Review of the Nonlinear Filters in the Land Data Assimilation
Received date: 2007-10-31
Revised date: 2008-06-20
Online published: 2008-08-10
The land data assimilation research has become the emerging domain in the geoscience, the data assimilation algorithm obtained rapid development and widespread application taking the nonlinear filter as representative's. The extended Kalman filter, unscented Kalman filter, the ensemble Kalman filter and the SIR particle filter are discussed in the Bayesian theory framework from the viewpoint of the recursive Bayesian estimation. Towards the problems in the application of the ensemble Kalman filter and the SIR particle filter, some techniques that can improve the filter performances are also reviewed, such as the covariance localization, the covariance inflation, the double ensemble Kalman filter, the perturbations in the ensembles, the model forcing and parameters, the ensemble square root Kalman filter and the improved variants of the particle filters. The advantages and disadvantages of each filter as well as the applied perspective and the future research directions are discussed.
Key words: Land data assimilation; Bayesian filtering; Kalman filter; Particle filter
LI Xin1 , HAN Xujun . Review of the Nonlinear Filters in the Land Data Assimilation[J]. Advances in Earth Science, 2008 , 23(8) : 813 -820 . DOI: 10.11867/j.issn.1001-8166.2008.08.0813
[1] Li Xin,Huang Chunlin,Che Tao,et al. Development of a Chinese land data assimilation system: Its progress and prospects [J]. Progress in Natural Science,2007,17(8):881-892.[李新,黄春林,车涛,等.中国陆面数据同化系统研究的进展与前瞻 [J]. 自然科学进展,2007,17(8):881-892.]
[2] McLaughlin D. Recent development in hydrologic data assimilation [J]. Reviews of Geophysics,1995,33(suppl.):977-984.
[3] Houser P R,Shuttleworth W J,Gupta H V,et al. Integration of soil moisture remote sensing and hydrologic modeling using data assimilation [J]. Water Resources Research,1998,34(12):3 405-3 420.
[4] Troch P A,Paniconi C,McLaughlin D. Catchment-scale hydrological modeling and data assimilation [J]. Advances in Water Resources,2003,26(2):131-135.
[5] Margulis S A,Wood E F,Troch P A. Terrestrial water cycle: Modeling and data assimilation across catchment scales [J]. Journal of Hydrometeorology,2006,7:309-311.
[6] Mitchell K E,Lohmann D,Houser P R,et al. The multi-institution North American Land Data Assimilation System(NLDAS): Utilizing multiple GCIP products and partners in a continental distributed hydrological modeling system [J]. Journal of Geophysical Research,2004,109(D07):doi.10.1029/2003JD003823.
[7] Rodell M,Houser P R,Jambor U,et al. The global land data assimilation system [J]. Bulletin of the American Meteorological Society,2004,85(3):381-394.
[8] Van den Hurk B. ELDAS Final Report [R]. KNMI,ECMWF,2005.
[9] Qiu Chongjian. Four dimensional variational data assimilation with discontinuous models [J]. Journal of Lanzhou University(Natural Sciences),1997,33(1):115-119.[邱崇践. 变分四维同化方法中的不连续问题[J]. 兰州大学学报:自然科学版,1997,33(1):115-119.]
[10] Reichle R H,Walker J P,Koster R D,et al. Extended versus ensemble filtering for land data assimilation [J]. Journal of Hydrometeorology,2002,3:728-740.
[11] Anderson B D O,Moore J B. Optimal Filtering [M]. Englewood Cliffs,NJ: Prentice-Hall,1979.
[12] Verlaan M,Heemink A W. Nonlinearity in data assimilation applications: A practical method for analysis [J]. Monthly Weather Review,2001,129(6):1 578-1 589.
[13] Pham D T,Verron J,Roubaud M C. A singular evolutive extended Kalman filter for data assimilation in oceanography [J]. Journal of Marine Systems,1998,16(3):323-340.
[14] Evensen G. Sequential data assimilation with a non-linear quasi-geostrophic model using Monte-Carlo methods to forecast error statistics [J]. Journal of Geophysical Research,1994,99(C5):10 143-10 162.
[15] Burgers G,Van Leeuven P J,Evensen G. Analysis scheme in the ensemble Kalman filter [J]. Monthly Weather Review,1998,126:1 719-1 724.
[16] Evensen G. The Ensemble Kalman Filter: Theoretical formulation and practical implementation [J]. Ocean Dynamics,2003,53:343-367.
[17] Evensen G. Advanced data assimilation for strongly nonlinear dynamics [J]. Monthly Weather Review,1997,125(6):1 342-1 354.
[18] Julier S J,Uhlmann J K. Unscented filtering and nonlinear estimation [C]∥Proceedings of the IEEE Aerospace and Electronic Systems,2004,92(3):410-422.
[19] Arulampalam M S,Maskell S,Gordon N,et al. A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking [J]. IEEE Transactions on Signal Processing,2002,50(2):174-188.
[20] Pham D T. Stochastic methods for sequential data assimilation in strongly nonlinear systems [J]. Monthly Weather Review,2001,129(5):1 194-1 207.
