Please wait a minute...
img img
高级检索
地球科学进展  2013, Vol. 28 Issue (3): 327-336    DOI: 10.11867/j.issn.1001-8166.2013.03.0327
综述与评述     
不透水面遥感提取及应用研究进展
王 浩,卢善龙,吴炳方*,李晓松
中国科学院遥感应用研究所
Advances in Remote Sensing of Impervious Surfaces Extraction and Its Applications
Wang Hao, Lu Shanlong, Wu Bingfang, Li Xiaosong
Institute of Remote Sensing Applications, Chinese Academy of Sciences, Beijing 100101,China
 全文: PDF(931 KB)  
摘要:

不透水面信息的提取方法与应用是近年来城市规划、热岛效应分析、水环境监测和水资源管理等诸多领域的研究热点。遥感技术的发展使不透水面快速准确提取成为可能。从影像特征(光谱、空间几何、时间)选择、分类器(参数、非参数)选择和空间尺度(像元、亚像元尺度)选择3个方面归纳和总结了各种不透水面遥感提取方法原理、应用现状和存在问题,回顾了不透水面在城市化监测、人口估计、水环境监测、热岛效应分析、水文气候建模分析等领域的应用,指出了不透水面遥感提取和应用的发展方向。

关键词: 不透水面遥感提取特征选择亚像元尺度不透水面应用    
Abstract:

The methods of impervious surface extraction and its applications is a focus in many fields, such as urban planning, heat island effect analysis, water environment monitoring and water resources management. The development of remote sensing technology provides new ideas to fast and accurate impervious surfaces extraction. The paper reviewed remote sensing methods of impervious surfaces extraction from aspects of image feature (spectral, spatial and geometric, temporal features), classifier (supervised, unsupervised), and spatial scale (pixel, subpixel), and also reviewed applications of impervious surface information to urbanization monitoring, population estimation, water environment monitoring, heat island impact, and hydrometeorologic modeling. Image feature is the base of remote sensing, and classifier is the tool to operate image features while consideration of spatial scale can reduce the influence of mixed pixel. They three together provided a profound understanding in advantages and disadvantages of each remote sensing method. Classifier optimization, image multifeatures integration, and physical characteristics differentiation among impervious surface materials would be the trend of impervious surface extraction based on remote sensing.

Key words: Impervious surface    Remote sensing extraction    Feature selection    Sub-pixel scale    Impervious surface application
收稿日期: 2012-08-17 出版日期: 2012-03-10
:  TP75  
基金资助:

国家自然科学基金重点项目“干旱区陆表蒸散遥感估算的参数化方法研究”(编号:91025007);中国科学院知识创新工程重大项目“重大工程生态环境效应遥感监测与评估”(编号:KZCX1-YW-08-03)资助.

通讯作者: 吴炳方(1962-),男,江西玉山人,研究员,主要从事农业、水资源、生态环境遥感研究与应用.E-mail:wubf@irsa.ac.cn   
作者简介: 王浩(1985-),男,河北唐县人,博士研究生,主要从事流域下垫面要素反演,水资源量遥感估算等研究.E-mailwanghao@irsa.ac.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
王 浩
卢善龙
吴炳方
李晓松

引用本文:

王 浩,卢善龙,吴炳方,李晓松. 不透水面遥感提取及应用研究进展[J]. 地球科学进展, 2013, 28(3): 327-336.

Wang Hao, Lu Shanlong, Wu Bingfang, Li Xiaosong. Advances in Remote Sensing of Impervious Surfaces Extraction and Its Applications. Advances in Earth Science, 2013, 28(3): 327-336.

链接本文:

http://www.adearth.ac.cn/CN/10.11867/j.issn.1001-8166.2013.03.0327        http://www.adearth.ac.cn/CN/Y2013/V28/I3/327

[1]Arnold Jr C L, Gibbons C J. Impervious surface coverage: The emergence of a key environmental indicator[J]. Journal of the American Planning Association, 1996, 62(2): 243-258.

