Please wait a minute...
img img
Adv. Search
Advances in Earth Science  2017, Vol. 32 Issue (7): 769-780    DOI: 10.11867/j.issn.1001-8166.2017.07.0769
    
A Study of Pretreatment Methods for Terrigenous Grain-Size Analysis of Marine Sediments
Zhao Shaohua, Liu Zhifei
State Key Laboratory of Marine Geology, Tongji University, Shanghai 200092,China
Download:  HTML  PDF (6059KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  The prerequisite for obtaining variations of terrigenous grain-size of marine sediments is how to effectively remove non-terrigenous matters and preserve terrigenous particles synchronously. Combined with observations under biological microscope and scanning electron microscope, a comparative study of biogenic debris removal effect and terrigenous grain-size analysis under different pretreatment condition was performed on core sediments, which were retrieved in the South China Sea during the MD190 cruise. Our new results showed that the main three biogenic particles, namely, organic matter, carbonate, and opal in marine sediments could be removed effectively by 30% H2O2 in a stirring water bath at 60 ℃ for 3 h, 0.5% HCl for 1 h, and 2 mol/L Na2CO3 in a stirring water bath at 85 ℃ for 5 h, in turn. Such pretreatments achieved the goals of biogenic debris removal efficiency and relatively well-preserved terrigenous particles. Prior to selecting an appropriate pretreatment method, this study suggested that the actual effects of biogenic detritus on grain-size results of diverse marine sediment samples should be taken into account. If the laboratory data are ensured to be closer to the natural grain-size distribution of terrigenous particles, the removals of all biogenic debris are not always needed, and the less pretreatment processes the better. For example, opal particles have little effect on terrigenous grain-size distribution when their percentage is lower than 2%. Thus, there is no use to remove them from marine sediments before laboratory grain-size analysis of terrigenous particles. Additionally, ultrasonic is not suggested through the whole process of terrigenous grain-size analysis because the strong energy of ultrasonic can lead to the fragmentation of some fragile terrigenous particles.
Key words:  Biogenic debris      Ultrasonic.      Pretreatment method      Terrigenous particle      Grain-size analysis     
Received:  08 February 2017      Published:  20 July 2017
ZTFLH:  P736.21  
Fund: Project supported by the National Natural Science Foundation of China “Deep-sea sedimentation process and mechanism in the South China Sea” (No.91528304) and “Deepwater sedimention since the miocene in the central basin of the South China Sea and its regional tectonic and environmental evolution significance” (No.41530964)
About author:  Zhao Shaohua (1987-), male, Bozhou City, Anhui Province, Ph.D student. Research areas include marine sedimentoloy and palaeoclimatology.E-mail:zsh55228@126.com
Service
E-mail this article
Add to my bookshelf
Add to citation manager
E-mail Alert
RSS
Articles by authors
Liu Zhifei
Zhao Shaohua

Cite this article: 

Zhao Shaohua, Liu Zhifei. A Study of Pretreatment Methods for Terrigenous Grain-Size Analysis of Marine Sediments. Advances in Earth Science, 2017, 32(7): 769-780.

URL: 

http://www.adearth.ac.cn/EN/10.11867/j.issn.1001-8166.2017.07.0769     OR     http://www.adearth.ac.cn/EN/Y2017/V32/I7/769

[1] Gao S, Collins M.Net sediment transport patterns inferred from grain-size trends, based upon definition of “tranport vectors”[J]. Sedimentary Geology , 1992, 81(1/2): 47-60.
[2] Gao S, Collins M,Lanckneus J, et al . Grain size trends assoc iated with net sediment transport patterns: An example from the Belgian continental shelf[J]. Marine Geology , 1994, 121(3/4): 171-185.
[3] McCave I N, Manighetti B, Beveridge S. Changes in circulation of the North Atlantic during the last 25,000 years inferred from grain size measurements[J]. Nature , 1995, 374(6 578): 149-152.
[4] McCave I N, Crowhurst J, Kuhn G, et al . Minimal change in Antarctic circumpolar current flow speed between the last glacial and Holocene[J]. Nature Geoscience , 2014, 7(2): 113-116.
