地球科学进展 ›› 2020, Vol. 35 ›› Issue (5): 441 -451. doi: 10.11867/j.issn.1001-8166.2020.041

综述与评述    下一篇

冬季黑潮延伸体海域海洋涡旋影响局地大气强对流的研究
刘秦玉 1, 2( ),张苏平 1, 2( ),贾英来 1, 2   
  1. 1.中国海洋大学物理海洋实验室,海洋与大气相互作用与气候实验室,山东 青岛 266100
    2.青岛海洋科学与技术试点国家实验室,山东 青岛 266100
  • 收稿日期:2020-03-07 修回日期:2020-04-10 出版日期:2020-05-10
  • 通讯作者: 张苏平 E-mail:liuqy@ouc.edu.cn;zsping@ouc.edu.cn
  • 基金资助:
    国家自然科学基金重大项目“黑潮及延伸体海域海气相互作用机制及其气候效应“(41490643)

Study About Ocean Eddy Effect on Strong Convection in Local Atmosphere over the Kuroshio Extension Region

Qinyu Liu 1, 2( ),Suping Zhang 1, 2( ),Yinglai Jia 1, 2   

  1. 1.Physical Oceanography Laboratory of Ocean University of China, Ocean-Atmosphere Interaction and Climate Laboratory, Qingdao 266100, China
    2.Qingdao National Laboratory for Marine Science and Technology,Qingdao 266100, China
  • Received:2020-03-07 Revised:2020-04-10 Online:2020-05-10 Published:2020-06-05
  • Contact: Suping Zhang E-mail:liuqy@ouc.edu.cn;zsping@ouc.edu.cn
  • About author:Liu Qinyu (1946-), female, Qingdao City, Shandong Province, Professor. Research areas include the ocean-atmosphere interactions. E-mail: liuqy@ouc.edu.cn
  • Supported by:
    the National Natural Science Foundation of China "Sea-air interaction mechanism in the Kuroshio and extended sea areas and its climate effect"(41490643)

黑潮延伸体海区是冬季西北太平洋向大气加热的关键海区。前人研究表明活跃在黑潮延伸体海区的海洋涡旋会通过影响海表面温度而影响海面风。回顾了最近几年该海域海洋涡旋影响局地大气的研究成果,重点从船测探空资料、卫星观测资料和模式数值实验3个方面分析和比对了已有的研究成果,依据该海区海洋涡旋导致大气异常的地转适应理论,得到了如下新的科学推论:海洋涡旋上空大气运动较慢时,大气对海洋涡旋的响应表现以气压调整机制为主,海洋涡旋的影响常常被限制在大气边界层中;海洋涡旋上空大气的运动较快时,大气对暖(冷)涡的响应以垂直混合机制为主,海表面风速在暖(冷)水上加(减)速,海表面风强辐合出现在暖水的背景风下游一侧,并从暖水上空携带了大量水汽;通过水汽凝结与海面辐合上升之间的正反馈机制,为导致大气中出现强对流提供了必要条件。该推论将有利于进一步定量刻画海洋涡旋对大气的影响。

The Kuroshio Extension (KE) is the key area where the water heats the atmosphere in the northwestern Pacific Ocean in winter. Previous studies show that the active eddies in the KE area can affect sea surface temperature and thus sea surface winds. The present study reviewed the progress about the influences of the eddies on local atmosphere in recent years. Analysis and comparison were made especially for the achievements from shipboard sounding data, satellite observations and numerical experiments. Based on the geostrophic adaptation theory involved in atmospheric anomalies induced by the eddies, the following new scientific deductions were suggested: Air pressure adjustment mechanism dominated in the atmospheric response to eddies under the conditions of weaker wind speed over the eddies. The influence of eddies was often limited in the atmospheric boundary layer. On the other hand, vertical mixing mechanism played a major role in the response of the atmosphere to warm (cold) eddies when air moved faster over the eddies. Surface wind speed increased (decreased) over the warm (cold) water. Significant wind convergence took place downwind the warm water, and large amount of water vapor was transported also downwind from the warm water surface. The positive feedback between water vapor condensation and rising air forced by the surface convergence provided necessary conditions for the development of strong convection in atmosphere. These deductions will be conducive to further depicting the impact of oceanic eddies on the atmosphere quantitatively.

