Please wait a minute...
img img
Adv. Search
Advances in Earth Science  2019, Vol. 34 Issue (11): 1152-1164    DOI: 10.11867/j.issn.1001-8166.2019.11.1152
    
Multi-scale Characteristics and Comprehensive Evaluation of Precipitation Heterogeneity in Guangxi
Xinchang Xie1(),Yunchuan Yang1,2,3(),Yi Tian1,Liping Liao1,2,3,Junpei Wei1,Jinyu Zhou1,Lihua Chen1,2,3
1. College of Civil Engineering and Architecture, Guangxi University, Nanning 530004, China
2. Key Laboratory of Disaster Prevention and Structural Safety of Ministry of Education, Guangxi University, Nanning 530004, China
3. Key Laboratory of Disaster Prevention and Engineering Safety, Guangxi, Nanning 530004, China
Download:  HTML  PDF (7189KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Aiming at the uneven spatial and temporal distribution of precipitation and frequent occurrence of drought and waterlogging disasters in Guangxi, the multi-scale characteristics and comprehensive evaluation of precipitation heterogeneity can provide scientific support for regional response to drought and waterlogging disasters and intelligent management of water resources. Based on the daily precipitation data of 87 grid points from 1961 to 2017 in Guangxi, the Precipitation Concentration Degree (PCD) and Precipitation Concentration Period (PCP) index were used to build day, pentad, ten days, month, season precipitation heterogeneity of multiple time scale level evaluation system. By using R/S analysis and geographical spatial analysis methods, the space-time evolution characteristics and climate division in Guangxi were discussed. The study showed that the spatial and temporal variation characteristics of PCD and PCP at the diurnal, synoptic and monthly scales were relatively consistent, and the heterogeneity of precipitation in Guangxi could be better expressed than that at the monthly and seasonal scales. The diachronic change of PCD in precipitation in Guangxi shows an increasing trend in northeast China and a decreasing trend in southwest China, and the trend of its future period is the same as the diachronic evolution. The spatial distribution of PCD in Guangxi has significant spatial autocorrelation and stratification heterogeneity, which are mainly reflected in the mean value, coefficient of variation and frequency of PCD. The comprehensive heterogeneity of precipitation in Guangxi is highly dispersed in the northeast, highly concentrated in the south, and slightly concentrated or dispersed in the northwest and central regions. The time-scale within a month is the best scale to express the non-uniformity of precipitation in Guangxi. If the advantages of more stable climatic and ten-day scales and more fine daily scales are taken into account, the use of climatic scale for daily sliding calculation and analysis will be the best way.

Key words:  Precipitation concentration degree      Precipitation concentration period      Precipitation heterogeneity      Multi-scale characteristics      Level evaluation system.     
Received:  05 September 2019      Published:  31 December 2019
ZTFLH:  P426.6  
Fund: the National Natural Science Foundation of China ”Study on simulation of sugarcane drought mechanism based on AquaCrop model and drought risk assessment method”(51609041);The Natural Science Foundation of Guangxi Province ”Study on response mechanism, three-dimensional measurement and precursory signal diagnosis of sugarcane in Guangxi”(2019GXNSFAA185015)
Corresponding Authors:  Yunchuan Yang     E-mail:  xiexinchanggxdx@163.com;yyc_sciences@163.com
About author:  Xie Xinchang (1995-), male, Lingshan County, Guangxi Province, Master student. Research areas include agricultural water resources. E-mail: xiexinchanggxdx@163.com
Service
E-mail this article
Add to my bookshelf
Add to citation manager
E-mail Alert
RSS
Articles by authors
Xinchang Xie
Yunchuan Yang
Yi Tian
Liping Liao
Junpei Wei
Jinyu Zhou
Lihua Chen

Cite this article: 

Xinchang Xie,Yunchuan Yang,Yi Tian,Liping Liao,Junpei Wei,Jinyu Zhou,Lihua Chen. Multi-scale Characteristics and Comprehensive Evaluation of Precipitation Heterogeneity in Guangxi. Advances in Earth Science, 2019, 34(11): 1152-1164.