[5] Boulay S, Colin C, Trentesaux A, et al . Mineralogy and sedimentology of Pleistocene sediment in the South China Sea (ODP Site 1144)[C]∥Prell L, Wang P X, Blum P, et al , eds.Proceedings of the Ocean Drilling Program, 2003,184:1-21.
[6] Boulay S, Colin C, Trentesaux A, et al . Sedimentary responses to the Pleistocene climatic variations recorded in the South China Sea[J]. Quaternary Research , 2007, 68(1): 162-172.
[7] Liu Z F, Colin C,Trentesaux A, et al . Late Quaternary climatic control on erosion and weathering in the eastern Tibetan Plateau and the Mekong Basin[J]. Quaternary Research , 2005, 63(3): 316-328.
[8] Wang L J,Sarnthein M, Erlenkeuser H, et al . East Asian monsoon climate during the Late Pleistocene: High-resolution sediment records from the South China Sea[J]. Marine Geology , 1999, 156(1/4): 245-284.
[9] Prins M, Postma G, Weltje G. Controls on terrigenous sediment supply to the Arabian Sea during the late Quaternary: The Makran continental slope[J]. Marine Geology , 2000, 169(3/4): 351-371.
[10] Prins M, Bouwer L, Beets C, et al . Ocean circulation and iceberg discharge in the glacial North Atlantic: Inferences from unmixing of sediment size distributions[J]. Geology , 2002, 30(6): 555-558.
[11] Praetorius S, McManus J, Oppo D, et al . Episodic reductions in bottom-water currents since the last ice age[J]. Nature Geoscience , 2008, 1(7): 449-452, doi:10.1038/ngeo227.
[12] Hu D K,Böning P, Köhler C, et al . Deep sea records of the continental weathering and erosion response to East Asian monsoon intensification since 14 ka in the South China Sea[J]. Chemical Geology , 2012,(326/327): 1-18,doi:10.1016/j.chemgeo.2012.07.024.
[13] Xie Xin, Zheng Hongbo, Chen Guocheng, et al . Pretreatment method of grain size measurement of marine sediments in paleoenvironment research[J]. Acta Sedimentologica Sinica , 2007, 25(5): 684-692.
. 沉积学报, 2007, 25(5): 684-692.]
[14] Tjallingii R, Claussen M, Stuut J B, et al . Coherent high- and low-latitude control of the northwest African hydrological balance[J]. Nature Geoscience , 2008, 1(10): 670-675.
[15] Hall I,McCave I, Zahn R, et al . Paleocurrent reconstruction of the deep Pacific inflow during the middle Miocene: Reflections of East Antarctic Ice Sheet growth[J]. Paleoceanography , 2003, 18(2): 1 040, doi:10.1029/2002PA000817.
[16] Deplazes G, Lückge A, Stuut J B, et al . Weakening and strengthening of the Indian monsoon during Heinrich events and Dansgaard-Oeschger oscillations[J]. Paleoceanography , 2014, 29, doi:10.1002/2013PA002509.
[17] Chen Guocheng, Zheng Hongbo, Li Jianru, et al . Dynamic control on grain-size distribution of terrigenous sediments in the western South China Sea: Implication for East Asian monsoon evolution[J]. Chinese Science Bulletin , 2008, 53(10):1 533-1 543.
. 科学通报, 2007, 52(23): 2 768-2 776.]
[18] Zheng Hongbo, Chen Guocheng, Xie Xin, et al . Grain size distribution and dynamic control of late Quaternary terrigenous sediments in the South China Sea and their implication for East Asian monsoon evolution[J]. Quaternary Sciences , 2008, 28(3): 414-424.
. 第四纪研究, 2008, 28(3): 414-424.]
[19] Yang Wenguang, Zheng Hongbo, Wang Ke, et al . Sedmientary characteristic of terrigenous clast of Site MD05-2905 in the northeastern part of South China Sea after 36 ka and evolution of East Asian monsoon[J]. Advances in Earth Science , 2007, 22(10): 1 012-1 018.
. 地球科学进展, 2007, 22(10): 1 012-1 018.]
[20] Zhong Y, Chen Z, Li L, et al . Bottom water hydrodynamic provinces and transport patterns of the northern South China Sea: Evidence from grain size of the terrigenous sediments[J]. Continental Shelf Research , 2017, 40: 11-26,doi:10.1016/j.csr.2017.01.023.
