地球科学进展 ›› 2007, Vol. 22 ›› Issue (12): 1258 -1267. doi: 10.11867/j.issn.1001-8166.2007.12.1258

综述与评述 上一篇    下一篇

榍石:U-Pb定年及变质P-T-t轨迹的建立
向 华 1,2,张 利 1,2,钟增球 1,周汉文 1,曾 雯 1   
  1. 1.中国地质大学地质过程与矿产资源国家重点实验室,中国地质大学地球科学学院,湖北 武汉 430074; 2.西北大学大陆动力学国家重点实验室,陕西 西安 710069
  • 收稿日期:2007-08-04 修回日期:2007-10-15 出版日期:2007-12-10
  • 通讯作者: 张利(1970-),女,湖南张家界人,副教授,主要从事地球化学的教学和研究.E-mail:lizhang@cug.edu.cn E-mail:lizhang@cug.edu.cn
  • 基金资助:

    国家重点基础研究发展计划项目“华北大陆边缘造山过程与成矿”(编号:2006CB403502);西北大学大陆动力学国家重点实验室开放课题基金项目“浙闽地区华夏地块前寒武纪变质基底榍石等变质矿物定年研究”(编号:06LCD12);浙江省国土资源厅地质勘查资金项目“庆元—遂昌地区金银铅锌钼资源潜力调查评价”(编号:2004005);中国地质大学研究生学术探索与创新基金项目“榍石U-Pb年代学及P-T-t轨迹建立”(编号:CUGYS0701)资助.

Titanite: U-Pb Dating and Applications on Defining  P-T-t Path of Metamorphic Rocks

XIANG Hua 1,2,ZHANG Li 1,2,ZHONG Zeng-qiu 1,ZHOU Han-wen 1,ZENG Wen 1   

  1. 1.State Key Laboratory of Geological Processes and Mineral Resources,Faculty of Earth Sciences,China University of Geosciences ,Wuhan 430074,China;2.State Key Laboratory of Continental Dynamics,Northwest University ,Xi'an 710069,China
  • Received:2007-08-04 Revised:2007-10-15 Online:2007-12-10 Published:2007-12-10

榍石在各类岩石中普遍存在,其稳定性受全岩成分、氧逸度和水活度以及温度和压力等因素影响。它在岩浆岩中主要存在于高Ca/Al比值的岩石中,在变质岩中常见于绿片岩相、蓝片岩相和角闪岩相岩石,在钙质变质岩中其稳定范围可达榴辉岩相或高压麻粒岩相。一般榍石结构中U含量较高,且具有高达高角闪岩相上限的U-Pb同位素体系封闭温度,是理想的U-Pb定年矿物。由于榍石的组成元素均为岩石中的主要元素,很容易与其它矿物、熔体及流体发生反应,所以榍石的U-Pb年龄记录的更可能是结晶年龄,而不是简单的扩散重置年龄;也因为它容易反应,变质榍石复杂的U-Pb体系可能记录了岩石的整个变质历史信息。通过与榍石平衡共生的矿物组合或利用榍石Zr温压计可确定岩石的P-T条件,结合相关的榍石年龄信息即可建立变质过程的P-T-t轨迹。利用SHRIMP、LA-MC-ICP-MS以及LA-ICP-MS方法可对不均一榍石颗粒内部进行原位微区分析得到有意义的U-Pb年龄;利用榍石中Zr含量对温度,尤其是对压力比较敏感,可建立榍石Zr含量温压计。

The stability of titanite is controlled by pressure, temperature, compositions of the bulk rock and the coexisting fluid, activity of H2O, fugacity of O2. Titanite is a common accessory mineral in a large range of rocks. It is widespread in magmatic rocks with high Ca/Al ratio. It appears in different metamorphic rocks ranging from greenschist facies, blueschist facies and amphibolite facies. Its stability may extend into eclogite-facies and high-pressure granulite-facies in calcic rocks. Because of its high U in its structure and high closure temperature (upper limit of amphibolite-faces), titanite is an ideal U-Pb dating mineral. In contrast to zircon, titanite (composed mainly of Ca and Ti) is quite reactive in most rocks contain Ca and Ti at different conditions. Therefore, its U-Pb ages are likely to yield the age of metamorphic crystallization rather than resetting by simple diffusion, such that metamorphic titanite may preserve complicated U-Pb system that contains information of the whole metamorphic history of the rock, which can be revealed by in situ U-Pb dating, e.g., SHRIMP, LA-MC-ICP-MS and LA-ICP-MS. Importantly, Zr concentration in titanite is sensitive to temperature and pressure, and accordingly Zr concentration in titanite is a good thermobarometer. Both mineral assemblages in equilibrium with titanite and titanite-Zr thermobarometer can be used to determine pressure and temperature. Consequently, P-T-t paths of metamorphism can be defined in combination with U-Pb titanite ages. 

