239.[2] Hekinian R, Hoffert M, Larque P, et al. Hydrothermal Fe and Si oxyhydroxide deposits from south Pacific intraplate volcanoes and east Pacific rise axial and off-axial regions[J].Economic Geology,1993,88:2 099-2 121.
[3] Boyd T D, Scott S D. Microbial and hydrothermal aspects of ferric oxyhydroxides and ferrosic hydroxides: The example of Franklin seamount,western Woodlark basin, Papua New Guinea[J/OL].Geochemical Transactions, 2001,2:45,doi:10.1186/1467-4866-2-45.
[4] Kennedy C B, Scott S D, Ferris F G. Characterization of bacteriogenic iron oxide deposits from Axial Volcano, Juan de Fuca Ridge, northeast Pacific ocean[J].Geomicrobiology Journal,2003,20:199-214.
[5] Kennedy C B, Scott S D, Ferris F G.Ultrastructure and potential sub-seafloor evidence of bacteriogenic iron oxides from Axial Volcano, Juan de Fuca Ridge, northeast Pacific ocean[J].FEMS Microbiology Ecology,2003,43:247-254.
[6] Emerson D, Rentz J A, Lilburn T G, et al.A novel lineage of proteobacteria involved in formation of marine fe-oxidizing microbial mat communities[J/OL].PloS One, 2007,2(7): e667. doi: 10.1371/journal.pone.0000667.
[7] Hrischeva E, Scott S D.Geochemistry and morphology of metalliferous sediments and oxyhydroxides from the Endeavour segment, Juan de Fuca Ridge[J].Geochimica et Cosmochimica Acta,2007,71:3 476-3 497.
[8] Kato S, Kobayashi C, Kakegawa T,et al.Microbial communities in iron-silica-rich microbial mats at deep-sea hydrothermal fields of the southern Mariana trough[J].Environmental Microbiology,2009,11:2 094-2 111.
[9] Langley S, Igric P, Takahashi Y.Preliminary characterization and biological reduction of putative biogenic iron oxides (BIOS) from the Tonga-Kermadec Arc, southwest Pacific ocean[J].Geobiology,2009,7:35-49.
[10] Duhig N C, Davidson G J, Stolz J.Microbial involvement in the formation of Cambrian sea-floor silica-iron oxide deposits[J].Australia Geology,1992,20:511-514.
[11] Davidson G J, Stolz A J, Eggins S M.Geochemical anatomy of silica iron exhalites: Evidence for hydrothermal oxyanion cycling in response to vent fluid redox and thermal evolution (Mt. Windsor Subprovince, Australia)[J].Economic Geology,2001,96:1 201-1226.
[12] Grenne T, Slack J F. Paleozoic and Mesozoic silica-rich seawater: Evidence from hematitic chert (jasper) deposits[J]. Geology,2003, 31:319-322.
[13] Little C T S, Glynn S E J, Mills R A. Four-hundred and ninety-million-year record of bacteriogenic iron oxide precipitation at sea-floor hydrothermal vents[J].Geomicrobiology Journal,2004,21:415-429.
[14] Kato S, Yanagawa K, Sunamura M,et al.Abundance of Zetaproteobacteria within crustal fluids in back-arc hydrothermal fields of the southern Mariana trough[J].Environmental Microbiology,2009,11:3 210-3 222.
[15] Schädler S, Burkhardt C, Hegler F,et al.Formation of cell-iron-mineral aggregates by phototrophic and nitrate-reducing anaerobic Fe(II)-oxdizing bacteria[J].Geomicrobiology Journal,2009, 26:93-103.
[16] Hofmann B A, Farmer J D, von Blanckenburg F, et al.Subsurface filamentous fabrics: An evaluation of origins based on morphological and geochemical criteria, with implications for exopaleontology[J].Astrobiology,2008,8: 87-117.
[17] Knoll A H, Simonson B. Early Proterozoic microfossils and penecontemporaneous quartz cementation in the sokomon iron formation, Canada[J].Science,1981, 211:478-480.
[18] Strother P K, Tobin K.Observations on the genus Huroniospora Barghoorn: Implications for paleoecology of the Gunflint microbiota[J].Precambrian Research,1987,36:323-333.
[19] Knoll A H. Life on a Young Planet: The First Three Billion Years of Evolution on Earth[M].New Jersey: Princeton University Press, 2003:304.
