Please wait a minute...
img img
Adv. Search
Advances in Earth Science  2021, Vol. 36 Issue (7): 671-683    DOI: 10.11867/j.issn.1001-8166.2021.062
    
Dating of Shallow Crusted Faults by Illite K-Ar/Ar-Ar Ages: Principles and Potential
Qi ZHAO1,2,3(),Yi YAN1,2,4,5()
1.Key Laboratory of Ocean and Marginal Sea Geology,Guangzhou Institute of Geochemistry,Chinese Academy of Sciences,Guangzhou 510640,China
2.Center for Excellence in Deep Earth Science,Chinese Academy of Sciences,Guangzhou 510640,China
3.College of Earth and Planetary Sciences,University of Chinese Academy of Sciences,Beijing 100049,China
4.Southern Marine Science and Engineering Guangdong Laboratory,Guangzhou 511458,China
5.Innovation Academy of South China Sea Ecology and Environmental Engineering,Chinese Academy of Sciences,Guangzhou 510301,China
Download:  RICH HTML PDF (2785KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Dating of shallow crusted faults has remained difficult. Although most brittle faults produce authigenic/synkinetic illite that can be used for radiometric dating, the fault gouges always retain detrital minerals, such as high-temperature 2M1 polytype illite/mica that make the radioactive age data questioned. However, with the introduction of the Illite Age Analysis method and the "Age-Attractor" method, illite K-Ar/Ar-Ar ages of each grain size fraction can be used for constraining the activity time of near-surface brittle faults. This paper first introduces the principles and assumptions of illite dating, and then reviews the history of the study of fault gouge dating, including the principles and background of the Illite Age Analysis method and "Age-Attractor" method. Then, the factors affecting the dating of illite are evaluated, and it is believed that Ar loss is negligible in the near-surface brittle fault domain, and whether the 2M1 polytype illite/mica is authigenic mineral is crucial for discussing the geological significance of illite age. Finally, it is pointed out that the illite dating method is not only used for shallow crusted fault dating, but can also constrain the deformation time of high-strain folds and tectonic mélange as well. In addition, if the main structural domains of subduction, accretion, and denudation in subduction zones are identified and dated, a complete temporal and spatial evolution process of the subduction zone can be obtained.

Key words:  Fault dating      K-Ar/Ar-Ar age      Illite      Illite age analysis      Age-attractor.     
Received:  15 April 2021      Published:  20 August 2021
ZTFLH:  P597+.3  
Fund: the National Natural Science Foundation of China "Continental crust structure of South China and geological process of northern South China Sea"(U1701641);The Key Special Project for Introduced Talents Team of Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou) "Lithospheric thinning rupture process and its resource effect in the northern margin of the South China Sea"(GML2019ZD0205)
Corresponding Authors:  Yi YAN     E-mail:  zhaoqi@gig.ac.cn;yanyi@gig.ac.cn
About author:  ZHAO Qi (1995-), male, Jingzhou City, Hubei Province, Ph. D student. Research areas include tectonic chronology. E-mail: zhaoqi@gig.ac.cn
Service
E-mail this article
Add to my bookshelf
Add to citation manager
E-mail Alert
RSS
Articles by authors
Qi ZHAO
Yi YAN

Cite this article: 

Qi ZHAO,Yi YAN. Dating of Shallow Crusted Faults by Illite K-Ar/Ar-Ar Ages: Principles and Potential. Advances in Earth Science, 2021, 36(7): 671-683.

URL: 

http://www.adearth.ac.cn/EN/10.11867/j.issn.1001-8166.2021.062     OR     http://www.adearth.ac.cn/EN/Y2021/V36/I7/671

Fig. 1  Flow chat of illite age analysis
Fig. 2  K-Ar age results showing the variation in age with size fraction and the good correspondence between the ages obtained and the upper and lower age constraints imposed by zircon and apatite fission track ages19
ZFTA: Zircon Fission Track Ages; AFTA: Apatite Fission Track Ages
Fig. 3  K-Ar age-grain size pattern
Fig. 4  Conceptual "age attractor" model for the interpretation of K-Ar age-grain size patterns as mixing curvesmodified after reference 34])
1 VELDE B. Green clay minerals[M]//HOLLAND H D, TUREKIAN K K. Treatise on geochemistry. Amsterdam: Elsevier, 2004: 309-324.