中图分类号: 

图1 2014489日沿着航线从A1站(34°N, 145°E)到A11站(34°N, 148°E)船上观测结果[ 14 ]
(a) 相对湿度(彩色),位温(等值线),水平风(矢量)和云底高度(白点)的经度—高度剖面图,横坐标上分别用红、绿和蓝线表示暖水区,冷涡的西侧和冷涡的中心区位置;(b) 海表温度(蓝线)、海面气温(红线)以及两者之差(黑线);(c)海表面纬向风速(黑线)和经向风速(蓝线);(d)海平面气压(黑线);(e)海表面感热、潜热和湍流热通量
Fig.1 Observations onboard along the cruise from sounding station A1 (34°N, 145°E) at 03 UTC 8 April to sounding station A11 (34°N, 148°E) over the eddy at 02 UTC 9 April, 2014[ 14 ]
(a)Longitude‐height section of relative humidity (shading, unit: %), potential temperature (contour, unit: K), horizontal wind (vector, unit: m/s) and cloud base height (white dot). The three regimes discussed in this section are marked by the red (warm water), green (west edge of cold eddy), and blue (inside eddy) lines on the horizontal coordinate, respectively; (b) SST (blue line, unit: °C, left ordinate), SAT (red line, unit: °C, left ordinate), SST‐SAT (black line, unit: °C, right ordinate); (c) Surface zonal (black line, unit: m/s) and meridional (blue line, unit: m/s) wind velocities; (d) SLP (black line, unit: hPa); (e) Surface latent (blue line, unit: W/m 2), sensible (red line, unit: W/m 2), and turbulent (black line, unit: W/m 2) heat fluxes
图2 2016412~13日沿着航线从E64-E73船上观测结果[ 15 ]
(a)相对湿度(彩色),位温(2 ℃间隔的红色实线,加粗值为10.85 ℃),水平风(矢量)、抬升凝结高度(绿圈)、云底高度(黑圈)和海洋边界层高度(红圈)的经度—高度剖面图; (b) 海表温度(蓝线)和海表温度与海面气温之差(黑线); (c) 海面气温 (红线), 露点温度(蓝线)和低云云量(黑线); (d) 感热通量(黑线)和潜热通量(蓝线); (e)海平面气压(红线),水平风速(蓝线)和水平风向(风向杆);站点探空的时间用▲标记
Fig.2 Observations for E64-E73 stations from 12 UTC 12 April to 06 UTC, 13 April 2016[ 15 ]
(a) Longitude‐height section of relative humidity (rh, shaded), potential temperature (red contours at 2 ℃ intervals with 10.85 ℃ in bold), horizontal winds (arrows), and calculated LCL (green circles) from soundings, and the height of cloud base (CBH, black circles) and depth of MABL (red circles) from the ceilometer; (b) SST (blue line) and the difference between SST and SAT (DT, black line); (c) SAT (red line), dewpoint (Td, blue line, on the same scale as SAT), and low cloud fraction (LCF, black line); (d) SHF (black line) and LHF (blue line) calculated by the COARE 3.0 algorithm; and (e) SLP (red line), surface horizontal wind speed (blue line), and surface horizontal winds (barbs) from automatic meteorological station. The time of some soundings are marked by ▲
图3 冬季黑潮延伸体海域大气响应为垂直混合机制的2 070个反气旋涡(a, c)和1 719个气旋涡(b,d)合成的大气垂直剖面图[ 17 ]
(a)~(d)中填色为负的压力坐标下垂直速度,向上为正;(a)和(b)中等值线为比湿,(c)和(d)中等值线为垂直涡动热通量;垂直速度单位为1×10 -2 Pa/s,比湿为1×10 -3 J/(kg ·s),Q12’为1×10 -2 g/kg;图中没有*标记的位置为通过显著不为0的99%信度t-检验;(e)和(f)分别为反气旋涡和气旋涡的海表面温度异常合成的剖面,单位 R是涡旋半径
Fig.3 Composite patterns of vertical profiles of atmospheric response by Vertical Momentum Mixing mechanism type for 2 070 anticyclone (a, c) and 1 719 cyclone (b, d) respectively in winter Kuroshio Extension region[ 17 ]
Colors in (a)~(d) are negative vertical velocity in pressure coordinates, positive values indicate upward motion; Contours in (a) and (b) are specific humidity, contours in (c) and (d) are vertical eddy heat. Unit of vertical velocity is 1×10 -2 Pa/s, unit of specific humidity is 1×10 -3 J/(kg ·s), Q12’ is 1×10 -2 g/kg; All values shown without an asterisk are significantly different from zero at the 99% confidence level based on t testing; (e), (f) The composite SST profiles along the background wind direction across eddy centers, R is the eddy radius
图4 冬季黑潮延伸体海域气压调整机制响应的303个反气旋涡(ace)和517个气旋涡(b,d,f)合成图[ 17 ]
(a)~(d)中填色为负的压力坐标下垂直速度,向上为正;(a)和(b)中等值线为比湿,(c)和(d)中等值线为垂直涡动热通量;垂直速度单位为1×10 -2 Pa/s,比湿为1×10 -3 J/(kg ·s),Q12’为1×10 -2 g/kg;图中没有*标记的位置为通过显著不为0的99%信度t-检验;(e)和(f)分别为反气旋涡和气旋涡的海表面温度异常合成的剖面,单位 R是涡旋半径
