Please wait a minute...
img img
Advances in Earth Science  2012, Vol. 27 Issue (9): 1006-1013    DOI: 10.11867/j.issn.1001-8166.2012.09.1006
Articles     
Regression Kriging Model-based Sampling Optimization Design for the Eco-hydrology Wireless Sensor Network
Ge Yong1, Wang Jianghao1,3, Wang Jinfeng1, Jin Rui2, Hu Maogui1
1.State Key Laboratory of Resources and Environment Information System, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China;2.Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences,Lanzhou 730000, China; 3.Graduate University of Chinese Academy of Sciences, Beijing 100049, China
Download:  PDF (1422KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The Babao River Basin is the upstream region of the Heihe River which is the second largest inland river basin in the arid regions of northwest China. To monitor the characteristics of space-time of the eco-hydrological processes in the Babao River Basin, this paper discussed a regression kriging modelbased sampling optimization method. Land surface temperature, as one of eco-hydrological variables in the Babao River Basin, has been exemplified. The experiment results demonstrate that this sampling optimization method can consider the relationship of target variable and environmental variables and the spatial autocorrelation of regression residuals to obtain the optimization design in the geographic space and attribute space simultaneously. The optimized WSN is more efficient to capture the temporal and spatial variations of the eco-hydrological variables for monitoring the eco-hydrology process in the Babao River Basin.

Key words:  Babao River Basin      Sampling optimization      Regression Kriging      Wireless sensor network.     
Received:  18 May 2012      Published:  10 September 2012
TN919.3  
  P33  
Service
E-mail this article
Add to my bookshelf
Add to citation manager
E-mail Alert
RSS
Articles by authors
Ge Yong
Wang Jianghao
Wang Jinfeng
Jin Rui
Hu Maogui

Cite this article: 

Ge Yong, Wang Jianghao, Wang Jinfeng, Jin Rui, Hu Maogui. Regression Kriging Model-based Sampling Optimization Design for the Eco-hydrology Wireless Sensor Network. Advances in Earth Science, 2012, 27(9): 1006-1013.

URL: 

http://www.adearth.ac.cn/EN/10.11867/j.issn.1001-8166.2012.09.1006     OR     http://www.adearth.ac.cn/EN/Y2012/V27/I9/1006

[1]Li Xin, Li Xiaowen, Li Zengyuan, et al. Watershed allied telemetry experimental research [J]. Journal of Geophysical Research-Atmospheres, 2009,114(D22): 103.

[2]Li Xin, Liu Shaomin, Ma Mingguo, et al. HiWATER: An integrated remote sensing experiment on hydrological and ecological processes in the Heihe River Basin [J]. Advances in Earth Science, 2012, 27(5): 481-498.[李新, 刘绍民, 马明国,等. 黑河流域生态—水文过程综合遥感观测联合试验总体设计[J].地球科学进展, 2012, 27(5): 481-498.]

[3]Li Xin, Cheng Guodong, Wu Lizong. Digital Heihe River Basin. 1: An information infrastructure for the watershed science [J]. Advances in Earth Science, 2010, 25(3): 297-305.[李新, 程国栋, 吴立宗. 数字黑河的思考与实践1: 为流域科学服务的数字流域 [J]. 地球科学进展, 2010, 25(3): 297-305.]

[4]Li Xin, Cheng Guodong, Ma Mingguo, et al. Digital Heihe River Basin. 4: Watershed observing system [J]. Advances in Earth Science, 2010, 25(8): 866-876. [李新,程国栋,马明国,等. 数字黑河的思考与实践4: 流域观测系统 [J]. 地球科学进展, 2010, 25(8): 866-876.]

[5]Gong Peng. Progress in recent environmental applications of wireless sensor networks [J]. Journal of Remote Sensing, 2010, 14(2): 387-395.[宫鹏. 无线传感器网络技术环境应用进展 [J]. 遥感学报, 2010, 14(2): 387-395.]

[6]Luo Lihui, Zhang Yaonan. Application research of wireless sensor networks in glacial environment monitoring[J]. Journal of Glaciology and Geocryology, 2008, 30(6): 1 018-1 023.[罗立辉, 张耀南. 无线传感器网络在冰川环境监测中的应用研究[J]. 冰川冻土, 2008, 30(6): 1 018-1 023.]

[7]Zhu Wenping, Zhang Yaonan, Luo Lihui. Study and application of the wireless sensor network to eco-hydrology[J]. Journal of Glaciology and Geocryology, 2011, 33(3): 573-581.[朱文平, 张耀南, 罗立辉. 生态—水文中无线传感器网络应用研究[J]. 冰川冻土, 2011, 33(3): 573-581.]