[20] Goldich S S. Ages of Precambrian banded iron-formations[J].Economic Geology,1973,68:1 126-1 134.
[21] Isley A E. Hydrothermal plumes and the delivery of iron to banded iron formation[J].Journal of Geology,1995,103:169-185.
[22] Konhauser K O, Hamade T, Raiswell R, et al.Could bacteria have formed the Precambrian banded iron formations?[J]. Geology,2002,30:1 079-1 082.
[23] German C R,von Damm K L. Hydothermal processes[C]//Heinrich D, et al, eds. Treatise on Geochemistry. Elsevier, 2003: 181-222.
[24] Cady S L, Farmer J D, Grotzinger J P,et al. Morphological biosignatures and the search for life on Mars[J].Astrobiology,2003, 3: 351-368.
[25] Straub M, Benz M, Schink B. Iron metabolism in anoxic environments at near neutral pH[J].FEMS Microbiology Ecology,2001, 34:181-186.
[26] Edwards K J.Formation and degradation of seafloor hydrothermal sulfide deposits[C]//Amend J P, et al,eds. Biogeochemistry of Sulfur, 83-96, Geological Society of America,2004.
[27] Kappler A, Newman D K. Formation of Fe(III)-minerals by Fe(II)-oxidizing photoautotrophic bacteria[J].Geochimica et Cosmochimica Acta,2004,68:1 217-1 226.
[28] Roden E E, Sobolev D, Glazer B,et al. Potential for microscale bacterial Fe redox cycling at the aerobic-anaerobic interface[J].Geomicrobiology Journal,2004, 21:379-391.
[29] Holland H D. The oxygenation of the atmosphere and oceans[J].Transactions of the Royal Society B,2006,361:903-915.
[30] Landing W M, Bruland K W. The contrasting biogeochemistry of iron and manganese in Pacific ocean[J].Geochimica et Cosmochimca Acta,1987,51:29-43.
[31] Von Damm K L. Controls on the chemistry and temporal variability of seafloor hydrothermal fluids[C]//Seafloor Hydrothermal Systems: Physical, Chemical, Biological, and Geological Interactions. Washington DC: AGU,1995.
[32] Statham P J, Yeats P A, Landing W M. Manganese in the eastern Atlantic ocean: Processes influencing deep and surface water distributions[J].Marine Chemistry,1998, 61: 55-66.
[33] Millero F J, Sotolongo S, Izaguirre M. The oxidation kinetics of Fe(II) in seawater[J].Geochimica et Cosmochimica Acta,1987, 51:793-801.
[34] Stumm W, Morgan J J. Aquatic Chemistry: Chemical Equilibria and Rates in Natural Waters[M].Wiley-Interscience, New York:NY10158(USA),1996:1 022.
[35] Emerson D, Moyer C L. Neutrophilic Fe-oxidizing bacteria are abundant at the Loihi Seamount hydrothermal vents and play a major role in Fe oxide deposition[J].Applied and Environmental Microbiology,2002,68:3 085-3 093.
[36] Fortin D, Langley S.Formation and occurrence of biogenic iron-rich minerals[J].Earth-Science Reviews,2005,72:1-19.
[37] Hallberg R, Ferris F G. Biomineralization by Gallionella[J].Geomicrobiology Journal,2004,21:325-330.
[38] Edwards K J, Rogers D R, Wirsen C O,et al. Isolation and characterization of novel psychrophilic, neutrophilic, Fe-oxidizing, chemolithoautotrophic α-and γ-proteobacteria from the deep sea[J].Applied and Environmental Microbiology,2003, 69:2 906-2 913.[39] Neubauer S C, Emerson D, Megonigal J P. Life at the Energetic edge: Kinetics of circumneutral iron oxidation by lithotrophic iron-oxidizing bacteria isolated from the wetland-plant rhizosphere[J].Apllied and Environmental Microbiology,2002, 68:3 988-3 995.[40] James R E, Ferris F G. Evidence for microbial-mediated iron oxidation at a neutrophilic groundwater spring[J].Chemical Geology,2004,212:301-311.
[41] Ferris F G. Biogeochemical properties of bacteriogenic iron oxides[J].Geomicrobiology Journal,2005, 22:79-85.
[42] Druschel G K,Emerson D, Sutka R, et al. Low-oxygen and chemical kinetic constraints on the geochemical niche of neutrophilic iron(II) oxidizing microorganisms[J].Geochimica et Cosmochimica Acta,2008, 72,:3 358-3 370.