[2]Brun S, Band L. Simulating runoff behavior in an urbanizing watershed[J]. Computers, Environment and Urban Systems, 2000, 24(1): 5-22.

[3]Moscrip A L, Montgomery D R. Urbanization, flood frequency, and salmon abundance in puget lowland streams1[J]. Journal of the American Water Resources Association, 1997, 33(6): 1 289-1 297.

[4]Novotny V, Olem H, Olness A. Water Quality: Prevention, Identification, and Management of Diffuse Pollution[M].  New York:Van Nostrand Reinhold, 1994.

[5]Brabec E, Schulte S, Richards P L. Impervious surfaces and water quality: A review of current literature and its implications for watershed planning[J]. Journal of Planning Literature, 2002, 16(4): 499-514.

[6]Gillies R R, Box J B, Symanzik J, et al. Effects of urbanization on the aquatic fauna of the Line Creek watershed, Atlanta—A satellite perspective[J]. Remote Sensing of Environment, 2003, 86(3): 411-422.

[7]Oke T R. Boundary Layer Climates[M]. London: Routledge, 1987.

[8]Yuan F, Bauer M E. Comparison of impervious surface area and normalized difference vegetation index as indicators of surface urban heat island effects in Landsat imagery[J]. Remote Sensing of Environment, 2007, 106(3): 375-386.

[9]Yu Shuqiu. Study on annual variation of precipitation and urban effect in Beijing[J]. Progress in Natural Science, 2007, 17(5): 632-638.[于淑秋. 北京地区降水年际变化及其城市效应的研究[J]. 自然科学进展, 2007, 17(5): 632-638.]

[10]Slonecker E T, Jennings D B, Garofalo D. Remote sensing of impervious surfaces: A review[J]. Remote Sensing Reviews, 2001, 20(3): 227-255.

[11]Chen Zhiqiang, Chen Jianfei. Investigation on extracting the space information of urban land-use from high spectrum resolution image of ASTER by NDBI method[J]. Geo-Information Science, 2006, 8(2): 137-140.[陈志强, 陈健飞. 基于指数法的城镇用地影像识别分析与制图[J]. 地球信息科学, 2006, 8(2): 137-140.]

[12]Ma Xuemei, Li Xifeng. Extracting impervious surface and its change information using satellite remote sensing data[J]. Agricultural Science & Technology, 2008, 9(6),doi:10.3969/j.issn.1009-4229-B.2008.06.038.[马雪梅, 李希峰. 流域不透水面及其变化信息提取[J]. 农业科学与技术, 2008, 9(6),doi:10.3969/j.issn.1009-4229-B.2008.06.038.]

[13]Xu Hanqiu. Fast information extraction of urban built-up land based on the analysis of spectral signature and normalized difference index[J]. Geographical Research, 2005, 24(2): 311-320.[徐涵秋. 基于谱间特征和归一化指数分析的城市建筑用地信息提取[J]. 地理研究, 2005, 24(2): 311-320.]

[14]Xu Hanqiu. A new remote sensing index for fastly extracting impervious surface information[J]. Geomatics and Information Science of Wuhan University, 2008, 33(11): 1 150-1 153.[徐涵秋. 一种快速提取不透水面的新型遥感指数[J]. 武汉大学学报: 信息科学版, 2008, 33(11): 1 150-1 153.]

[15]Bruzzone L, Marconcini M, Wegmuller U, et al. An advanced system for the automatic classification of multitemporal SAR images[J]. IEEE Transactions on Geoscience and Remote Sensing, 2004, 42(6): 1 321-1 334.

[16]Liao M, Jiang L, Lin H, et al. Urban change detection based on coherence and intensity characteristics of SAR imagery[J]. Photogrammetric Engineering and Remote Sensing, 2008, 74(8): 999-1 006.

[17]Lu D, Hetrick S, Moran E. Land cover classification in a complex urban-rural landscape with quickBird imagery[J]. Photogrammetric Engineering & Remote Sensing, 2010, 76(10): 1 159-1 168.