2 ZHANG Youyu, LIU Keyu, LUO Xiuquan. Geochronology of authigenic illite: principles methods and applications [M]. Beijing: Science Press, 2016.
2 张有瑜, 刘可禹, 罗修泉. 自生伊利石年代学研究:理论、方法与实践 [M]. 北京:科学出版社, 2016.
3 PEVEAR D R. Illite and hydrocarbon exploration[J]. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96: 3 440-3 446.
4 Bailey S W, Bailey S W, Jones B F, et al. Reviews in mineralogy [M]. Washington DC: Mineralogical Society of America, 1984:495-544.
5 WANG Longzhang, DAI Tongmo, PENG Pingan. Experimental study on the 40Ar/39Ar age of illite in gas reservoirs [J]. Chinese Science Bulletin, 2004, 49(): 81-85.
5 王龙樟, 戴橦谟, 彭平安. 气藏储层自生伊利石40Ar/39Ar法定年的实验研究[J]. 科学通报, 2004, 49(): 81-85.
6 ZHANG Youyu, ZWINGMANN H, TODD A, et al. K-Ar isotopic dating of authigenic illite and its application to the investigation of hydrocarbon accumulation history of typical sandstones in Tarim Basin [J]. Frontier of Geosciences, 2004, 11(4): 637-648.
6 张有瑜, ZWINGMANN H, TODD A, 等. 塔里木盆地典型砂岩储层自生伊利石K-Ar同位素测年研究与成藏年代讨论[J]. 地学前缘, 2004, 11(4): 637-648.
7 ZHANG Youyu, ZWINGMANN H, LIU Keyu, et al. K-Ar isotopic dating of authigenic illite and its application to the investigation of hydrocarbon accumulation history of the Silurian bituminous sandstone reservoirs in the Tazhong uplift, Tarim basin [J]. Oil and Gas Geology, 2007, 28(2): 162-174.
7 张有瑜, ZWINGMANN H, 刘可禹, 等. 塔中隆起志留系沥青砂岩油气储层自生伊利石K-Ar同位素测年研究与成藏年代探讨[J]. 石油与天然气地质, 2007, 28(2): 162-174.
8 QIU Huaning, WU Heyong, FENG Zihui, et al. The puzzledom and feasibility in determining emplacement of oil/gas reserviors by 40Ar/39Ar techniques [J]. Geochemica, 2009, 38(4): 405-411.
8 邱华宁, 吴河勇, 冯子辉, 等. 油气成藏40Ar-39Ar定年难题与可行性分析[J]. 地球化学, 2009, 38(4): 405-411.
9 PEVEAR D R. Illite age analysis, a new tool for basin thermal history analysis[C]// KHARAKA Y K, MAEST A S. Proceedings of the 7th international symposium on water-rock interaction. Park City, Utah, USA, 1992: 1 251-1 254.
10 PLUIJM B A VAN DER, HALL C M, VROLIJK P J, et al. The dating of shallow faults in the Earth's crust [J]. Nature, 2001, 412: 172-175.
11 ZHANG Yan, CHEN Kelong, LIU Xinyu. Study on the K-Ar dating of diagenetic illite in sedimentary rock samples: questions and discussions [J]. Rock and Mineral Analysis, 2007, 26(2): 117-120.
11 张彦, 陈克龙, 刘新宇. 沉积岩中自生伊利石 K-Ar 定年研究——存在问题及原因讨论[J]. 岩矿测试, 2007, 26(2): 117-120.
12 HAINES S H, PLUIJM B A VAN DER. Clay quantification and Ar-Ar dating of synthetic and natural gouge: application to the Miocene Sierra Mazatán detachment fault, Sonora, Mexico [J]. Journal of Structural Geology, 2008, 30: 525-538.