[43] Emerson D, Revsbech N P. Investigation of an iron-oxidizing microbial mat community located near rhus, Denmark: Field studies[J].Applied and Environmental Microbiology,1994,60:4 022-4 031.
[44] Emerson D, Revsbech N P. Investigation of an iron-oxidizing microbial mat community located near Aarhus, Denmark: Laboratory studies[J].Applied and Environmental Microbiology,1994,60:4 032-4 038.
[45] Kasama T, Murakami T. The effect of microorganisms on Fe precipitation rates at neutral pH[J].Chemical Geology, 2001,180:117-128.
[46] Cloud P E. Paleoecological significance of the banded iron-formation[J].Economic Geology,1973,68:1 135-1 143.
[47] Holm N G. The 13C/12C ratios of siderite and organic matter of a modern metalliferous hydrothermal sediment and their implications for banded iron formations[J].Chemical Geology,1989, 77: 41-45.
[48] Fortin D, Beveridge T J. Microbial sulfate reduction within mine tailings: Formation of diagenetic Fe-sulfides[J]. Geomicrobiology Journal,1997,14:1-21.
[49] Daughney C J, Fortin D. Mineral adsorption and absorption by biological cells[C]//Hubbard A, ed. Encyclopedia of Surface and Colloid Science. Marcel Dekker, Inc. New York, 2002:3 430-3 446.
[50] Glasauer S, Langley S,Beveridge T J. Sorption of Fe (hydr)oxides to the surface of Shewanella putrefaciens: Cell-bound fine-grained minerals are not always formed de novo[J].Applied and Environmental Microbiology,2001,67:5 544-5 550.
[51] Yee N, Fein J B. Cd adsorption onto bacterial surfaces: A universal adsorption edge?[J].Geochimica et Cosmochimica Acta,2001, 65:2 037-2 042.
[52] Châtellier X, West M, Rose J,et al.Oxidation of ferrous ions in the presence of various bacterial strains and inorganic ligands[J].Geomicrobiology Journal,2004, 21:99-112.
[53] Warren L A, Ferris F G. Continuum between sorption and precipitation of Fe(III) on microbial surfaces[J].Environmental Science and Technology,1998,32:2 331-2 337.
[54] Châtellier X, Fortin D, West M,et al. Effect of the presence of bacterial surfaces during the synthesis of Fe-oxides by oxidation of ferrous ions[J].European Journal of Mineralogy,2001, 13:705-714.
[55] Hallbeck L, Pedersen K. Benefits associated with the stalk of Gallionella ferruginea, evaluated by comparison of a stalkforming and non-stalk-forming strain and biofilm studies in situ[J].Microbial Ecology,1995,30:257-268.
[56] Chan C S, Stasio G D, Welch S A,et al.Microbial polysaccharides template assembly of nanocrystal fibers[J].Science,2004, 303:1 656-1 658.
[57] Takai K, Nunoura T, Ishibashi J,et al.Variability in the microbial communities and hydrothermal fluid chemistry at the newly discovered Mariner hydrothermal field, southern Lau basin[J/OL].Journal of Geophysical Research,2008,113: G02031, doi:10.1029/2007JG000636.
[58] Herzig P M, Becker K P, Stoffers P,et al.Hydrothermal silica chimney fields in the Galapagos spreading center at 86°W[J].Earth and Planetary Scinece Letters,1988, 89:261-272.
[59] Juniper S K, Fouquet Y.Filamentous iron-silica deposits from modern and ancient hydrothermal site[J].Canadian Mineralogist,1988, 26:859-869.
[60] Sun Z, Zhou H, Yang Q,et al.Formations of Fe-Si-Mn oxides and phyllosilicate in hydrothermal vent systems: Example of Valu Fa Ridge in Lau back-arc basin[J].Marine Geology, Submitted.
[61] Eggleton R A, Fitzpatrick R W. New data and a revised structural model for ferrihydrite[J].Clays and Clay Minerals, 1988,36:111-124.
[62] Zhao J, Huggins F E, Feng Z,et al. Ferrihydrite: Surface structure and its effects on phase transformation[J].Clays and Clay Minerals,1994,42:737-746.
[63] Cornell R M,Schwertmann U. The Iron Oxides: Properties, Reactions, Occurrences and Uses[M]. Wiley-VCH,2003:367-383.
