Please wait a minute...
img img
Adv. Search
Advances in Earth Science  2011, Vol. 26 Issue (6): 631-641    DOI: 10.11867/j.issn.1001-8166.2011.06.0631
Articles     
Structural Characteristics of the No.12 Glacier in Laohugou Valley,Qilian Mountain Based on the Ground Penetrating Radar Combined  with FDTD Simulation
Wu Zhen1, Zhang Shiqiang1, Liu Shiyin1, Du Wentao1,2
1.State Key Laboratory of Cryospheric Science, Cold and Arid Regions Environmental and Engineering Research, Institute,Chinese Academy of Sciences,Lanzhou730000, China; 
2.Qilian Mountain Station of Glaciology and Ecologic Environmental of State Key  Laboratory of Cryospheric Science, Cold and Arid Regions Environmental and Engineering Research,Institute, Chinese Academy of Sciences, Lanzhou730000, China
Download:  PDF (3850KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The use of ground penetration radar(GPR)for surveying glacial structure and ice thickness is a common method of monitoring glacial variation, but how to extract accurately the information and ice thickness is often more concerned about data interpretation. In this paper, we have run a Finite-Difference Time-Domain (FDTD) model that solves Maxwell′s equations in two dimensions, by comparison simulated image and the results of measured radar, and  analyzed  several reflection characteristics within several profiles, such as crevasses, melting cave, and temperate ice and so on. Comparison results show that GPR reflection image is affected by many factors, such as medium thickness, morphology, roughness and other factors as well in addition to dielectric constant.The survey result also shows that the icebody temperature  at Lao hugou valley No.12 glacier as polar continental glacier presents a higher trend.  Meteorological and historical data indicate that  the retreat and ablation of glaciers have been aggravated   in recent years. Meanwhile, GPR combined  with FDTD simulation provides good analytical tools for monitoring glacial variation along with climate change in our future.

Key words:  GPR      The No.12 Glacier in Lao hugou Valley      FDTD      Simulation     
Received:  23 November 2010      Published:  10 June 2011
P914  
Service
E-mail this article
Add to my bookshelf
Add to citation manager
E-mail Alert
RSS
Articles by authors

Cite this article: 

Wu Zhen, Zhang Shiqiang, Liu Shiyin, Du Wentao. Structural Characteristics of the No.12 Glacier in Laohugou Valley,Qilian Mountain Based on the Ground Penetrating Radar Combined  with FDTD Simulation. Advances in Earth Science, 2011, 26(6): 631-641.

URL: 

http://www.adearth.ac.cn/EN/10.11867/j.issn.1001-8166.2011.06.0631     OR     http://www.adearth.ac.cn/EN/Y2011/V26/I6/631