中图分类号: 

[1]Harlov D, Tropper P, Seifert W, et al. Formation of Al-rich titanite (CaTiSiO4O-CaAlSiO4OH) reaction rims on ilmenite in metamorphic rocks as a function of fH2O and fO2[J]. Lithos, 2006,88(1/4):72-84.
[2]Force E R. Geology of titanium-mineral deposits [J]. Geological Society of America Special Paper, 1991, 259:11-18.
[3]Frost B R, Chamberlain K R, Schuhmacher J C. Sphene (titanite): Phase relations and role as a geochronometer[J]. Chemical Geology, 2000, 172(1/2): 131-148.
[4]Franz G, Spear F S. Aluminious titanite (sphene) from the Eclogite zone, south-central Tauern Window, Austria[J]. Chemical Geology, 1985, 50(1/3): 33-46.
[5]Motoyoshi Y, Thost D E, Hansen B J. Reaction textures in calc-silicate granulites from the Bolingen Islands, Prydz Bay, East Antarctica: implications for the retrograde P-T path[J]. Journal of Metamorphic Geology, 1991, 9(3): 293-300.
[6]Dasgupta S. Contrasting mineral parageneses in high-temperature calc-silicate granulites: Examples from the Eastern Ghats, India[J]. Journal of Metamorphic Geology, 1993, 11(2): 193-202.
[7]Mezger K, Essene E J, Pluijm B A, et al. U-Pb geochronology of the Grenville Orogen of Ontario and New York: Constraints on ancient crustal tectonics [J].Contributions to Mineralogy and Petrology, 1993, 114(1): 13-26.
[8]Corfu F, Heaman L M, Rogers G. Polymetamorphic evolution of the Lewisian complex, NW Scotland, as recorded by U-Pb isotopic compositions of zircon, titanite and rutile[J]. Contributions to Mineralogy and Petrology,1994, 117(3): 215-228.
[9]Morton A C,Hallsworth C R. Processes controlling the composition of heavy mineral assemblages in sandstones[J]. Sedimentary Geology,1999, 124(1/4): 3-29.
[10]Schneider D A, Heizler M T, Bickford M E, et al. Timing constraints of orogeny to cratonization: Thermochronology of the Paleoproterozoic Trans-Hudson orogen, Manitoba and Saskatchewan, Canada[J]. Precambrian Research, 2007, 153(1/2): 65-95.
[11]Simonetti A, Heaman L M, Chacko T, et al. In situ petrographic thin section U-Pb dating of zircon, monazite, and titanite using laser ablation MC ICP-MS[J]. International Journal of Mass Spectrometry, 2006, 253(1/2):87-97.
[12]Storey C D, Smith M P, Jeffries T E. In situ LA-ICP-MS U-Pb dating of metavolcanics of Norrbotten, Sweden: Records of extended geological histories in complex titanite grains[J]. Chemical Geology, 2007, 240(1/2): 163-181.
[13]Rubatto D, Hermann J. Exhumation as fast as subduction?[J].Geology, 2001, 29(1): 3-6.
[14]Tanner P W G, Evans J A. Late Precambrian U-Pb titanite age for peak regional metamorphism and deformation (Knoydartian Orogeny) in the western Moine, Scotland, London[J].Geological Society of London, 2003,160(4):555-564.
[15]Resor P G,Chamberlain K R,Frost C D,et al. Direct dating of deformation; U-Pb age of syndeformational sphene growth in the Proterozoic Laramie Peak shear zone [J]. Geology,1996, 24(7):623-626.
[16]Randall R,Parrish S J,Gough M P,et al. Plate velocity exhumation of ultrahigh-pressure eclogites in the Pakistan Himalaya[J]. Geology, 2006, 34(11):989-992.
[17]Speer J A, Gibbs G V.  The crystal structure of synthetic titanite CaTiOSiO4 and the domain textures of natural titanites[J]. American Mineralogist, 1976, 61(3/4): 238-247.
[18]Higgins J B, Ribbe P H. The crystal chemistry and space groups of natural and synthetic titanites[J]. American Mineralogist, 1976, 61(9/10):878-888. 
[19]Hode Vuorinen J, Halenius U. Nb-, Zr- and LREE-rich titanite from the Alno alkaline complex: Crystal chemistry and its importance as a petrogenetic indicator[J]. Lithos, 2005, 83(1/2):128-142.