13 HUANG Baoling, WANG Darui. An improved method for separation of authigenic clay minerals from sedimentary rocks [J]. Rock and Mineral Analysis, 2001, 20(3): 214-216.
13 黄宝玲, 王大锐. 沉积岩中自生黏土矿物分离提纯方法的改进[J]. 岩矿测试, 2001, 20(3): 214-216.
14 HUANG Baoling, WANG Darui, LIU Yulin, et al. Extraction method and significance of authigenic clay minerals in sedimentary rocks for K-Ar age dating [J]. Petroleum Geology and Experiment, 2002, 24(6): 550-560.
14 黄宝玲, 王大锐, 刘玉琳, 等. 油气储层钾氩定年中的自生黏土矿物提纯技术及意义[J]. 石油实验地质, 2002, 24(6): 550-560.
15 ZHANG Yan, CHEN Wen, YANG Huining. The separation of authigenic illite from detrital illite in sedimentary rock for Ar isotope dating [J]. Acta Geoscientica Sinica, 2003, 24(6): 622-626.
15 张彦, 陈文, 杨慧宁. 用于同位素测年的自生伊利石 分离纯化流程探索[J]. 地球学报, 2003, 24(6): 622-626.
16 ZHANG Youyu, Dong Aizheng, Luo Xiuquan. Separation of authigenic illite in hydrocarbon reservoirs and its K-Ar dating techniques [J]. Geoscience, 2001, 20(4): 461-464.
16 张有瑜, 董爱正, 罗修泉. 油气储层自生伊利石分离提纯及其K-Ar 同位素测年技术研究[J]. 现代地质, 2001, 20(4): 461-464.
17 ZHANG Youyu, LUO Xiuquan. A vacuum filtrating device and technique to separate authigenic illite from sandstone reservoirs with microporous membrane [J]. Petroleum Geology and Experiment, 2011, 33(6): 671-676.
17 张有瑜, 罗修泉. 油气储层自生伊利石分离提纯微孔滤膜真空抽滤装置与技术[J]. 石油实验地质, 2011, 33(6): 671-676.
18 WANG Yongsheng, ZHU Guang, HU Zhaoqi, et al. K-Ar dating of extensional fault gouge from the Yi-Shu segment of the Tan-Lu fault zone [J]. Science in China (Series D), 2009, 52(4): 489-503.
18 王勇生, 朱光, 胡召齐, 等. 郯庐断裂带沂沭段伸展活动断层泥K-Ar同位素定年[J]. 中国科学: D辑, 2009, 39(5): 489-503.
19 ZWINGMANN H, MANCKTELOW N. Timing of alpine fault gouges [J]. Earth and Planetary Science Letters, 2004, 223(3/4): 415-425.
20 ZWINGMANN H, OFFLER R, WILSON T, et al. K-Ar dating of fault gouge in the northern Sydney basin, Australia—implications for the breakup of Gondwana [J]. Journal of Structural Geology, 2004, 26: 2 285-2 295.
21 ZWINGMANN H, YAMADA K, TAGAMI T. Timing of brittle deformation within the Nojima fault zone, Japan [J]. Chemical Geology, 2010, 275: 176-185.
22 ZWINGMANN H, MANCKTELOW N, ANTOGNINI M, et al. Dating of shallow faults: new constraints from the AlpTransit tunnel site (Switzerland) [J]. Geology, 2010, 38: 487-490.
23 MOTTRAM C M, KELLETT D A, BARRESI T, et al. Syncing fault rock clocks: direct comparison of U-Pb carbonate and K-Ar illite fault dating methods [J]. Geology, 2020, 48: 1 179-1 183.
24 EBERL D D, SRODON J. Ostwald ripenning and interparticle-diffraction effects for illite crystals [J]. American Mineralogist, 1988, 73: 1 335-1 345.
25 EBERL D D, SACUTERODONACUTE J, KRALIK M, et al. Ostwald ripening of clays and metamorphic minerals [J]. Science, 1990, 248(4 954): 474.