[1]Molnia B. Late nineteenth to early twentyfirst century behavior of Alaskan glaciers as indicates of changing regional climate[J].Global and Planetary Change,2007,56(1/2): 23-56.
[2]Barry R G. The status of research on glaciers and global glacier recession: A review[J].Progress in Physical Geography,2006,30(3): 285-306.
[3]Irvine-Fynn T D L, Moorman B J, Williams J L M,et al.Seasonal changes in groundpenetrating radar signature observed at a polythermal glacier, Bylot Island, Canada[J].Earth Surface Processes and Landforms,2006,31: 892-909.
[4]Haeberli W. Mountain glaciers in global climate-related observing systems[C]Huber U M, Reasoner M A, Bugmann H, eds. Global Change and MountainRegions: A State of Knowledge Overview. Kluwer Academic, Dordrecht,2005:169-175.
[5]Colbeck S C. The layered character of snow covers[J].Reviews of Geophysics, 1991, 29(1): 81-96.
[6]Murray T, Stuart G W, Fry M, et al. Englacial water distribution in a temperate glacier from surface and borehole radar velocity analysis[J].Journal of Glaciology,2000,46(154): 389-398.
[7]Bentley C R. Advances in geophysical exploration of ice sheets and glaciers[J].Journal of Glaciology, 1975,15(73): 113-135.
[8]Clarke T S, Bentley C R. High-resolution radar on icestream B2, Antarctica: Measurements of electromagnetic wave speed in firn and strain history from buried crevasses[J].Annal of Glaciology,1994,20(1): 153-159.
[9]Sun Bo,Wen Jiahong,He Maobing,et al. Arctic sea ice thickness penetrating radar detection and analysis of surface shape features[J].Science China Press,2002,32(11):951-958.
[10]Benjumea B, Macheret Yu Ya, Navarro F,et al. Estimation of water content in a temperate glacier from radar and seismic sounding data[J].Annal of Glaciology,2003,37(1):317-324.
[11]James Irving, Rosemary Knight. Numerical modeling of ground-penetrating in 2-D using MATLAB[J]. Computers & Geosciences,2006, 32(9): 1 247-1 258.
[12]Yee K S. Numerical solution of initial boundary value problemsinvolving Maxwell equations in isotropic media[J].IEEE TransAntennas Propagat,1966,14(3):302-307.
[13]Wang T, Tripp A C. FDTD simulation of EM wave propagation in 3-D media[J].Geophysics, 1996, 61(1): 110-120.
[14]Chen Y H, Chew W C, Oristaglio M L. Application of perfectly matched layers to the transient modeling of subsurface EM problems[J].Geophysics,1997, 62(6):1 730-1 736.
[15]Bergmann T, Robertsson J O A, Holliger K. Finite difference modeling of electromagnetic wave propagation in dispersive and attenuating media
[J].Geophysics,1998,63(3):856-867.
[16]Holliger K, Bergman T. Numerical modeling of borehole georadar data[J].Geophysics,2002,67(4):1 249-1 257.
[17]Teixeira F L,Chew W C, Straka M,et al. Finite-difference time-domain simulation of groundpenetratingradar on dispersive, inhomogeneous, and conductive soils[J].IEEE Transaction Geoscience Remote Sensing,1998,36(6):1 928-1 936.
[18]Taflove S C, Hagness. The Finite-Difference Time-Domain Method[M].Amazon: Computational Electro Dynamics:Third Edition, 2005:78.
[19]Kohler J, Moore J C, Isaksson E. Comparison of modeled and observed responses of a glacier snowpack to ground-penetrating radar[J].Annals of Glaciology,2003,37(1):293-297.[20]Sun Zuozhe, Xie Zichu. The recent changes and trend of glacier No.12 at the jokul of Qi Lian mountain
[J]. Chinese Science Bulletin,1980,2(6):366-369.[孙作哲,谢自楚.祁连山大雪山老虎沟12号冰川的近期变化及趋势[J].科学通报, 1981, 26(6): 366-369.]
[21]Du Wentao, Qin Xiang, Liu Yushuo,et al. Variation of the Lao hugou Glacier No.12 in the Qilian Mountains[J].Journal of Glaciology and Geocryology,2008,30(3):373-379.[杜文涛,秦翔,刘宇硕,等.1985—2005年祁连山老虎沟12号冰川变化特征研究[J].冰川冻土, 2008, 30(3):373-379.]
[22]Kovacs A,Anthony J, Gow A, et al. The insitu dielectric constant of polar firn revisited[J].Cold Regions Science and Technology.,1995,23(3):245-256.
[23]Wu Zhen, Zhang Shiqiang, Liu Shiyin. Structural characteristics of the No.12 Glacier in Laohugou valley Qilian mountain based on the ground penetrating radar sounding[J].Advances in Earth Science,2009, 24(10):1 149-1 158.[武震,张世强,刘时银.祁连山老虎沟12号冰川冰下形态特征分析[J].地球科学进展, 2009,24(10):1 149-1 158.]
[24]Kotlyakov V M, Macheret Y Y. Radio echosounding of subpolar glaciers in Svalbard: Some problems and results of Soviet studies[J].Journal of Glaciology,1987, 9:151-159.
[25]Plewes L A, Hubbard B. A review of the use of radio-echo sounding in glaciology[J].Progress in Physical Geography, 2001,25(2): 203-236. 
[26]Andrea Taurisano, Stein Tronstad, Ola Brandt, et al. On the use of ground penetrating radar for detecting and reducing crevasse-hazard in DronningMaud Land Antarctica[J].Cold Regions Science and Technology,2006, 45(3):166-177.
[27]Ola Brandt, Andrea Taurisano, Antonios Giannopoulos,et al. What can GPR tell us about cryoconite holes? 3D FDTD modeling, excavation and field GPR data[J].Cold Regions Science and Technology,2008, 55(1):111-119.
[28]Du Wentao,Qin Xiang,Sun Weijun,et al. Comparison study of the temperature reconstruction in the regions of Mountain glacier-take Lao hugou No.12 Glacier area[J].Journal of Arid Land Resource and Environment (in press).[杜文涛,秦翔,孙维君,等.山地冰川区气温重建比较研究——以祁连山老虎沟冰川区为例[J].干旱区资源与环境(待刊).]
[29]Liu Chaohai, Kang Ersi, Liu Shiyin. Glaciers variation and its runoff effects study at arid lands northwestern China[J].Science in China (Series D),1999, 29 (Suppl.1): 55-62.[刘潮海,康尔泗,刘时银.西北干旱区冰川变化及其径流效应研究[J].中国科学:D缉,1999,29(增刊1):55-62.]
[30]Liu Chaohai, Xie Zichu. Recent changes and the trend forecast in glacier in Qilian Mountains and the trend forecast[J].Chinese Science bulletin,1988,33(8):620-623.[刘潮海,谢自楚.祁连山冰川的近期变化及其趋势预测[J].科学通报, 1988,33(8): 620-623.]
[31]Liu Shiyin, Ding Yongjian, Li Jing. Glaciers in response to recent climate warming in western China[J].Quaternary Sciences,2006,26(5):762-771.
[刘时银,丁永建,李晶.中国西部冰川对近期气候变暖的响应[J].第四纪研究, 2006,26(5):762-771.]

Cultivated Land Distribution Simulation Based on Grid in Middle Reaches of Heihe River Basin in the Historical Periods
[J]. 地球科学进展, 2013, 28(1): 71-78.
[14] Xue Yujun, Bai Aijuan, Li Dian. Analysis and Numerical Simulation of Diurnal Variation of Precipitation in Sichuan Basin[J]. 地球科学进展, 2012, 27(8): 885-894.
[15] Li Qiquan, Wang Changquan, Yue Tianxiang, Zhang Wenjiang, Yu Yong. Method for Spatial Simulation of Topsoil Organic Matter in China based on a Neural Network Model[J]. 地球科学进展, 2012, 27(2): 175-184.
-->
No Suggested Reading articles found!