[20]Troitzsch U, Ellis D J. Thermodynamic properties and stability of AlF-bearing titanite CaTiOSiO4-CaAlFSiO4[J]. Contributions to Mineralogy and Petrology, 2002, 142(5): 543-563.
[21]Tropper P, Manning C E, Essene E J. The substitution of Al and F in titanite at high pressure and temperature: Experimental constraints on phase relations and solid solution properties[J]. Journal of Petrology, 2002, 43(10): 1 787-1 814.
[22]Oberti R, Smith D C, Rossi G,et al. The crystal-chemistry of high-aluminum titanites[J]. European Journal of Mineralogy, 1991, 3(5): 777-792. 
[23]Enami M, Suzuki K, Liou J G, et al. Al-F (super 3+) and F-OH substitutions in titanite and constraints on their P-T dependence[J]. European Journal of Mineralogy, 1993, 5(2): 219-231. 
[24]Ye K, Liu J B, Cong B L, et al. Ultrahigh-pressure (UHP) low-Al titanites from carbonate-bearing rocks in Dabieshan-Sulu UHP terrane, eastern China[J]. American Mineralogist, 2002,87(7): 875-881.
[25]Xirouchakis D, Lindsley D H. Equilibria among titanite, hedenbergite, fayalite, quartz, ilmenite and magnetite: Experiments and internally consistent thermodynamic data for titanite[J].  American Mineralogist, 1998, 83(7/8): 712-725.
[26]Xirouchakis D, Lindsley D H, Andersen D J. Assemblages with titanite (CaTiOSiO4), Ca-Mg-Fe olivine and pyroxenes, Fe-Mg-Ti oxides, and quartz: Part I. Theory[J]. American Mineralogist, 2001, 86(3): 247-253.
[27]Xirouchakis D, Lindsley D H., Frost R B. Assemblages with titanite (CaTiOSiO4), Ca-Mg-Fe olivine and pyroxenes, Fe-Mg-Ti oxides, and quartz: Part II. Application[J]. American Mineralogist, 2001,86(3): 254-264.
[28]Cliff R A, Yardley B W D, Bussy  F. U-Pb isotopic dating of fluid infiltration and metasomatism during Dalradian regional metamorphism in Connemara, western Ireland[J]. Journal of Metamorphic Geology, 1993, 11(2): 185-191. 
[29]Romer R L, Nisca D H. Svecofennian crustal deformation of the Baltic Shield and U-Pb age of late-kinematic tonalitic intrusions in the Burtrask shear zone, northern Sweden[J]. Precambrian Research, 1995, 75(1): 1-2. 
[30]Castelli D,Rubatto D. Stability of Al- and F-rich titanite in metacarbonate: Petrologic and isotopic constraints from a polymetamorphic eclogitic marble of the internal Sesia Zone (Western Alps) [J]. Contributions to Mineralogy and Petrology, 2002,142(6): 627-639.
[31]Ghent E D, DeVries C D S. Plagioclase-garnet-epidote equilibria in hornblende-plagioclase bearing rocks from the Esplande Range, British Columbia[J]. Canadian Journal of Earth Sciences, 1972, 9(6): 618-635. 
[32]Begin N J. Contrasting mineral isograd sequences in metabasites of the Cape Smith Belt, northern Quebec, Canada: Three new bathograds for mafic rocks[J]. Journal of Metamorphic Geology,1992, 10(5): 685-704. 
[33]Schumacher R , Schenk V , Raase P, et al. Granulite facies metamorphism of metabasic and intermediate rocks in the Highland Series of Sri Lanka[C]//Ashworth J R,Brown M, eds. High-temperature Metamorphism and Crustal Anatexis. London: Unwin Hyman,1990:235-271.
[34]Nemchin A A, Pidgeon R T, Wilde S A. Timing of late Archaean granulite facies metamorphism in the southwestern Yilgarn Craton of Western Australia; evidence from U-Pb ages of zircons from mafic granulites[J]. Precambrian Research, 1994, 68(3/4): 307-321. 
[35]Castelli  D. Eclogitic metamorphism in carbonate rocks: The example of impure marbles from the Sesia-Lanzo zone, Italian Western Alps[J]. Journal of Metamorphic Geology, 1991, 9(1): 61-77. 
[36]Boundy T M, Mezger  K, Essene  E J. Temporal and tectonic evolution of the granulite eclogite association from the Bergen Arcs, western Norway[J]. Lithos, 1997, 39(3/4): 159-178. 