[21] Wan S M, Li A C,Stuut J B, et al . Grain-size records at ODP Site 1146 from the northern South China Sea: Implications on the East Asian monsoon evolution since 20 Ma[J]. Science in China ( Series D ), 2007, 50(10): 1 536-1 547.
[22] Huang J, Li A C, Wan S M. Sensitive grain-size records of Holocene East Asian summer monsoon in sediments of northern South China Sea slope[J]. Quaternary Research , 2011, 75(3): 734-744.
[23] Tuo Shouting. High Resolution Sedimentological Record and Its Paleoclimate Study during the Mid-Pleistocene Climate Transition in the Northern South China Sea[D]. Shanghai: Tongji University, 2008.
. 上海: 同济大学, 2008.]
[24] Liu J G, Xiang R, Kao S J, et al . Sedimentary responses to sea-level rise and Kuroshio Current intrusion since the Last Glacial Maximum: Grain size and clay mineral evidence from the northern South China Sea slope[J]. Palaeogeography Palaeoclimatology Palaeoecology , 2016, 450: 111-121,doi:10.1016/j.palaeo.2016.03.002.
[25] Hamann Y, Ehrmann W, Schmied G, et al . Sedimentation processes in the Eastern Mediterranean Sea during the Late Glacial and Holocene revealed by end-member modelling of the terrigenous fraction in marine sediments[J]. Marine Geology , 2008, 248(1/2): 97-114.
[26] Tamburini F, Adatte T, Föllmi K, et al . Investigating the history of East Asian monsoon and climate during the last glacial interglacial period (0-140000 years): Mineralogy and geochemistry of ODP Sites 1143 and 1144, South China Sea[J]. Marine Geology , 2003, 201(1/3):147-168.
[27] Zhao Y L, Liu Z F, Colin C, et al . Turbidite deposition in the southern South China Sea during the last glacial: Evidence from grain-size and major elements records[J]. Chinese Science Bulletin , 2011, 56(33): 3 558-3 565.
[28] Chen Muhong, Zheng Fan, Lu Jun, et al . Original component of grain size index in core sediment from southwestern slope of the South China Sea and its paleoenvironmental implication[J]. Chinese Science Bulletin , 2005, 50(9): 896-902.
. 科学通报, 2005, 50(7): 684-690.]
[29] Wang P X, Li Q Y, Li C F. Geology of the China Seas[M]. Amsterdam:Elsevier, 2014: 232-259.
[30] Konert M, Vandenberghe J. Comparison of laser grain size analysis with pipette and sieve analysis: A solution for the underestimation of the clay fraction[J]. Sedimentology , 1997, 44(3): 523-535.
[31] Kissel C, Jian Z, Leau H, et al. MD190-CIRCEA Cruise Report[R].Les Rapports de Campagne ��la Mer, IPEV, ref: OCE/2012/01.
[32] Gee G, Or D. Particle size analysis[M]∥Dane J, Topp D, eds. Methods of Soil Analysis: Part 4 Physical Methods. Madison, USA: Soil Science Society of America, Inc., 2002: 255-293.
[33] Zhao Shaohua, Liu Zhifei, Chen Quan, et al . Spatiotemporal variations of deep-sea sediment components and their fluxes since the last glaciation in the northern South China Sea[J]. Science China : Earth Science , 2017, 60(7):1 368-1 381, doi:10.1007/s11430-016-9058-6.
. 中国科学: 地球科学, 2017, 47(9):958-971, doi:10.1360/N072016-00276.]
[34] Liu Z F,Trentesaux A, Clemens S, et al . Clay mineral assemblages in the northern South China Sea—Implications for East Asian monsoon evolution over the past 2 million years[J]. Marine Geology , 2003, 201(1/3): 133-146.
[35] Liu Z F, Colin C,Trentesaux A, et al . Erosional history of the eastern Tibetan Plateau over the past 190 kyr: Clay mineralogical and geochemical investigations from the southwestern South China Sea[J]. Marine Geology , 2004, 209(1/4): 1-18.
[36] Wang Rujian, Li Jian. Quaternary high-resolution opal record and its paleoproductivity implication at ODP Site 1143, southern South China Sea[J]. Chinese Science Bulletin , 2003, 48(4): 363-367.