URL: 

http://www.adearth.ac.cn/EN/10.11867/j.issn.1001-8166.2019.11.1152     OR     http://www.adearth.ac.cn/EN/Y2019/V34/I11/1152

Fig. 1  Spatial distribution of rainfall grid points in Guangxi
等级类型实际频率/%PCD(日)PCD(候)PCD(旬)PCD(月)PCD(季)
1高度集中5PCD>0.623PCD>0.617PCD>0.612PCD>0.573PCD>0.490
2中度集中100.575<PCD≤0.6230.568<PCD≤0.6170.561<PCD≤0.6120.524<PCD≤0.5730.438<PCD≤0.490
3轻度集中150.526<PCD≤0.5750.519<PCD≤0.5680.511<PCD≤0.5610.472<PCD≤0.5240.390<PCD≤0.438
4正常400.407≤PCD≤0.5260.399≤PCD≤0.5190.390≤PCD≤0.5110.346≤PCD≤0.4720.280≤PCD≤0.390
5轻度分散150.342≤PCD<0.4070.334≤PCD<0.3990.325≤PCD<0.3900.279≤PCD<0.3460.223≤PCD<0.280
6中度分散100.274≤PCD<0.3420.265≤PCD<0.3340.254≤PCD<0.3250.209≤PCD<0.2790.153≤PCD<0.223
7高度分散5PCD<0.274PCD<0.265PCD<0.254PCD<0.209PCD<0.153
Table 1  Precipitation heterogeneity evaluation grades of each time scale
时间尺度最大值最小值均值极差值
STD0.11920.07210.09650.0471
年均PCD0.55570.32880.45890.2269
CV0.28710.13020.21450.1569
STD0.11990.07300.09730.0469
年均PCD0.54880.32210.45190.2267
CV0.29180.13380.22000.1580
STD0.12000.07320.09780.0468
年均PCD0.54340.31300.44420.2304
CV0.29780.13500.22530.1628
STD0.12150.08050.10130.0410
年均PCD0.50000.27810.40240.2219
CV0.33290.16110.25760.1718
STD0.13890.08450.10470.0544
年均PCD0.38490.29230.32670.0926
CV0.38100.24350.32090.1375
Table 2  statistical tables of PCD mean value, STD and CV of each time scale
Fig.2  Time scale effect changes of different PCP
Fig. 3  Temporal and spatial distribution of daily, monthly and pentad scale PCD
Fig. 4  Spatial differentiation of average grades of daily, pentad and monthly PCD
(a) Spatial differentiation map of average grade of daily scale PCD;(b) Spatial differentiation map of average grade of pentad scale PCD;(c) Spatial differentiation map of average grade of monthly scale PCD
时间尺度q统计量p检验值显著性
0.7031500显著
0.7095750显著
0.6800290显著
Table 3  q statistical values of daily, pentad and monthly scales
时间尺度Moran's Iz得分p检验值显著性
0.7154818.3495830显著
0.7617238.8811130显著
0.7572528.8233120显著
Table 4  Moran's I values of daily, pentad and monthly scales
Fig.5  Partial Lisa clustering diagram of daily, pentad and monthly PCD scales
(a) Daily scale;(b) Pentad scale;(c) Monthly scale
Fig.6  Spatial heterogeneity variation of PCD (daily scale)
Fig 7  Guangxi regional comprehensive evaluation map 1961-2017
(a) Daily scale;(b) Pentad scale;(c) Monthly scale
Fig. 8  Grading changes of different time scales from 1961 to 2017
(a) Daily scale;(b) Pentad scale;(c) Monthly scale
1 Gao Tao, Xie Li’an. Study on progress of the trends and physical causes of extreme precipitation in China during the last 50 years [J]. Advances in Earth Science, 2014, 29(5): 577-589.
1 高涛, 谢立安. 近50年来中国极端降水趋势与物理成因研究综述 [J]. 地球科学进展, 2014, 29(5): 577-589.
2 Gao Li, Chen Jing, Zheng Jiawen, et al. Progress in researches on ensemble forecasting of extreme weather based on numerical models[J]. Advances in Earth Science, 2019, 34(7): 706-716.
2 高丽, 陈静, 郑嘉雯, 等. 极端天气的数值模式集合预报研究进展 [J]. 地球科学进展, 2019, 34(7): 706-716.
3 Qian W, Lin X. Regional trends in recent precipitation indices in China [J]. Meteorology and Atmospheric Physics, 2005, 90(3/4): 193-207.