[37]Ogasawara Y, Fukasawa K, Maruyama S. Coesite Exsolution from supersilicic Titanite in Uhp marble from The Kokchetav Massif,Northern Kazakhstan[J]. American Mineralogist,2002, 87(4): 454-461.
[38]Carswell D A., Wilson R N, Zhai M. Ultra-high pressure aluminous titanites in carbonate-bearing eclogites at Shuanghe in Dabieshan, central China[J]. Mineralogical Magazine, 1996, 60(3): 461-471. 
[39]Ghent E D, Stout M Z, Erdmer P. Pressure temperature evolution of lawsonite-bearing eclogites, Pinchi Lake, British Columbia[J]. Journal of Metamorphic Geology, 1993, 11(2): 279-290. 
[40]El-Shazly A E K. Petrology of lawsonite-pumpellyite- and sodic amphibole-bearing metabasites from north-east Oman[J]. Journal of Metamorphic Geology, 1994, 12(1): 23-48. 
[41]Timmermann H, Parrish R R, Jamieson R A, et al.Time of metamorphism beneath the Central Metasedi-mentary Belt boundary thrust zone, Grenville Orogen, Ontario: Accretion at 1080 Ma?[J].Canadian Journal of Earth Sciences, 1997, 34(7): 1  023-1 029. 
[42]Chen J H , Moore J G. Uranium lead isotopic ages from the Sierra Nevada batholith, California[J]. Journal of Geophysical Research, 1982, 87(B6): 4 761-4 784. 
[43]Corfu F, Stone D. The significance of titanite and apatite U Pb ages: Constraints for the post-magmatic thermal hydro-thermal evolution of a batholithic complex, Berens River area, northwestern Superior province, Canada[J]. Geochimica et Cosmochimica Acta, 1998, 62(17): 2 979-2 995. 
[44]Corfu F, Easton R M. Sharbot Lake terrane and its relationships to the Frontenac terrane, Central Metasedimen-tary Belt, Grenville Province: New insights from U Pb geochronology [J]. Canadian Journal of Earth Sciences, 1997, 34(9): 1 239-1 257. 
[45]Harper K M. U-Pb age constraints on the timing and duration of Proterozoic and Archean metamorphism along the southern margin of the Archean Wyoming craton [D]. Wyoming: University of Wyoming, Laramie, 1997.
[46]Scott  D J, St-Onge  M R. Constraints on Pb closure temperature in titanite based on rocks from the Ungava Oro-gen, Canada; implications for U-Pb geochronology and P-T-t path determinations [J]. Geology, 1995, 23(12): 1 123-1 126. 
[47]Zhang L S, Schaerer  U. Inherited Pb components in magmatic titanite and their consequence for the interpretation of U Pb ages [J]. Earth and Planetary Science Letters, 1996, 138(1/4): 57-65. 
[48]Pidgeon R T, Bosch D, Bruguier O. Inherited zircon and titanite U-Pb systems in an archaean syenite from southwestern Australia: Implications for U-Pb stability of titanite [J]. Earth and Planetary Science Letters, 1996, 141 (1/4): 187-198.
[49]Schärer  U, Zhang L-S, Tapponnier P. Duration of strike-slip movements in large shear zones: The Red River belt, China [J]. Earth and Planetary Science Letters, 1994, 126(4): 379-397. 
[50]Essex R M, Gromet L P, Andreasson P-G, et al. Early Ordovician U Pb metamorphic ages of the eclogite-bearing Seve Nappes, Northern Scandinavian Caledonides [J]. Journal of Metamorphic Geology, 1997, 15(5): 665-676. 
[51]Aleinikoff J N, Wintsch R P, Fanning C M,et al. U-Pb geochronology of zircon and polygenetic titanite from the Glastonbury Complex, Connecticut, USA: An integrated SEM, EMPA, TIMS, and SHRIMP study [J]. Chemical Geology,2002, 188 (1/2): 125-147.
[52]VDahl P S. A crystal-chemical basis for Pb retention and fission-track annealing systematics in U-bearing minerals, with implications for geochronology [J].Earth and Planetary Science Letters,1997, 150(3/4): 277-290. 
[53]Cherniak D J. Lead diffusion in titanite and preliminary results on the effects of radiation damage on Pb transport [J]. Chemical Geology, 1993, 110(1/3): 177-194.