. 科学通报, 2003, 48(1): 74-77.]
[37] Wang Rujian, Jian Zhimin, Xiao Wenshen, et al . Quaternary biogenic opal records in the South China Sea linkages to East Asian monsoon, global ice volume and orbital forcing[J]. Science in China ( Series D ), 2007, 50(5): 710-724.
. 中国科学:D辑, 2007, 37(4): 521-533.]
[38] Wu Jiawang. Sedimentology and Element Geochemistry Records in the Western Pacific Warm Pool during Late Quaternary and Their Paleoenvironmental Significances[D]. Shanghai: Tongji University, 2012.
. 上海: 同济大学, 2012.]
[39] Schuhen H, Leinweber P, Theng B. Characterization of organic matter in an interlayer clay-organic complexe from soil by pyrolysis methylation-mass spectrometry[J]. Geoderma , 1996, 69(1/2): 105-118.
[40] Cai Jingong, Bao Yujin, Yang Shouye, et al . Research on preservation and enrichment mechanisms of organic matter in muddy sediment and mudstone[J]. Science in China ( Series D ), 2007, 50(5): 765-775.
. 中国科学:D辑, 2007, 37(2): 234-243.]
[41] Dutkiewicz A, Callaghan S, Müller R. Controls on the distribution of deep-sea sediments[J]. Geochemistry Geophysics Geosystems , 2016,17(8):3 075-3 098, doi:10.1002/2016GC006428.
[42] Trentesaux A, Recourt P, Bout-Roumazeilles V, et al . Cabonate grain-size distribution in hemipelagic sediments from a laster particle sizer[J]. Journal of Sediment Research , 2001, 71(5): 858-862.
[1] Wu Jianghua,Zhao Pengxiang,Nigel Roulet,Jonathan Seaquist,Peng Changhui. Spatial scaling links the information across scales:A Review of Methodologies Used in Regional Eco-hydrological Modeling[J]. Advances in Earth Science, 2008, 23(2): 129 -141 .
[2] Jian Zhimin,Jin Haiyan. Ocean Carbon Cycle and Tropical Forcing of Climate Evolution[J]. Advances in Earth Science, 2008, 23(3): 221 -227 .
[3] Hu Yaowu,Michael P. Richards,Liu Wu,Wang Changsui. Application of Bone Chemistry Analysis to the Studies of Hominin Dietary Evolution[J]. Advances in Earth Science, 2008, 23(3): 228 -235 .
[4] Zhou Ping,Shi Junfa. Review on Seismic Methods for Mineral Exploration[J]. Advances in Earth Science, 2008, 23(2): 120 -128 .
[5] Zhang Qiang,Wang Sheng. On Land Surface Processes and Its Experimental Study in Chinese Loess Plateau
[J]. Advances in Earth Science, 2008, 23(2): 167 -173 .
[6] Duan Jing,Mao Jietai. Progress in Researches on Interaction between Aerosol and Cloud[J]. Advances in Earth Science, 2008, 23(3): 252 -261 .
[7] He Baogen,Wang Chu,Zhou Naisheng,Xu Shiyuan. An Investigation of Water Depth and Current Velocity Process in Periodic Inundation Area of East Chongming Tidal Flat, Yangtze Estuary[J]. Advances in Earth Science, 2008, 23(3): 276 -283 .
[8] Chen Cuihua,Ni Shijun,He Binbin,Zhang Chengjiang. Potential Ecological Risk Analysis of Heavy Metals Contamination Based on GIS Methods in Sediments of Dexing, Jiangxi Province, China[J]. Advances in Earth Science, 2008, 23(3): 312 -322 .
[9] Xiong Shengqing,Yu Changchun,Wang Weiping,FanZhengguo,Wang Naidong,Wan Jianhua. Large Scale Aero Geophysical Survey with Helicopter and Its Application to Deep Ore Prospecting[J]. Advances in Earth Science, 2008, 23(3): 270 -275 .
[10] Ren Juan,Xiao Honglang,Li Jinxiu,Zhao Liangju,Lu Mingfeng,Cheng Guodong. Coordinated Large-scale Environmental Observatories Plan and Relative Studies[J]. Advances in Earth Science, 2008, 23(3): 327 -330 .