[64] Vempati P K, Loeppert R H,Sittertz-Bhatkar H,et al. Infrared vibrations of hematite formed from aqueous- and dry-thermal incubation of Si-contanining ferrihydrite[J].Clays and Clay Minerals,1990,38:294-298.
[65] Slack J F, Grenne T, Bekker A. Seafloor-hydrothermal Si-Fe-Mn exhalites in the Pecos greenstone belt, New Mexico, and the redox state of ca. 1720 Ma deep seawate[J].Geosphere,2009, 5:302-314.
[66] Glasby G P, Emelyanov E M, Zhamoida V A, et al. Environments of formation of ferromanganese concretions in the Baltic sea: A critical review[J]. Geological Society, 1997,119 (Special Publications):213-237.
[67] Kump L R, Seyfried Jr W E. Hydrothermal Fe fluxes during the Precambrian: Effect of low oceanic sulfate concentrations and low hydrostatic pressure on the composition of black smokers[J].Earth and Planetary Science Letters,2005,235:654-662.
[68] Lascelles D F. Black smokers and density currents: A uniformitarian model for the genesis of banded iron-formations[J].Ore Geology Reviews,2007,32:381-411.
[69] Holland H D. The oceans: A possible source of iron in iron-formations[J].Economic Geology,1973,68:1 169-1 172.
[70] Jacobsen S B, Pimentel-Klose M R. A Nd isotopic study of the Hamersley and Michipicoten banded iron formations: The source of REE and Fe in Archean oceans[J].Earth and Planetary Science Letters,1988,87:29-44.
[71] Hamade T, Konhauser K O, Raiswell R,et al. Using Ge/Si ratios to decouple iron and silica fluxes in Precambrian banded iron formations[J].Geology,2003,31:35-38.
[72] Walker J C G. Suboxic diagenesis in banded iron formations[J].Nature,1984,309:340-342.
[73] Cairns-Smith A G.Precambrian solution photochemistry-inverse segregation and banded iron formations[J].Nature,1978, 276:807-808.
[74] Konhauser K O, Amskold L, Lalonde S V, et al. Decoupling photooxidation from shallow-water BIF deposition[J].Earth and Planetary Science Letters,2007, 258:87-100.
[75] Weber K A, Achenbach L A, Coates J D.Microorganisms pumping iron: Anaerobic microbial iron oxidation and reduction[J].Nature Reviews Microbiology,2006,4:752-764.
[76] Posth N R, Konhauser K O, Kappler A. Microbiological processes in BIF deposition[J].Nature Geoscience,2008,1:703-708.
[77] Nealson K H, Myers C R. Iron reduction by bacteria: A potential role in the genesis of banded iron formations[J].American Journal of Science,1990,290-A:35-45.
[78] Pierson B K, Parenteau M N, Griffin B M. Phototrophs in high-iron-concentration microbial mats: Physiological ecology of phototrophs in an iron-depositing hot spring[J].Applied and Environmental Microbiology,1999,65:5 474-5 483.
[79] Tyler S A, Barghoorn E S. Occurrence of structurally preserved plants in pre-cambrian rocks of the Canadian shield[J]. Science,1954,119:606-608.
[80] Barghoorn E S, Tyler S A. Microorganisms from the gunflint chert[J].Science,1965,147:563-577.
[81] Cloud P E. Significance of the gunlint (Precambrian) microflora[J].Science, 1965, 148:27-35.
[82] Cloud P E, Licari G R. Microbiotas of banded iron formation[J].Proceedings of the National Academy of Sciences, USA, 1968,61:779-786.
[83] Planavsky N, Rouxel O, Bekker A,et al. Iron-oxidizing microbial ecosystems thrived in Late Paleoproterozoic redox-stratified oceans[J].Earth and Planetary Science Letters,2009,286:230-242.
[84] Ghiorse W C. Biology of iron-depositing and manganese-depositing bacteria[J].Annual Review of Microbiology,1984,38: 515-550.
[85] Holm N G.Possible biological origin of banded iron-formations from hydrothermal solutions[J].Origins of Life and Evolution of Biospheres,1987,17:229-250.
[86] Trendall A. The significance of banded iron formation (BIF) in the Precambrian stratigraphic record[J].Geoscientist,2000,10:4-7.
[87] Fischer W W, Knoll A H. An iron for deepwater silica in Late Archean and early Plaeoproterozoic iron formation[J].Geological Society of America Bulletin,2009,121:222-235.
/
〈 |
|
〉 |