[18]Zhang Y, Chen L, He C, et al. Estimating urban impervious surfaces using LS-SVM with multi-scale texture[C]∥2009 Joint Urban Remote Sensing Event. Nanjing,2009:1-3.

[19]Jiang Liming, Liao Mingsheng, Lin Hui, et al. Estimating urban impervious surface percentage with ERS-1/2 InSAR data[J]. Journal of Remote Sensing, 2008,(1): 176-185.[江利明, 廖明生, 林珲,等. 利用雷达干涉数据进行城市不透水层百分比估算[J]. 遥感学报, 2008,(1): 176-185.]

[20]Yang L, Jiang L, Lin H, et al. Quantifying sub-pixel urban impervious surface through fusion of optical and InSAR imagery[J]. Giscience & Remote Sensing, 2009, 46(2): 161-171.

[21]Germaine K A, Hung M C. Delineation of impervious surface from multispectral imagery and lidar incorporating knowledge based expert system rules[J]. Photogrammetric Engineering and Remote Sensing, 2011, 77(1): 75-85.

[22]Weng Q, Hu X, Liu H. Estimating impervious surfaces using linear spectral mixture analysis with multitemporal ASTER images[J]. International Journal of Remote Sensing, 2009, 30(18): 4 807-4 830.

[23]Yang L, Huang C, Homer C G, et al. An approach for mapping large-area impervious surfaces: Synergistic use of Landsat-7 ETM+ and high spatial resolution imagery[J]. Canadian Journal of Remote Sensing, 2003, 29(2): 230-240.

[24]Powell S L, Cohen W B, Yang Z, et al. Quantification of impervious surface in the Snohomish water resources inventory area of western Washington from 1972-2006[J]. Remote Sensing of Environment, 2008, 112(4): 1 895-1 908.

[25]Zhao Yingshi. Remote Sensing Application of Principles and Methods[M]. Beijing: Science Press, 2003.[赵英时. 遥感应用分析原理与方法[M]. 北京: 科学出版社, 2003.]

[26]Hodgson M E, Jensen J R, Tullis J A, et al. Synergistic use of lidar and color aerial photography for mapping urban parcel imperviousness[J]. Photogrammetric Engineering and Remote Sensing, 2003, 69(9): 973-980.

[27]Lu D, Weng Q. Extraction of urban impervious surfaces from an IKONOS image[J]. International Journal of Remote Sensing, 2009, 30(5): 1 297-1 311.

[28]Jia Kun, Li Qiangzi, Tian Yichen, et al. A review of classification methods of remote sensing imagery[J]. Spectroscopy and Spectral Analysis, 2011, 31(10): 2 618-2 623.[贾坤, 李强子, 田亦陈,等. 遥感影像分类方法研究进展[J]. 光谱学与光谱分析, 2011, 31(10): 2 618-2 623.]

[29]Atkinson P, Tatnall A. Introduction neural networks in remote sensing[J].International Journal of Remote Sensing, 1997, 18(4): 699-709.

[30]Pal M, Mather P M. An assessment of the effectiveness of decision tree methods for land cover classification[J]. Remote Sensing of Environment, 2003, 86(4): 554-565.

[31]Weng Q, Hu X. Medium spatial resolution satellite imagery for estimating and mapping urban impervious surfaces using LSMA and ANN[J]. IEEE Transactions on Geoscience and Remote Sensing, 2008, 46(8): 2 397-2 406.

[32]Rumelhart D E, Hinton G, Williams R J. Learning Internal Representations by Error Propagation, Parallel Distributed Processing: Explorations in the Microstructure of Cognition, Vol. 1: Foundations[M].Cambridge: MIT Press, 1986.

[33]Corresponding C S M, Raju P, Badrinath K. Classification of wheat crop with multi-temporal images: Performance of maximum likelihood and artificial neural networks[J]. International Journal of Remote Sensing, 2003, 24(23): 4 871-4 890.