4 Yang T, Shao Q, Hao Z C, et al. Regional frequency analysis and spatio-temporal pattern characterization of rainfall extremes in the Pearl River Basin, China[J]. Journal of Hydrology, 2010, 380(3/4): 386-405.
5 Huang Ping, Zhou Shijie. Advances and challenges in the study on the tropical rainfall changes under global warming [J]. Advances in Earth Science, 2018, 33(11): 1 181-1 192.
5 黄平, 周士杰. 全球变暖下热带降水变化研究回顾与挑战 [J]. 地球科学进展, 2018, 33(11): 1 181-1 192.
6 Silva B K N, Lucio P S. Characterization of risk/exposure to climate extremes for the Brazilian Northeast-case study: Rio Grande do Norte[J]. Theoretical and Applied Climatology, 2015, 122(1/2): 59-67.
7 Zhang Bo, Gu Xiaoping, Gu Shuhong. Spatial and temporal variation characteristics of precipitation concentration degree and precipitation concentration period in Guizhou Mountain area [J]. Journal of China Hydrology, 2017, 37(6): 63-67.
7 张波, 谷晓平, 古书鸿. 贵州山区降水集中度和降水集中期的时空变化特征 [J]. 水文, 2017, 37(6): 63-67.
8 Abolverdi J, Ferdosifar G, Khalili D, et al. Spatial and temporal changes of precipitation concentration in Fars Province, southwestern Iran [J]. Meteorology and Atmospheric Physics, 2015, 128(2): 181-196.
9 Wang H J, Sun J Q, Chen H P, et al. Extreme climate in China:Facts,simulation and projection[J].Meteorologische Zeitschrift, 2012, 21(3): 279-304.
10 Tian Y, Peters-lidard C D, Choudhury B J, et al. Multitemporal analysis of TRMM-Based satellite precipitation products for land data assimilation applications [J]. Journal of Hydrometeorology, 2007, 8(6): 1 165-1 183.
11 Yesilirmak E, Atatanir L. Spatiotemporal variability of precipitation concentration in western Turkey[J]. Natural Hazards, 2016, 81(1): 687-704.
12 Pang Xinxin. Inter-annual variations of precipitation concentration degree and concentration index in Huaihe River Basin [J]. Journal of Yangtze River Scientific Research Institute, 2018, 35(9): 43-47.
12 庞欣欣. 淮河流域降水集中度和集中指数年际变化分析 [J]. 长江科学院院报, 2018, 35(9): 43-47.
13 Zhai P M, Zhang X B, Wan H, et al. Trends in total precipitation and frequency of daily precipitation extremes over China [J]. Journal of Climate, 2005, 18(7): 1 096-1 108.
14 Liu Yonglin, Yan Junping, Cen Minyi. Comprehensive evaluation of precipitation heterogeneity in China [J]. Acta Geographica Sinica, 2015, 70(3): 392-406.
14 刘永林, 延军平, 岑敏仪. 中国降水非均匀性综合评价 [J]. 地理学报, 2015, 70(3): 392-406.
15 Zhang L, Qian Y. Annual distribution features of precipitation in China and their interannual variations[J]. Acta Meteorologica Sinica, 2003, 17(2): 146-163.
16 Cao Yongqiang, Li Xiaorui. Temporal and spatial characteristics of precipitation concentration degree and concentration period in flood season in Hebei Province[J]. Hydro-Science and Engineering, 2018,(4): 96-105.
16 曹永强, 李晓瑞. 河北省汛期降水集中度和集中期时空特征分析[J]. 水利水运工程学报, 2018,(4): 96-105.
17 Liu Zhanming, Wei Xinghu, Chen Zishen, et al. Spatio-temporal change characteristics of PCD and PCP in Guangdong Beijiang River Basin[J]. South-to-North Water Transfers and Water Science & Technology, 2017, 15(4): 19-25.
17 刘占明, 魏兴琥, 陈子燊, 等. 广东北江流域降水集中度和集中期的时空变化特征[J]. 南水北调与水利科技, 2017, 15(4): 19-25.
18 Chatterjee S, Khan A, Akbari H, et al. Monotonic trends in spatio-temporal distribution and concentration of monsoon precipitation (1901-2002), West Bengal, India [J]. Atmospheric Research, 2016, 182:54-75.