26 CLAUER N, CHAUDHURI S. Clays in crustal environments [M]// Isotope dating and tracing. Berlin: Springer-Verlag, 1995.
27 MEUNIER A, VELDE B, ZALBA P. Illite K-Ar dating and crystal growth processes in diagenetic environments: a critical review [J]. Terra Nova, 2004, 16: 296-304.
28 VELDE B. Experimental determination of muscovite polymorph stabilities [J]. American Mineralogist, 1965, 50: 436-449.
29 MOORE D A, REYNOLDS J R. X-ray diffraction and the identification and analysis of clay minerals [M]. Oxford: Oxford University Press, 1997: 378.
30 GRATHOFF G H, MOORE D M, HAY R L, et al. Origin of illite in the lower Paleozoic of the Illinois basin: evidence for brine migrations [J]. Geological Society America Bulletin, 2001,113: 1 092-1 104.
31 PLUIJM B A VAN DER, VROLIJK P J, PEVEAR D R, et al. Fault dating in the Canadian Rocky Mountains: evidence for Late Cretaceous and Early Eocene orogenic pulses [J]. Geology, 2006, 34: 837-840.
32 TONAI S, ITO S, HASHIMOTO Y, et al. Complete 40Ar resetting in an ultracataclasite by reactivation of a fossil seismogenic fault along the subducting plate interface in the Mugi Mélange of the Shimanto accretionary complex, southwest Japan [J]. Journal of Structural Geology, 2016, 89: 19-29.
33 FISHER D M, TONAI S, HASHIMOTO Y, et al. K-Ar dating of fossil seismogenic thrusts in the Shimanto accretionary complex, southwest Japan [J]. Tectonics, 2019, 38: 3 866-3 880.
34 TORGERSEN E, VIOLA G, ZWINGMANN H, et al. Structural and temporal evolution of a reactivated brittle-ductile fault: part II. Timing of fault initiation and reactivation by K‐Ar dating of synkinematic illite [J]. Earth and Planetary Science Letters, 2014, 407: 221-233.
35 VIOLA G, ZWINGMANN H, MATTILA J, et al. K-Ar illite age constraints on the Proterozoic formation and reactivation history of a brittle fault in Fennoscandia [J]. Terra Nova, 2013, 25: 236-244.
36 VIOLA G, SCHEIBER T, FREDIN O, et al. Deconvoluting complex structural histories archived in brittle fault zones [J]. Nature Communications, 2016, 7(1): 13448.
37 VIOLA G, TORGERSEN E, MAZZARINI F, et al. New constraints on the evolution of the inner Northern Apennines by K‐Ar dating of Late Miocene‐Early Pliocene compression on the Island of Elba, Italy [J]. Tectonics, 2018, 37: 3 229-3 243.
38 SCHEIBER T, VIOLA G. Complex bedrock fracture patterns: a multipronged approach to resolve their evolution in space and time [J]. Tectonics, 2018, 37: 1 030-1 062.
39 SOLUM J G, PLUIJM B A VAN DER, PEACOR D R. Neocrystallization, fabrics and age of clay minerals from an exposure of the Moab Fault, Utah [J]. Journal of Structural Geology, 2005, 27(9): 1 563-1 576.
40 RAHL J M, HAINES S H, PLUIJM B A VAN DER. Links between orogenic wedge deformation and erosional exhumation: evidence from illite age analysis of fault rock and detrital thermochronology of syn-tectonic conglomerates in the Spanish Pyrenees [J]. Earth and Planetary Science Letters, 2011, 307(1/2): 180-190.
41 BOLES A, SCHLEICHER A M, SOLUM J, et al. Quantitative X‐ray powder diffraction and the illite polytype analysis method for direct fault rock dating: a comparison of analytical techniques [J]. Clays and Clay Minerals, 2018, 66: 220-232.
42 DUVALL A R, CLARK M K, PLUIJM B A VAN DER. Direct dating of Eocene reverse faulting in northeastern Tibet using Ar-dating of fault clays and low-temperature thermochronometry [J]. Earth and Planetary Science Letters, 2011, 304: 520-526.