[34]Civco D L, Hurd J D. Impervious surface mapping for the state of Connecticut[C]∥Proceedings of the ASPRS Annual Conference. Bethesda,Maryland: American Society for Photogrammetiy and Remote Sensing, 1997.

[35]Mohapatra R P, Wu C. Subpixel Imperviousness Estimation with IKONOS Imagery: An Artificial Neural Network Approach[M]. Boca Raton, FL: CRC Press, 2008.

[36]Lee S, Lathrop R G. Subpixel analysis of Landsat ETM+ using Self-Organizing Map (SOM) neural networks for urban land cover characterization[J].  IEEE Transactions on Geoscience and Remote Sensing, 2006, 44(6): 1 642-1 654.

[37]Hu X, Weng Q. Estimating impervious surfaces from medium spatial resolution imagery using the self-organizing map and multi-layer perceptron neural networks[J]. Remote Sensing of Environment, 2009, 113(10): 2 089-2 102.

[38]Kavzoglu T, Mather P. The use of backpropagating artificial neural networks in land cover classification[J]. International Journal of Remote Sensing, 2003, 24(23): 4 907-4 938.

[39]Foody G, Arora M. An evaluation of some factors affecting the accuracy of classification by an artificial neural network[J]. International Journal of Remote Sensing, 1997, 18(4): 799-810.

[40]Breiman L, Friedman J H, Olshen R A, et al. Classification and Regression Trees[M]. Belmont,CA: Wadsworth International Group, 1984.

[41]Yang L M, Xian G, Klaver J M, et al. Urban land-cover change detection through sub-pixel imperviousness mapping using remotely sensed data[J]. Photogrammetric Engineering and Remote Sensing, 2003, 69(9): 1 003-1 010.

[42]Homer C, Huang C, Yang L, et al. Development of a 2001 national landcover database for the United States[J]. Photogrammetric Engineering and Remote Sensing, 2004, 70: 829-840.

[43]Liao Mingsheng, Jiang Liming, Lin Hui, et al. Estimating urban impervious surface percent using boosting as a refinement of CART analysis[J]. Geomatics and Information Science of Wuhan University, 2008, 32(12): 1 099-1 102.[廖明生, 江利明, 林珲,等. 基于 CART 集成学习的城市不透水层百分比遥感估算[J]. 武汉大学学报: 信息科学版, 2008, 32(12): 1 099-1 102.]

[44]Breiman L. Arcing classifier (with discussion and a rejoinder by the author)[J]. The Annals of Statistics, 1998, 26(3): 801-849.

[45]Cortes C, Vapnik V. Support-vector networks[J]. Machine learning, 1995, 20(3): 273-297.

[46]Esch T, Himmler V, Schorcht G, et al. Large-area assessment of impervious surface based on integrated analysis of single-date Landsat-7 images and geospatial vector data[J]. Remote Sensing of Environment, 2009, 113(8): 1 678-1 690.

[47]Klein D, Esch T, Himmler V, et al. Assessment of urban extent and imperviousness of Cape Town using TerraSAR-X and Landsat images[C]∥2009 IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2009. Piscataway,United States: IEEE, 2009.

[48]Roli F, Fumera G. Support vector machines for remote-sensing image classification[J]. Constraints, 2001, 1: 1.

[49]Huang C, Davis L, Townshend J. An assessment of support vector machines for land cover classification[J]. International Journal of Remote Sensing, 2002, 23(4): 725-749.

[50]Dare P M. Shadow analysis in high-resolution satellite imagery of urban areas[J]. Photogrammetric Engineering and Remote Sensing, 2005, 71(2): 169-177.

[51]Hsieh P F, Lee L C, Chen N Y. Effect of spatial resolution on classification errors of pure and mixed pixels in remote sensing[J]. IEEE Transactions on Geoscience and Remote Sensing, 2001, 39(12): 2 657-2 663.

[52]Roger Cronshey. Urban Hydrology for Small Watersheds[M]. Washington DC: Engineering Division, Soil Conservation Service, U.S. Depatrment of Agriculture, 1975.