[54]Tucker R D, Raheim A, Krogh T E, et al. Uranium lead zircon and titanite ages from the northern portion of the Western Gneiss Region, south-central Norway[J]. Earth and Planetary Science Letters, 1987, 81(2-3): 203-211. 
[55]Kamio S L, Wasteneys  H, Gower C F,et al. U-Pb geochronology of Labradorian and later events in the Grenville Province, eastern Labrador [J]. Precambrian Research,1996, 80(3): 239-260. 
[56]Verts L A, Chamberlain K R, Frost C D. U-Pb sphene dating of metamorphism: The importance of sphene growth in the contact aureole of the Red Mountain Pluton, Laramie Mountains, Wyoming [J].Contributions to Mineralogy and Petrology,1996, 125(2-3): 186-199. 
[57]Essex R M, Gromet L P. U-Pb dating of prograde and retrograde titanite growth during the Scandian orogeny [J]. Geology, 2000, 28(5):419-422.
[58]Frei R, Kamber B S. Single mineral Pb-Pb dating [J]. Earth and Planetary Science Letters, 1995, 129(1/4): 261-268.
[59]Frei R, Villa I M, Nagler Th F, et al.Single mineral dating by the Pb-Pb step-leaching method:Assessing the mechanisms [J]. Geochimica et Cosmochimica Acta,1997, 61(2): 393-414.
[60]Willigers B J A, Baker J A, Krogstad  E J, et al. Precise and accurate in situ Pb-Pb dating of apatite, monazite, and sphene by laser ablation multiple-collector ICP MS [J]. Geochimica et Cosmochimica Acta,2002, 66 (6):1 051-1 066.
[61]Hawkins D P , Bowring S A. U-Pb monazite, xenotime and titanite geochronological constraints on the prograde to post-peak metamorphic thermal history of Paleoproterozoic migmatites from the Grand Canyon, Arizona [J]. Contributions to Mineralogy and Petrology, 1999, 134(2/3):150-169. 
[62]Storey C D, Jeffries T E, Smith M. Common lead-corrected laser ablation ICP-MS-U-Pb systematics and geochronology of titanite [J]. Chemical Geology, 2006, 227(1/2):37-52.
[63]Storey C D, Smith M P, Jeffries T E. In situ LA-ICP-MS U-Pb dating of metavolcanics of Norrbotten, Sweden: Records of extended geological histories in complex titanite grains [J]. Chemical Geology, 2007,240(1/2): 163-181.
[64]Cherniak D J. Diffusion of lead in plagioclase and K-feldspar, an investigation using Rutherford backscattering and resonant nuclear reaction analysis [J]. Contributions to Mineralogy and Petrology, 1995, 120(3/4): 358-371.
[65]Hayden L A, Watson E B,Wark D A. A thermobarometer for sphene [J]. Geochimica et Cosmochimica Acta, 2006, 70(18):237.
[66]Watson E B, Hayden L A, Wark D A, et al. Recent Developments in Accessory-Mineral Thermometry of Crustal Rocks: Zircon, Rutile and Sphene[Z]. EOS Transactions of AGU,2006: 87(36),Abstract U21A-06. 
[67]Dûchene S, Blichert-Toft J, Luais B, et al. The Lu-Hf dating of garnets and the ages of the Alpine high-pressure metamorphism [J]. Nature, 1997, 387(6633): 586-589.
[68]Monie P, Chopin C. 40Ar/39Ar dating in coesite-bearing and associated units of the Dora Maira massif, Western Alps [J].European Journal of Mineralogy,1991, 3(2):239-262.
[69]Rollinson  H R. Using Geochemical Data: Evaluation, Presentation, and Interpretation[M]. Singapore:Longman Singapore Publishers(Pte) Ltd, 1993:215-231.

[1] 韩雨, 牛漫兰, 朱光, 吴齐, 李秀财, 王婷. 郯庐断裂带肥东段早白垩世中期走滑运动的年代学证据[J]. 地球科学进展, 2015, 30(8): 922-939.
[2] 辛补社,杨华,王多云,付金华,姚泾利,罗安湘,张瑜. 甘肃靖远王家山地区凝灰岩锆石U-Pb年龄及地层对比意义[J]. 地球科学进展, 2013, 28(9): 1043-1048.
[3] 裴先治,刘战庆,丁仨平,李佐臣,李高阳,李瑞保,王 飞,李夫杰. 甘肃天水地区百花岩浆杂岩的锆石LA-ICP-MS U-Pb定年及其地质意义[J]. 地球科学进展, 2007, 22(8): 818-827.
[4] 余金杰,王登红,王平安,徐珏,李晓峰,陈毓川,陈振宇. 俯冲—碰撞和高压、超高压变质带中的金红石研究进展[J]. 地球科学进展, 2006, 21(1): 47-52.
[5] 翟明国. 变质动力学[J]. 地球科学进展, 1991, 6(3): 98-99.
阅读次数
全文


摘要