Remotely sensed Land Surface Temperature (LST) is a key parameter for studying the global climate changes and the exchanges of water and energy. Acquiring LST accurately is important to diagnose the change of environment on earth. Quantifying the uncertainty of remotely sensed LST is the first step of its application. However, due to the difficulties in obtaining the ground truth of LST at the pixel scale, it is difficult to validate the remotely sensed LST. Here, methods for simulating the LST at the pixel scale based on ground measurements over heterogeneous area were reviewed. From the way to construct the ground scene, these methods were classified into three types, including the Modified Geometric Projection model (MGP), realistic structural three-dimensional model, and other model. The advantages and disadvantages of these models were examined and compared. Finally, some issues in simulating LST at the pixel scale over heterogeneous area needed to be solved and on-going directions in the future were summarized.