[53]Bauer M E, Heinert N J, Doyle J K, et al. Impervious surface mapping and change monitoring using Landsat remote sensing[C]∥Proceedings of the ASPRS Annual Conference Bethesda. Maryland: American Society for Photogrammetiy and Remote Sensing, 2004.

[54]Chabaeva A A, Civco D L, Prisloe S. Development of a population density and land use based regression model to calculate the amount of imperviousness[C]∥ASPRS Annual Conference Proceedings. American Society for Photogrammetiy and Remote Sensing, 2004.

[55]Elvidge C D, Tuttle B T, Sutton P C, et al. Global distribution and density of constructed impervious surfaces[J]. Sensors, 2007, 7(9): 1 962-1 979.

[56]Matthias B, Martin H. Mapping imperviousness using NDVI and linear spectral unmixing of ASTER data in the Cologne-Bonn region (Germany)[C]∥Proceeding of the SPIE 10th International Symposium on Remote Sensin. Spain,2003.

[57]Bauer M E, Loffelholz B, Wilson B, et al. Estimating and Mapping Impervious Surface Area by Regression Analysis of Landsat Imagery[M]. Boca Raton: CRC Press, Taylor & Francis Group, 2008.

[58]Carlson T N, Traci Arthur S. The impact of land use-land cover changes due to urbanization on surface microclimate and hydrology: A satellite perspective[J]. Global and Planetary Change, 2000, 25(1): 49-65.

[59]Yang X, Liu Z. Use of satellite-derived landscape imperviousness index to characterize urban spatial growth[J]. Computers, Environment and Urban Systems, 2005, 29(5): 524-540.

[60]Ridd M K. Exploring A V-I-S (Vegetation-Impervious surface-Soil) model for urban ecosystem analysis through remote-sensing-comparative anatomy for cities[J]. International Journal of Remote Sensing,1995, 16(12): 2 165-2 185.

[61]Phinn S, Stanford M, Scarth P, et al. Monitoring the composition of urban environments based on the Vegetation-Impervious surface-Soil (VIS) model by subpixel analysis techniques[J]. International Journal of Remote Sensing, 2002, 23(20): 4 131-4 153.

[62]Lu D, Weng Q. Use of impervious surface in urban land-use classification[J]. Remote Sensing of Environment,2006, 102(1/2): 146-160.

[63]Wu C S, Murray A T. Estimating impervious surface distribution by spectral mixture analysis[J]. Remote Sensing of Environment, 2003, 84(4): 493-505.

[64]Lu D, Weng Q. Spectral mixture analysis of the urban landscape in Indianapolis with Landsat ETM+  imagery[J]. Photogrammetric Engineering and Remote Sensing, 2004, 70(9): 1 053-1 062.

[65]Rashed T, Weeks J R, Roberts D, et al. Measuring the physical composition of urban morphology using multiple endmember spectral mixture models[J]. Photogrammetric Engineering and Remote Sensing, 2003, 69(9): 1 011-1 020.

[66]Wu C S. Normalized spectral mixture analysis for monitoring urban composition using ETM plus imagery[J]. Remote Sensing of Environment, 2004, 93(4): 480-492.

[67]Roberts D A, Gardner M, Church R, et al. Mapping chaparral in the Santa Monica Mountains using multiple endmember spectral mixture models[J]. Remote Sensing of Environment, 1998, 65(3): 267-279.

[68]Powell R L, Roberts D A, Dennison P E, et al. Sub-pixel mapping of urban land cover using multiple endmember spectral mixture analysis: Manaus, Brazil[J]. Remote Sensing of Environment, 2007, 106(2): 253-267.

[69]Wang Hao, Wu Bingfang, Li Xiaosong, et al. Extraction of impervious surface in Hai Basin using remote sensing[J]. Journal of Remote Sensing, 2011, 15(2): 388-400.[王浩, 吴炳方, 李晓松,等. 流域尺度的不透水面遥感提取[J]. 遥感学报, 2011, 15(2): 388-400.]