Fig.4 Composite patterns of the atmospheric response by the Pressure Adjustment mechanism type for 303 anticyclones(ace) and 517 cyclones (bdf)[ 17 ]
Colors in (a)~(d) are negative vertical velocity in pressure coordinates, positive values indicate upward motion; Contours in (a) and (b) are specific humidity, contours in (c) and (d) are vertical eddy heat. Unit of vertical velocity is 1×10 -2 Pa/s, unit of specific humidity is 1×10 -3 J/(kg ·s), Q12’ is 1×10 -2 g/kg; All values shown without an asterisk are significantly different from zero at the 99% confidence level based on t testing; (e), (f) The composite SST profiles along the background wind direction across eddy centers, R is the eddy radius
图5 数值实验第12小时穿越涡旋中心的风矢量垂直剖面图[ 21 ]
干空气控制实验(a)和湿空气实验(b)第12小时穿越涡旋中心的水平—垂直速度剖面;为了使次级环流更加明显,风矢量的垂直速度分量放大了200倍,箭头颜色代表垂直速度异常大小,单位为10~2 m/s,向上为正
Fig.5 Horizontal and vertical wind vertical section across eddy center from numerical experiment output on 12th hour[ 21 ]
Dry air control experiment (a) wet air experiment (b) 12 th hour output of horizontal and vertical wind section across eddy center. Note that the vertical velocity is 200 times amplified to show the secondary circulation,Color of the vector indicates the vertical velocity,unit is 10~2 m/s,positive value for upward motion
1 Yu Lisan,Weller R A. Objectively analyzed air-sea heat fluxes for the global oce-free oceans (1981-2005)[J]. Bulletin of the American Meteorological Society,2007,88(4):527-539.
2 Zeng Qingcun. Adaptation and development in the atmosphere (1)[J]. Acta Meteorologica Sinica,1963,33(2):163-174.
曾庆存. 大气中的适应过程和发展过程(一)[J]. 气象学报,1963,33(2):163-174.
3 Ye Duzheng,Chao Jiping. On the multi-temporal characteristics of atmospheric motion—Adaptation, development and quasi-steady evolution[J]. Chinese Journal of Atmospheric Sciences,1998,22(4):385-398.
叶笃正,巢纪平. 论大气运动的多时态特征——适应、发展和准定常演变[J]. 大气科学,1998,22(4):385-398.
4 Wallace J M,Mitchell T P,Deser C. The influence of sea surface temperature on surface wind in the eastern equatorial Pacific: Seasonal and interannual variability[J]. Journal of Climate,1989,2(12):1 492-1 499.
5 Xie Shangping. Satellite observations of cool ocean-atmosphere interaction[J]. Bulletin of the American Meteorological Society,2004,85(2):195-208.
6 Chelton D B,Schlax M G,Freilich M H,et al. Satellite measurements reveal persistent small-scale features in ocean winds[J]. Science,2004,303(5 660):978-983.
7 Frenger I,Gruber N,Knutti R,et al. Imprint of Southern Ocean eddies on winds, clouds and rainfall[J]. Nature Geoscience,2013,6(8):608-612.
8 Maloney E D,Chelton D B. An assessment of sea surface temperature influence on surface winds in numerical weather prediction and climate models[J]. Journal of Climate, 2006,19(12): 2 743-2 762.
9 Lin Pengfei,Liu Hailong,Ma Jing,et al. Ocean mesoscale structure-induced air-sea interaction in a high-resolution coupled model[J]. Atmospheric and Oceanic Science Letters,2019. DOI:10.1080/16742834.2019.1569454.
doi: 10.1080/16742834.2019.1569454    
10 Ma Xiaohui,Chang Ping,Saravanan R,et al. Distant influence of Kuroshio Eddies on North Pacific weather patterns[J]. Scientific Report, 2015,5:17785.
11 Ma Xiaohui,Chang Ping,Saravanan R,et al. Importance of resolving Kuroshio front and eddy influence in simulating the North Pacific storm track[J]. Journal of Climate,2017,30(5):1 861-1 880.
12 Foussard A, Lapeyre G, Plougonven R. Storm tracks response to oceanic eddies in idealized atmospheric simulations[J]. Journal of Climate,2018,32:445-463.