43 REYNOLDS R C. WILDFIRE?-a computer program for the calculation of three-dimensional powder X-ray diffraction patterns for Mica Polytypes and their disordered variations [M]. New Hampshire: Hanover, 1993.
44 SCHLEICHER A, WARR L, KOBER B. Episodic mineralization of hydrothermal illite in the Soultz-sous-Fore?ts granite (Upper Rhine Graben, France) [J]. Contribution to Mineralogy and Petrology, 2006, 152: 349-364.
45 ZWINGMANN H, HARTOG S A M DEN, TODD A. The effect of sub-seismic fault slip processes on the isotopic signature of clay minerals-implications for K-Ar dating of fault zones [J]. Chemical Geology, 2019, 514: 112-121.
46 SüSSENBERGER A, WEMMER K, SCHMIDT S T. The zone of incipient 40Ar* loss-monitoring 40Ar* degassing behavior in a contact metamorphic setting [J]. Applied Clay Science, 2018, 165: 52-63.
47 VROLIJK P, PLUIJM B A VAN DER. Clay gouge [J]. Journal of Structural Geology, 1999, 21: 1 039-1 048.
48 UYSAL I T, MUTLU H, ALTUNEL E, et al. Clay mineralogical and isotopic (K-Ar, δ18O, δD) constraints on the evolution of the North Anatolian Fault Zone, Turkey [J]. Earth and Planetary Science Letters, 2006, 243(1/2): 181-194.
49 HAINES S H, PLUIJM B A VAN DER. Dating the detachment fault system of the Ruby Mountains, Nevada: significance for the kinematics of low-angle normal faults [J]. Tectonics, 2010, 29: 525-538.
50 SONG Y, CHUNG D, CHOI S, et al. K-Ar illite dating to constrain multiple events in shallow crustal rocks: implications for the late phanerozoic evolution of NE Asia [J]. Journal of Asian Earth Science, 2014, 95: 313-322.
51 BUI H B, NGO X T, KHUONG T H. Episodes of brittle deformation within the Dien Bien Phu Fault zone, Vietnam: evidence from K-Ar age dating of authigenic illite [J]. Tectonophysics, 2017, 695: 53-63.
52 ALDEGA L, VIOLA G, CASAS-SAINZ A, et al. Unravelling multiple thermo-tectonic events accommodated by crustal-scale faults in northern Iberia, Spain: insights from K-Ar dating of clay gouges [J]. Tectonics, 2019, 38(10): 3 629-3 651.
53 PURDY J W, JA?GER E. K-Ar ages on rock-forming minerals from the Central Alps [J]. Memorie degli Istituti di Geologia e Mineralogia dell' Universita? di Padova, 1976, 30: 31.
54 ALLAZ J. Metamorphic evolution in the northern Central Alps: linking 39Ar-40Ar dating with thermobarometry[D]. Bern: University of Bern, 2008.
55 TORGERSEN E, VIOLA G, ZWINGMANN H, et al. Inclined K‐Ar illite age spectra in brittle fault gouges: effects of fault reactivation and wall‐rock contamination [J]. Terra Nova, 2015, 27(2): 106-113.
56 ZWINGMANN H, HAN R, REE J H. Cretaceous reactivation of the Deokpori Thrust, Taebaeksan Basin, South Korea, constrained by K-Ar dating of clayey fault gouge [J]. Tectonics, 2011, 30: TC5015.
57 TARTAGLIA G, VIOLA G, LELIJ R VAN DER, et al. "brittle structural facies" analysis: a diagnostic method to unravel and date multiple slip events of long-lived faults [J]. Earth and Planetary Science Letters, 2020, 545: 116420.
58 DODSON M H. Closure temperature in cooling geochronological and petrological systems [J]. Contributions to Mineralogy and Petrology, 1973, 40: 259-274.
59 HARRISON T M, CéLéRIER J, AIKMAN A B, et al. Diffusion of 40Ar in muscovite [J]. Geochimica et Cosmochimica Acta, 2009, 73 (4): 1 039-1 051.
