The Paleoproductivity Forced by Earth Orbital Forcing in Italy During Early Pliocene
Received date: 2007-09-02
Revised date: 2007-09-04
Online published: 2007-10-10
We studied the variability of the African monsoon and the Mediterranean sea surface productivity during the early Pliocene based on the analysis of some paleoenvironment proxies such as planktonic foraminifera oxygen isotope and biogenic compositions ( carbonate, biogenic opal and organic carbon) in three profiles respectively, Punta Piccola, Cape Spertivento and Punta Rossello in southern Italy. Our results show that during the early Pliocene, the increase of the Northern Hemisphere summer insolation which is also presented as low precession value is usually correlated to organic carbon and opal increases, carbonate decrease and the negative excursions of stable oxygen isotope. The variability of the proxies implies the sea surface productivity controlled by the precession. Enhanced runoff induced by the strengthened African summer monsoon brings abundant terrestrial nutrients and fresh water into the Mediterranean sea, which conduces to productivity blooming and anoxic condition in the Mediterranean sea bottom. Furthermore, opal thrives herein by using deepnutrient, buildups mats and decline fleetly into sea bottom so that organic carbon is speedily buried and conserved, thus making the sapropels come into being. Diatom layers in Punta Rossello profile confirm the existence of mats, but the content of opal in some layers is not high.
Key words: Pliocene.; African monsoon; The Mediterranean Sea; Paleoproductivity; Precession
DING Xiao-hui, WANG Ru-jian, LI Jian-ru, HUANG En-qing . The Paleoproductivity Forced by Earth Orbital Forcing in Italy During Early Pliocene[J]. Advances in Earth Science, 2007 , 22(10) : 1019 -1026 . DOI: 10.11867/j.issn.1001-8166.2007.10.1019
[1]Hays J D, Imbrie J, Shackleton N J. Variations in the Earth's orbit: Pacemaker of the ice age[J].Science,1976,194:1 121-1 132.
[2]Hilgen F J, Brinkhuis H, Zachariasse W J.Unit stratotypes for global stages:The Neogene perspective[J].Earth Science Reviews,2006,74:113-125.
[3]Rio D, Sprovieri R, Raffi I. Calcareous plankton biostratigraphy and biochronology of the Pliocene-Lower Pleistocene succession of the Capo Rossello area, Sicily[J]. Marine Micropaleontology,1984, 9:135-180.
[4]Langereis C G, Hilgen F J. The Rossello composite: A Mediterranean and global reference section for the Early to early Late Pliocene[J].Earth and Planetary Science Letters,1991,104:211-225.
[5]Rio D, Sprovieri R, Castradori D,et al.The Gelasian Stage (Upper Pliocene):A new unit of the global standard chronostratigraphic scale[J].Episodes,2000,23(3):82-87.
[6]Castradori D, Rio D, Hilgen F J,et al.The Global Standard Stratotype-section and Point (GSSP) of the Piacenzian Stage (Middle Pliocene)[J].Episodes,2000, 23(3):88-93.
[7]Van Couvering J A, Castradori D,Cita M B,et al.The base of the Zanclean Stage and of the Pliocene Series[J].Episodes,2000, 23(3):179-187.
[8]Rohling E J. Review and new aspects concerning the formation of eastern Mediterranean sapropels[J].Marine Geology,1994,22:1-28.
[9]Sachs J P, Repeta D J. Oligotrophy and nitrogen fixation during Eastern Mediterranean sapropel events[J].Science,1999, 286:2 485-2 488.
[10]Hilgen F J. Sedimentary rhythms and high-resolution chronostratigraphic correlations in the Medierranean Pliocene[J].Newslett Stratigraphy,1987,17:109-127.
[11]Rossignol-Stick M, Nesteroff V, Olive P,et al.After the deluge: Mediterranean stagnation and sapropel formation[J].Nature,1982, 295:105-110.
[12]Rossignol-Stick M. Africa monsoon, an immediate isotope response to orbital insolation[J].Nature,1983, 303:46-49.
[13]Hilgen F J, Langereis C G. Periodicities of CaCO3 cycles in the Mediterranean Pliocene: Discrepancies with the quasi-periods of the Earth's orbital cycles[J]. Terra Nova,1989,1:409-415.
[14]Vergnaud-Grazzini C, Devaux M, Znaidi J. Stable isotope “anomalies” in Mediterranean Pleistocene records[J].Marine Micropaleontology,1986, 10:35-69.