13 Tokinaga H,Tanimoto Y,Nonaka M, et al. Atmospheric sounding over the winter Kuroshio Extension: Effect of surface stability on atmospheric boundary layer structure[J]. Geophysical Research Letters, 2006, 33(4):L04703. DOI:10.1029/2005GL025102.
doi: 10.1029/2005GL025102    
14 Jiang Yuxi,Zhang Suping,Xie Shangping,et al. Effects of a cold ocean eddy on local atmospheric boundary layer near the Kuroshio Extension: In situ observations and model experiments[J]. Journal of Geophysical Research: Atmospheres,2019 ,124(11): 5 779-5 790.
15 Wang Qian,Zhang Suping,Xie Shangping,et al. Observed variations of the atmospheric boundary layer and stratocumulus over a warm eddy in the Kuroshio Extension[J]. Monthly Weather Review,2019,147(5):2 581-2 591.
16 Ma Jing,Xu Haiming,Dong Changming,et al. Atmospheric responses to oceanic eddies in the Kuroshio Extension region[J]. Journal of Geophysical Research: Atmospheres,2015,120(13):6 313-6 330.
17 Chen Longjing,Jia Yinglai,Liu Qinyu. Oceanic eddy-driven atmospheric secondary circulation in the winter Kuroshio Extension region[J]. Journal of Oceanography,2017,73(3):295-307.
18 Nencioli F,Dong Changming,Dickey T,et al. A vector geometry-based eddy detection algorithm and its application to a high-resolution numerical model product and high-frequency radar surface velocities in the Southern California Bight[J]. Journal of Atmospheric and Oceanic Technology, 2010, 27(3): 564-579.
19 Ma Jing,Dong Changming,Xu Haiming. Seasonal variations in atmospheric responses to oceanic eddies in the Kuroshio Extension[J]. Tellus, Series A (Dynamic Meteorology & Oceanography),2016,68:31563.
20 Chelton D,Schlax M,Samelson R. Global observations of nonlinear mesoscale eddies[J]. Progress in Oceanography, 2011,91:167-216.
21 Chen Longjing. Influence of Ocean Vortex on the Kuroshio Extension in Winter to the Atmosphere[D]. Qingdao:Ocean University of China, 2017.
陈隆京.冬季黑潮延伸体海区海洋涡旋对大气的影响[D]. 青岛:中国海洋大学,2017.
22 Shan Haixia, Dong Changming. Atmospheric responses to oceanic mesoscale eddies based on an idealized model[J]. International Journal of Climatology,2019,39(3):1 665-1 683.
23 Jia Yinglai,Chen Longjing,Liu Qinyu,et al. The role of background wind and moisture in the atmospheric response to oceanic eddies during winter in the Kuroshio Extension region[J]. Atmosphere, 2019, 10(9): 527.
24 Zhang Xingzhi, Ma Xiaohui,Wu Lixin. Effect of mesoscale oceanic eddies on extratropical cyclogenesis: A tracking approach[J]. Journal of Geophysical Research: Atmospheres,2019,124:6 411-6 422.
25 Liu Na,Wang Hui,Ling Tiejun,et al. Review and prospect of global operational ocean forecasting[J]. Advances in Earth Science, 2018,33(2):131-140.
刘娜,王辉,凌铁军,等.全球业务化海洋预报进展与展望[J].地球科学进展,2018,33(2):131-140.
26 Wang Shihong,Zhao Yiding,Yin Xunqiang,et al. Current status of global ocean reanalysis datasets[J]. Advances in Earth Science, 2018,33(8): 794-807.
王世红,赵一丁,尹训强,等.全球海洋再分析产品的研究现状[J].地球科学进展, 2018,33(8):794-807.
27 Yang Yikai,Wang Dongxiao,Wang Qiang,et al. Eddy induced transport of saline Kuroshio water into the northern South China Sea[J]. Journal of Geophysical Research:Oceans, 2019, 124: 6 673-6 687.
28 Wang Qiang,Zeng Lili, Chen Ju, et al. The linkage of Kuroshio intrusion and mesoscale eddy variability in the northern South China Sea:Subsurface speed maximum[J]. Geophysical Research Letters, 2020. DOI:10.1029/2020GL087034.
doi: 10.1029/2020GL087034    
29 Zeng Lili,Schmitt R W, Li Laifang,et al. Forecast of summer precipitation in the yangtze river valley based on south China sea springtime sea surface salinity[J]. Climate Dynamics, 2019, 53(9/10): 5 495-5 509.
[1] 许丽晓, 刘秦玉. 海洋涡旋在模态水形成与输运中的作用[J]. 地球科学进展, 2021, 36(9): 883-898.
阅读次数
全文


摘要