60 ZHANG Jiawei, LI Han'ao, ZHANG Huiping, et al. Research progress in Cenozoic N-S striking rifts in Tibetan Plateau[J]. Advances in Earth Science, 2020, 35(8): 848-862.
60 张佳伟, 李汉敖, 张会平, 等. 青藏高原新生代南北走向裂谷研究进展 [J]. 地球科学进展, 2020, 35(8): 848-862.
61 LIU Fangbin, NIE Junsheng, ZHENG Dewen, et al. The Cenozoic exhumation history and forcing mechanism of SE Tibetan Plateau: a case study of the Lincang granite area [J]. Advances in Earth Science, 2021, 36(4): 421-441.
61 刘方斌, 聂军胜, 郑德文, 等. 青藏高原东南缘新生代剥露历史及驱动机制探讨:以临沧花岗岩地区为例 [J]. 地球科学进展, 2021, 36(4): 421-441.
62 FITZ-DIAZ E, PLUIJM B VAN DER. Fold dating: a new Ar/Ar illite dating application to constrain the age of deformation in shallow crustal rocks [J]. Journal of Structural Geology, 2013, 54: 174-179.
63 ZHAO Q, YAN Y, TONAI S, et al. A new K/Ar illite dating application to constrain the timing of subduction in West Sarawak, Borneo [J]. Geological Society of America Bulletin, 2021. DOI: .
doi: 10.1130/B35895.1
64 RAYMOND L A. Perspectives on the roles of mélanges in subduction accretionary complexes: a review [J]. Gondwana Research, 2019, 74: 68-89.
[1] Liu Huatai, Guo Zhanrong. A Review on Submarine Groundwater Discharge[J]. Advances in Earth Science, 2014, 29(7): 774 -785 .
[2] Wanbin Huang,Chunhua Yan,Xiaonan Zhang,Guoyu Qiu. The Impact of Urbanization on Groundwater Quantity, Quality,Hydrothermal Changes and Its Countermeasures[J]. Advances in Earth Science, 2020, 35(5): 497 -512 .
[3] Mengzhao Tu,Zhifeng Liu,Chunyang He,Qiang Ren,Wenlu Lu. Research Progress of Groundwater Storage Changes Monitoring in China Based on GRACE Satellite Data[J]. Advances in Earth Science, 2020, 35(6): 643 -656 .
[4] Dan WANG,Yifei JIANG,Xianqiao WANG,Sufen WANG,Enye HE,Yunfei ZHANG. Research Progress in Ecological Dynamics of Golden Tide Dominated by Sargassum[J]. Advances in Earth Science, 2021, 36(7): 753 -762 .
[5] Tianzheng Cao, Dongmei Han, Xianfang Song, Wei Liu, Di Du. Bibliometric Analysis of Research Progress on Coastal Surface Water and Groundwater Interaction[J]. Advances in Earth Science, 2020, 35(2): 154 -166 .
[6] Huashan SUN,Hui YANG. Advance and Trend of the Vent-Distal SEDEX Lead-Zinc Deposits[J]. Advances in Earth Science, 2021, 36(7): 663 -670 .
[7] Shichao JIA,Tingjun ZHANG,Chengyan FAN,Lin LIU,Wanwan SHAO. Research Progress of InSAR Technology in Permafrost[J]. Advances in Earth Science, 2021, 36(7): 694 -711 .
[8] Li Hailong, Wang Xuejing. Submarine Groundwater Discharge: A Review[J]. Advances in Earth Science, 2015, 30(6): 636 -646 .
[9] Yijia WANG,Yanxu LIU,Shuang SONG,Bojie FU. Research Progress of the Water-Food-Energy-Ecosystem Nexus[J]. Advances in Earth Science, 2021, 36(7): 684 -693 .
[10] Xiaochuan WU,Liming OUYANG,Xiaozhong GUO,Yanling HUANG,Zhenhua Huang,Wei Li. Review and Prospect of the Geomorphology of Sediment Creep in Sea Areas[J]. Advances in Earth Science, 2021, 36(7): 763 -772 .