19 Sim?es Y, Cohim E, De Araujo H. Rainfall zoning of Bahia State, Brazil: An update proposal[J]. Ambiente & água-An Interdisciplinary Journal of Applied Science, 2018, 13(1): 1-18.
20 Liu Yonglin, Yan Junping, Cen Minyi. Response relation between precipitation heterogeneity and climate change in Guangdong [J]. Acta Scientiarum Naturalium Universitatis Sunyatseni(Natural Science Edition), 2015, 54(5): 138-146.
20 刘永林, 延军平, 岑敏仪. 广东省降水非均匀性与气候变化的响应关系 [J]. 中山大学学报:自然科学版, 2015, 54(5): 138-146.
21 Sun Guikai, Gao Mo, Huang Ya, et al. Spatial-temporal variations of precipitation characteristics in Guangxi over the last 50 years [J]. Water Resources and Power, 2016, 34(9): 1-4.
21 孙桂凯, 高沫, 黄亚, 等. 广西近50年降水结构时空变化特征分析 [J]. 水电能源科学, 2016, 34(9): 1-4.
22 Qin Weijian, Li Dongliang. A study on the climate change characteristics of all kinds of precipitation events in recent 50 year of Guangxi [J]. Journal of Natural Resources, 2014, 29(4): 666-676.
22 覃卫坚, 李栋梁. 近50a来广西各级降水气候变化特征分析 [J]. 自然资源学报, 2014, 29(4): 666-676.
23 Zhao Yufei, Zhu Jiang, Xu Yan. Establishment and assessment of the grid precipitation datasets in China for recent 50 years [J]. Journal of the Meteorological Sciences, 2014, 34(4): 414-420.
23 赵煜飞, 朱江, 许艳. 近50a中国降水格点数据集的建立及质量评估 [J]. 气象科学, 2014, 34(4): 414-420.
24 Zhang Lujun, Qian Yongfu. A study on the feature of precipitation concentration and its relation to flood-producing in the Yangtze River valley of China [J]. Chinese Journal of Geophysics, 2004,47(4): 622-630.
24 张录军, 钱永甫. 长江流域汛期降水集中程度和洪涝关系研究 [J]. 地球物理学报, 2004,47(4): 622-630.
25 Wei Guanju. Calculation method of precipitation concentration degree and precipitation concentration period based on excel [J]. Yellow River, 2017, 39(4): 58-61.
25 魏鹳举. 降水集中度与集中期的Excel计算方法研究 [J]. 人民黄河, 2017, 39(4): 58-61.
26 Cao Yongqiang, Lu Lu, Zhang Tingting, et al. Spatio-temporal variation in precipitation in Zhejiang Province based on PCD and PCP [J]. Resources Science, 2013, 35(5): 1 001-1 016.
26 曹永强, 路璐, 张亭亭, 等. 基于降水集中度和集中期的浙江省降水时空变化特征分析 [J]. 资源科学, 2013, 35(5): 1 001-1 006.
27 Miao Yunling, Zhang Yunhui, Zhuo Shixin, et al. Spatial and temporal variation characteristics of PCD and PCP in Eastern Xinjiang in flood season [J]. Journal of Arid Meteorology, 2017, 35(6): 949-956.
27 苗运玲, 张云惠, 卓世新, 等. 东疆地区汛期降水集中度和集中期的时空变化特征 [J]. 干旱气象, 2017, 35(6): 949-956.
28 Ye Zhengwei, Yin Peng. Changes of precipitation concentration degree and precipitation concentration period in flood season in the Huaihe River Basin [J]. Research of Soil and Water Conservation, 2018, 25(5): 295-299.
28 叶正伟, 殷鹏. 淮河流域汛期候尺度降水集中度与集中期的时序变化特征[J]. 水土保持研究, 2018, 25(5): 295-299.
29 Zhu Yanxin, Sang Yanfang. Spatial variability in the seasonal distribution of precipitation on the Tibetan Plateau [J]. Progress in Geography, 2018, 37(11): 1 533-1 544.
29 朱艳欣, 桑燕芳. 青藏高原降水季节分配的空间变化特征 [J]. 地理科学进展, 2018, 37(11): 1 533-1 544.
30 Huang Y, Wang H, Xiao W, et al. Spatial and temporal variability in the precipitation concentration in the Upper Reaches of the Hongshui River Basin, Southwestern China [J]. Advances in Meteorology, 2018,2018: 1-19.