[15]Rohling E J, Gieskes W W C. Late Quaternary changes in Mediterranean intermediate water density and formation rate[J].Paleoceanography,1989,4(5):531-545.
[16]Kump A E S, Pearce R B, Koizumi I,et al.The role of mat-forming diatoms in the formation of Mediterranean sapropels[J].Nature,1999, 398:57-61.
[17]Mortlock P A, Froelich P N.A simple method for the rapid determination of biogenic opal in pelagic marine sediments[J].Deep Sea Research,1989, 36(9):1 415-1 426
[18]Li Jian, Wang Rujian. Paleoproductivity variability of the northern south China sea during the past 1 Ma: The opal record from ODP site 1144[J].Acta Geologica Sinica,2004,(2):228-234.[李建,王汝建.南海北部一百万年以来的表层古生产力变化:来自ODP1144站的蛋白石记录[J].地质学报,2004,(2):228-234.]
[19]Paillard D, Labeyrie L,Yiou P. Macintosh program performs time series analysis[J].EOS Transaction, AGU,1996,77:379.
[20]Schulz M, Mudelsee M. REDFIT: Estimating red-noise spectra directly from unevenly spaced paleoclimatic time Series[J].Computer & Geoscience,2002, 28:421-426.
[21]Hilgen F J. Astronomical forcing and geochronological application of sedimentary cycles in the Mediterranean Pliocene-Pleistocene[D].Geologica Ultraiectina. Mededelingen van de Faculteit Aardwetenschappen der Universiteit Utrecht, 1991,93:1-139.
[22]Li Jianru. Carbon reservoir in low-latitude oceans and orbital cycles of monsoon climate[D].Shanghai: School of Ocean and Earth Science in Tongji University, 2007:1-61.[李建如.低纬海区碳储库与季风气候的轨道周期[D].上海:同济大学海洋与地球科学学院, 2007:1-61.]
[23]Castradori D, Rio D, Hilgen F J, et al.The Global Standard Stratotype-section and Point(GSSP) of the Piacenzian Stage (Middle Pliocene)[J].Episodes,2000, 23(3):88-93.
[24]Van Couvering J A, Castradori D, Cita M B,et al. The base of the Zanclean stage and of the Pliocene series[J].Episodes,2000,23(3):179-187.
[25]Laskar J. The chaotic motion of the solar system: A numerical estimate of the size of the chaotic zones[J].Icarus,1990,88:266-291.
[26]Laskar J, Joutel F, Boudin F. Orbital, precessional, and insolation quantities for the Earth from -20 Ma to +10 Ma[J].Astrophysical Journal,1993, 270:522-533.
[27]Huang Enqing, Tian Jun. Early Pliocene Precession rhythm of African monsoon and Mediterranean sea surface productivity[J].Earth Science—Jounal of China University of Geosciences,2007,32(3):313-321.[黄恩清,田军.早上新世非洲季风与地中海表层生产力变化的岁差节律[J].地球科学——中国地质大学学报,2007,32(3):313-321.]
[28]Howell M W, Thunell R C. Organic carbon accumulation in Bannock Badin: Evaluating the role of productivity in the formation of eastern Mediterranean sapropels[J]. Marine Geology,1992,103:461-471.
[29]Sancetta C.Mediterranean sapropels:Seasonal stratification yields high production and carbon flux[J].Paleoceanography,1994,9(2):195-196.
[30]Stax R, Stein R. Long-term changes in the accumulation of organic carbon in Neogene sediments, Ontong Java plateau[R]. Proceedings of the Ocean Drilling Programm College Station, TX, 1993:573-579.
[31]Calvert S E, Nielsen B, Fontugne M R. Evidence from nitrogen isotope ratios for enhanced productivity during the formation of eastern Mediterranean sapropels[J].Nature,1992, 359:223-225.
[32]Van Os B J H, Lourens L J, Hilgen F J,et al.The formation of Pliocene sapropels and carbonate cycles in the Mediterranean: Diagenesis, dilution, and productivity[J].Paleoceanography,1994,9:601-617.
[33]Richard C D, Frances P W, Hans J M. The role of a silicate pump in driving new production[J].Deep Sea Research Part I: Oceanographic Research Papers,1995, 42(5):697-719.
[34]Hurd D E. Interactions of biogenic opal, sediment and seawater in central equatorial Pacific[J].Geochimica et Cosmochimica Acta,1973,37:2 257-2 282.
[35]Harrison K G. Role of increased marine silica input on paleo-PCO2 levels[J].Paleoceanography,2000,15:292-298.
/
〈 |
|
〉 |