[70]Matsushita B, Fukushima T. Methods for retrieving hydrologically significant surface parameters from remote sensing: A review for applications to east Asia region[J]. Hydrological Processes, 2009, 23(4): 524-533.

[71]Weng Q, Hu X, Lu D. Extracting impervious surfaces from medium spatial resolution multispectral and hyperspectral imagery: A comparison[J]. International Journal of Remote Sensing, 2008, 29(11): 3 209-3 232.

[72]Xian G, Crane M. Assessments of urban growth in the Tampa Bay watershed using remote sensing data[J]. Remote Sensing of Environment, 2005, 97(2): 203-215.

[73]Lu D, Weng Q, Li G. Residential population estimation using a remote sensing derived impervious surface approach[J]. International Journal of Remote Sensing, 2006, 27(16): 3 553-3 570.

[74]Azar D, Graesser J, Engstrom R, et al. Spatial refinement of census population distribution using remotely sensed estimates of impervious surfaces in Haiti[J]. International Journal of Remote Sensing, 2010, 31(21): 5 635-5 655.

[75]Schueler T R. The importance of imperviousness[J]. Watershed Protection Techniques, 1994, 1(3): 100-111.

[76]Schueler T R, Fraley-McNeal L, Cappiella K. Is impervious cover still important? Review of recent research[J]. Journal of Hydrologic Engineering, 2009, 14(4): 309-315.

[77]Roy Sen S, Yuan F. Trends in extreme temperatures in relation to urbanization in the Twin Cities Metropolitan area, Minnesota[J]. Journal of Applied Meteorology and Climatology, 2009, 48(3): 669-679.

[78]Imhoff M L, Zhang P, Wolfe R E, et al. Remote sensing of the urban heat island effect across biomes in the continental USA[J]. Remote Sensing of Environment, 2010, 114(3): 504-513.

[79]Lee S, French S P. Regional impervious surface estimation: An urban heat island application[J]. Journal of Environmental Planning and Management, 2009, 52(4): 477-496.

[80]Graham P H, Costello L S, Mallon H J. Estimation of imperviousness and specific curb length for forecasting stormwater quality and quantity[J]. Journal of Water Pollution Control Federation, 1974, 46(4): 717-725.

[81]Montzka C, Canty M, Kunkel R, et al. Modelling the water balance of a mesoscale catchment basin using remotely sensed land cover data[J]. Journal of Hydrology, 2008, 353(3/4): 322-334.

[82]Zhou Y, Wang Y, Gold A J, et al. Modeling watershed rainfall-runoff relations using impervious surface-area data with high spatial resolution[J]. Hydrogeology Journal, 2010, 18(6): 1 413-1 423.

[83]Yang G, Bowling L C, Cherkauer K A, et al. Hydroclimatic response of watersheds to urban intensity: An observational and modeling-based analysis for the White River Basin, Indiana[J]. Journal of Hydrometeorology, 2010, 11(1): 122-138.

[84]Hansen M, Dubayah R, DeFries R. Classification trees: An alternative to traditional land cover classifiers[J]. International Journal of Remote Sensing, 1996, 17(5): 1 075-1 081.

[85]Huang C, Townshend J. A stepwise regression tree for nonlinear approximation: Applications to estimating subpixel land cover[J]. International Journal of Remote Sensing, 2003, 24(1): 75-90.

[86]Pu R, Gong P, Michishita R, et al. Spectral mixture analysis for mapping abundance of urban surface components from the Terra/ASTER data[J]. Remote Sensing of Environment, 2008, 112(3): 939-954.

[1] 黄健熙;吴炳方;曾源;田亦陈. 水平和垂直尺度乔、灌、草覆盖度遥感提取研究进展[J]. 地球科学进展, 2005, 20(8): 871-881.
[2] 吴炳方;曾源;黄进良;. 遥感提取植物生理参数LAI/FPAR的研究进展与应用[J]. 地球科学进展, 2004, 19(4): 585-590.