[8]Gruijter J J D. Sampling for Natural Resource Monitoring[M]. Berlin, New York: Springer, 2006.

[9]Wang Jinfeng. Spatial Sampling and Statistical Inference[M]. Beijing: Science Press, 2009. [王劲峰. 空间抽样与统计推断[M]. 北京: 科学出版社,2009.]

[10]Brus D J, de Gruijter J J. Random sampling or geostatisticalmodelling? Choosing between design-based and model-based sampling strategies for soil (with discussion) [J]. Geoderma, 1997, 80(1/2): 1-44.

[11]vanGroenigen J W, Pieters G, Stein A. Optimizing spatial sampling for multivariate contamination in urban areas [J]. Environmetrics, 2000, 11(2): 227-244.

[12]Brus D J, Heuvelink G B M. Optimization of sample patterns for universal kriging of environmental variables[J].Geoderma, 2007, 138(1/2): 86-95.

[13]Hengl T, Rossiter D G,  Stein A. Soil sampling strategies for spatial prediction by correlation with auxiliary maps[J]. Australian Journal of Soil Research, 2003, 41(8): 1 403-1 422.

[14]Wang J F, Christakos G,  Hu M G. Modeling spatial means of surfaces with stratified nonhomogeneity [J]. IEEE Transactions on Geoscience and Remote Sensing, 2009, 47(12): 4 167-4 174.

[15]Jin Rui, Li Xin, Yan Baoping, et al. Introduction of eco-hydrological wireless sensor network in the Heihe River Basin[J]. Advances in Earth Science, 2012, 27(9):993-1 005.[晋锐,李新,阎保平,等. 黑河流域生态水文传感器网络设计[J]. 地球科学进展, 2012, 27(9):993-1 005.]

[16]Wan Z, Zhang Y, Zhang Q, et al. Quality assessment and validation of the MODIS global land surface temperature [J]. International Journal of Remote Sensing, 2004, 25(1): 261-274.

[17]Hengl T, Heuvelink G B M,  Rossiter D G. About regression-kriging: From equations to case studies [J]. Computers & Geosciences, 2007,33(10): 1 301-1 315.

[18]Hengl T, Heuvelink G B M, Stein A. A generic framework for spatial prediction of soil variables based on regression-kriging [J]. Geoderma, 2004, 120(1/2): 75-93.

[19]Zhang L J, Gove J H, Heath L S. Spatial residual analysis of six modeling techniques [J]. Ecological Modelling, 2005, 186(2): 154-177.

[20]Goovaerts P. Geostatistics for Natural Resources Evaluation [M]. New York: Oxford University Press, 1997.

[21]Christensen R. Linear Models for Multivariate, Time and Spatial Data [M]. New York: Springer, 1990.

[22]Gershenfeld N A. The Nature of Mathematical Modeling [M]. Cambridge:  Cambridge University Press, 1999.

[23]Baume O P, Gebhardt A, Gebhardt C, et al. Network optimization algorithms and scenarios in the context of automatic mapping [J]. Computers & Geosciences, 2011, 37(3): 289-294.

[24]Coello C A C, Pulido G T, Lechuga M S. Handling multiple objectives with particle swarm optimization [J]. IEEE Transactions on Evolutionary Computation, 2004, 8(3): 256-279.

[25]Heuvelink G B M, Jiang Z, De Bruin, et al. Optimization of mobile radioactivity monitoring networks [J]. International Journal of Geographical Information Science, 2010, 24(3): 365-382.

[26]Kirkpatrick S, Gelatt C D, Vecchi M P. Optimization by simulated annealing [J]. Science, 1983, 220(4 598): 671-680.

[27]vanGroenigen J W, Stein A. Constrained optimization of spatial sampling using continuous simulated annealing[J]. Journal of Environmental Quality, 1998, 27(5): 1 078-1 086.

[28]Melles S J, Heuvelink G B M, Twenhofel C J W, et al. Optimizing the spatial pattern of networks for monitoring radioactive releases[J]. Computers & Geosciences, 2011, 37(3): 280-288.

[29]Heuvelink G B M, Brus D J,   de Gruijter J J. Optimization of sample configurations for digital mapping of soil properties with universal kriging[C]∥Lagacherie A B M P, Voltz M, eds. Developments in Soil Science. Amsterdam: Elsevier, 2006: 137-151.

No Suggested Reading articles found!