31 Yin Y, Xu C Y, Chen H, et al. Trend and concentration characteristics of precipitation and related climatic teleconnections from 1982 to 2010 in the Beas River basin, India [J]. Global and Planetary Change, 2016, 145:116-29.
32 Qin Weijian, Wang Yongqing, Qin Zhinian. Study on the variation characteristics of precipitation concentration degree in Guangxi under the background of global climate becoming warm[J]. Journal of Anhui Agricultural Sciences, 2010, 38(21): 11 224-11 227.
32 覃卫坚, 王咏青, 覃志年. 全球气候变暖背景下广西降水集中程度的变化特征研究[J]. 安徽农业科学, 2010, 38(21): 11 224-11 227.
33 Wang Chengbo, Li Shuangshuang, Yan Junping, et al. Spatiotemporal variation of extreme precipitation regimes in the Hanjiang River Basin during 1970-2015 [J]. Journal of Natural Resources, 2019, 34(6): 1 209-1 222.
33 汪成博, 李双双, 延军平, 等. 1970—2015年汉江流域多尺度极端降水时空变化特征 [J]. 自然资源学报, 2019, 34(6): 1 209-1 222.
34 Tan Fangying, Wang Jianlin, Song Yingbo, et al. Analysis of changing characteristics of agricultural climate resources over last 45 years in North China Plain [J]. Chinese Journal of Agrometeorology, 2009, 30(1): 19-24.
34 谭方颖, 王建林, 宋迎波, 等. 华北平原近45年农业气候资源变化特征分析 [J]. 中国农业气象, 2009, 30(1): 19-24.
35 Hurst H E. Long-term storage capacity of reservoirs [J]. Transactions of American Society of Civil Engineers, 1951, 116(1):770-799.
36 Liu Zhanming, Hu Baoqing, Yan Yan, et al. Intra-annual inhomogeneity characteristics of precipitation in Guangxi Beibu Gulf economic zone [J]. Water Power, 2017, 43(6): 23-27.
36 刘占明, 胡宝清, 闫妍, 等. 北部湾经济区降水年内非均匀性特征分析 [J]. 水力发电, 2017, 43(6): 23-27.
37 Wang Jinfeng, Xu Chengdong. Geodetector: Principle and prospective [J]. Acta Geographica Sinica, 2017, 72(1): 116-134.
37 王劲峰, 徐成东. 地理探测器:原理与展望 [J]. 地理学报, 2017, 72(1): 116-134.
38 Moran P A P. Notes on Continuous stochastic phenomena [J]. Biometrika, 1950, 37(1/2): 17-23.
39 Song Wen, Chen Ying. Selection of observed variables and measuring indicators for the land use spatial autocorrelation analysis [J]. Journal of Arid Land Resources and Environment, 2015, 29(10): 37-42.
39 宋文, 陈英. 土地利用空间自相关分析中观测变量和衡量指标的选择研究 [J]. 干旱区资源与环境, 2015, 29(10): 37-42.
40 Zhang Songlin, Zhang Kun. Contrast study on Moran and Getis-ord indexes of local spatial autocorrelation indices [J]. Journal of Geodesy and Geodynamics, 2007,27(3): 31-34.
40 张松林, 张昆. 空间自相关局部指标Moran指数和G系数研究 [J]. 大地测量与地球动力学, 2007,27(3): 31-34.
41 Huang Jiahong, Li Jiangnan, Li Zi 'an, et al. Climatic characteristics of precipitation and temperature in the past 45 years in Guangxi [J]. Tropical Geography, 2006,26(1): 23-28.
41 黄嘉宏, 李江南, 李自安, 等. 近45a广西降水和气温的气候特征[J]. 热带地理, 2006,26(1): 23-28.
42 Li Jiaxu, Zhao Yinjun. Spatial statistical analysis of the distribution of minorities in Guangxi based on GIS [J]. Journal of Nanning Teachers Education University(Natural Science Edition), 2019, 36(1): 114-120.
42 李家旭, 赵银军. 基于GIS的广西少数民族人口分布的空间统计分析 [J]. 广西师范学院学报:自然科学版, 2019, 36(1): 114-120.
No Suggested Reading articles found!