地球科学进展 ›› 2002, Vol. 17 ›› Issue (5): 782 -786. doi: 10.11867/j.issn.1001-8166.2002.05.0782

研究简报 上一篇    下一篇

全球地壳运动的背景场及其研究进展
金双根,朱文耀   
  1. 中国科学院上海天文台,上海 200030
  • 收稿日期:2001-11-30 修回日期:2002-05-20 出版日期:2002-12-20
  • 通讯作者: 金双根(1975-),男,安徽安庆人,博士研究生,主要从事构造板块运动究.E-mail: sgjin@center.shao.ac.cn E-mail:sgjin@center.shao.ac.cn
  • 基金资助:

    国家重点基础研究发展规划项目“全球坐标框架下的中国大陆现今地壳运动特征”(编号:G1998040703);国家自然科学基金项目“GPS应用于中国大陆地壳运动监测的资料处理统一规范”(编号:40174009)资助.

THE BACKGROUND FIELD OF GLOBAL CRUSTAL MOTIONS AND ITS STUDYING PROGRESS 

JIN Shuang-gen,  ZHU Wen-yao   

  1. Shanghai Observatory, Chinese Academy of Sciences, Shanghai 200030,China
  • Received:2001-11-30 Revised:2002-05-20 Online:2002-12-20 Published:2002-10-01

全球地壳运动是在全球地壳运动背景场中发生的,其背景场的运动参数是表征地壳运动的最基本特征。由于现今板块运动模型ITRF序列均忽略板块边界部分,并且板块以NUVEL1A模型来划分,由此建立的全球板块运动模型不能作为一个严格的全球地壳运动背景场。利用区域速度场和ITRF2000速度场建立一个包括非刚体的板块边界区域和刚体板块的全球地壳运动模型,其板块总角动量ΙLΙ=0.131°/Ma,即不为零,存在整体旋转,由此建立无整体旋转(NNR)模型,并评述其研究进展。

The global crust is moving in the background field of global crustal motions, whose Euler parameter is a basic character of plate motion. A significant portion of the Earth's surface consists of zones of diffuse deformation, whose interior regions move at distinctly different velocities from that of adjacent plates, and, because of their complexities, have been ignored in previous models, such as ITRF 96VEL,ITRF 97VEL and ITRF 2000VEL We have calculated a new NNR model that incorporates both rigid plate and plate boundary zones with ITRF 2000 velocity field and local GPS field. The total angular momentum of the 22 tectonic plates is 0.131o/Ma, which shows the ITRF 2000 is not sufficient accordant with the definition of CTRF. The inconsistency will influence the long-term maintenance and highly accurate application of ITRF 2000 and long-term variation of the Earth Rotation Parameters, so we infer an accurate No-Net-Rotation model that differences from previous NNR models and consists the diffuse boundary zone, such as the central and southeast Asia, the extending belts of north America plate. At last we remark on the progress of the plate motion model.

中图分类号: 

[1]DeMets C, Gordon R, Argus D. Current plate motions [J]. Geophysical Journal of International, 1990, 101:425-478.
[2]DeMets C, Gordon R, Argus D,et al. Effect of recent revisions to the geomagnetic reversal time scale on estimates of current plate motions [J]. Geophysical Research Letters. 1994, 21: 2 191-2 194.
[3]Alice E, Gripp A. Current plate velocities relative to the hotspots incorporating the NUVEL-1 global plate motion model [J]. JGR, 1990, 17(8): 1 109-1 112.
[4]Argus D F, Gordon R G. No-Net-Rotation model of current plate velocities incorporating plate motion model NUVEL1 [J]. Geophysical Research Letters, 1991,18(11): 2 039-2 042.
[5]Zhu Wenyao, Han Jilong, Ma Wenzhang. Global plate motion model based on ITRF96 and ITRF9[J]. Acta Astronomica Sinica,2000,4(3):312-319.[ 朱文耀,韩继龙,马文章. 基于ITRF96和ITRF97的全球板块运动模型[J]. 天文学报,2000,41(3):312-319.]
[6]Ding Guoyu, Lu Yanshou. The Generality of China Lithosphere Dynamies[M]. Beijing Seismological Press,1991.142-153.[丁国瑜, 卢演俦. 中国岩石圈动力学概论[M].北京:地震出版社,1991.142-153.]
[7]Hike K. The Amurian plate motion and current plate kinematics in East Asia [J]. Journal of Geophysics Research, 1999,104: 29 147-29 155.
[8]Seno T, Stein S. Can the Okhotsk plate be discriminated from the North America plate?[J]. Journal of Geophysics Research, 1996, 101:11 305-11 315.
[9]Michel G. Crustal motion and block behavior in SE-Asia from GPS measurements [J]. Earth Planet Science Letters, 2001,187: 239-244.
[10]Reilinger R E, McClusky S C, Oral M B,et al. Global Position System measurements of present-day crustal movements in the Arabia-Africa-Eurasia plate collision zone[J]. Journal of Geophysics Research, 1997, 102(B5): 9 983-9 999.
[11]Zhang Qiang, Zhu Wenyao. Global plate motion models incorporating the velocity field of ITRF96 [J]. Geophysical Research Letters, 1999, 26(18): 2 813-2 816.
[12]Zhu Wenyao, Cheng Zongyi, Wang Xiaoya,et al. Background of crustal movement of Chinese mainland[J]. Chinese Science Bulletin,1999,44(14):1 537-1 539.[朱文耀, 程宗颐,王小亚,等.中国地壳运动的全球背景场[J]. 科学通报,1999,44(14):1 537-1 539.]

[1] 吕红华, 周祖翼. 前陆盆地陆源沉积序列的特征与成因机制[J]. 地球科学进展, 2010, 25(7): 706-714.
[2] 陈凌,程骋,危自根. 华北克拉通边界带区域深部结构的特征差异性及其构造意义[J]. 地球科学进展, 2010, 25(6): 571-581.
[3] 刘冠中,王建军,王在华,蒋靖祥,谢周敏,李秦. 独山子台跨断层垂直形变观测资料干扰消除研究[J]. 地球科学进展, 2009, 24(5): 523-531.
[4] 李岩峰,曲国胜,张进. 弧形构造研究进展[J]. 地球科学进展, 2007, 22(7): 708-715.
[5] 刘洁;刘启元;宋惠珍;童晓光. 造山动力学定量研究——理论与方法[J]. 地球科学进展, 2005, 20(5): 533-540.
[6] 王登红;邹天人;徐志刚;余金杰;付小方. 伟晶岩矿床示踪造山过程的研究进展[J]. 地球科学进展, 2004, 19(4): 614-620.
[7] 黄荣辉. 大气科学发展的回顾与展望[J]. 地球科学进展, 2001, 16(5): 643-657.
[8] 陈增强,胡瑞华,刘立嵩. 中国地壳运动观测网络在地球科学研究中的应用前景[J]. 地球科学进展, 2000, 15(4): 421-425.
[9] 肖文交,周火兆秀,杨振宇,赵西西. 大别—郯庐—苏鲁造山带复合旋转拼贴作用[J]. 地球科学进展, 2000, 15(2): 147-153.
[10] 左国朝,吴汉泉. 北祁连中段早古生代双向俯冲—碰撞造山模式剖析[J]. 地球科学进展, 1997, 12(4): 315-323.
[11] 董云鹏,张国伟. 造山带与前陆盆地结构构造及动力学研究思路和进展[J]. 地球科学进展, 1997, 12(1): 1-6.
阅读次数
全文


摘要