[21] Kivman G A. Sequential parameter estimation for stochastic systems [J]. Nonlinear Processes in Geophysics,2003,10(3):253-259.
[22] Xiong X,Navon I M,Uzunoglu B. A note on the particle filter with posterior Gaussian resampling [J]. Tellus A,2006,58(4):456-460.
[23] Moradkhani H,Hsu K L,Gupta H,et al. Uncertainty assessment of hydrologic model states and parameters: Sequential data assimilation using the particle filter [J]. Water Resources Research,2005,41,W05012,doi:10.1029/2004WR003604.
[24] Zhou Y H,McLaughlin D,Entekhabi D. Assessing the performance of the ensemble Kalman filter for land surface data assimilation [J]. Monthly Weather Review,2006,134(8):2 128-2 142.
[25] Van Leeuwen P J. A variance-minimizing filter for large-scale applications [J]. Monthly Weather Review,2003,131(9):2 071-2 084.
[26] Han X J,Li X. An evaluation of the nonlinear/non-gaussian filters for sequential data assimilation [J]. Remote Sensing of Environment,2008,112(4):1 434-1 449.
[27] Gordon N J,Salmond D J,Smith A F M. Novel approach to nonlinear/non-gaussian Baysian state estimation [C]∥IEEE Proceedings on Radar and Signal Processing,1993,140(2):107-113.
[28] Van der Merwe R. Sigma-Point Kalman Filters for Probalistic Inference in Dynamic State-Space Models [D]. Oregon Health & Science University,2004.
[29] Bergman N. Recursive Bayesian Estimation: Navigation and Tracking Applications [D]. Lin Ping: Link Ping University,Sweden,1999.
[30] Liu J S,Chen R. Sequential Monte Carlo methods for dynamic systems [J]. Journal of the American Statistical Association,1998,93(443):1 032-1 044.
[31] Kitagawa G. Monte Carlo filter and smoother for non-Gaussian nonlinear state space models [J]. Journal of Computational and Graphical Statistics,1996,5(1):1-25.
[32] Carpenter J,Clifford P,Fearnhead P. An improved particle filter for non-linear problems [C]∥IEEE Proceedings on Rader and Sonar Navigation,1999,146(1):2-7.
[33] Walker J P,Houser P R. A methodology for initializing soil moisture in a global climate model: Assimilation of near-surface soil moisture observations [J]. Journal of Geophysical Research,2001,106(D11):11 761-11 774.
[34] Huang Chunlin,Li Xin. Experiments of soil moisture data assimilation system basedon ensemble Kalman filter [J]. Plateau Meteorology,2006,25(4):665-671.[黄春林,李新.基于集合卡尔曼滤波的土壤水分同化试验[J].高原气象,2006,25(4):665-671.]
[35] Reichle R H,Koster R D. Assessing the impact of horizontal error correlations in background fields on soil moisture estimation [J]. Journal of Hydrometeorology,2003,4:1 229-1 242.
[36] Houtekamer P L,Mitchell H L. Data assimilation using an ensemble Kalman filter technique [J]. Monthly Weather Review,1998,126:796-811.
[37] Hamill T M,Whitaker J S,Snyder C. Distance-dependent filtering of background error covariance estimates in an ensemble Kalman filter [J]. Monthly Weather Review,2001,129:2 776-2 790.
[38] Houtekamer P L,Mitchell H L. A sequential ensemble Kalman filter for atmospheric data assimilation [J]. Monthly Weather Review,2001,129:123-137.
[39] Hunt B R,Kostelich E J,Szunyogh I. Efficient data assimilation for spatiotemporal chaos: A local ensemble transform Kalman filter [J]. Physica D,2007,230:112-126.
[40] McLaughlin D,Zhou Y H,Entekhabi D,et al. Computational issues for large-scale land surface data assimilation problems [J]. Journal of Hydrometeorology,2006,7(3):494-510.
[41] Whitaker J S,Hamill T M. Ensemble data assimilation without perturbed observations [J]. Monthly Weather Review,2002,130:1 913-1 924.
[42] Anderson J. An ensemble adjustment Kalman filter for data assimilation [J]. Monthly Weather Review,2001,129:2 884-2 903.
[43] Bishop C,Etherton B,Majumdar S. Adaptive sampling with the ensemble transform Kalman filter Part I. Theoretical aspects [J]. Monthly Weather Review,2001,129:420-436.
[44] Evensen G. Sampling strategies and square root analysis schemes for the EnKF [J]. Ocean Dynamics,2004,54:539-560.
[45] Musso C,Oudjane N,LeGland F. Improving Regularised Particle Filters [C]∥Doucet A,de Freitas N,Gordon N. Sequential Monte Carlo Methods in Practice.New York:Springer,2001.
[46] Pan M,Wood E F. Data assimilation for estimating land water budget using a constrained ensemble Kalman Filter [J]. Journal of Hydrometeorology,2006,7(3):534-547.
[47] Miller R N,Carter E F,Blue S T. Data assimilation into nonlinear stochastic models [J]. Tellus A,1999,51(2):167-194.
/
〈 |
|
〉 |