地球科学进展 ›› 2014, Vol. 29 ›› Issue (2): 238 -249. doi: 1001-8166(2014)02-0238-12

上一篇    下一篇

区域中尺度模式云微物理参数化方案特征及其在中国的适用性
尹金方 1( ), 王东海 1, 翟国庆 2   
  1. 1 中国气象科学研究院灾害天气国家重点实验室,北京 100081
    2 浙江大学地球科学系,浙江 杭州 310027
  • 收稿日期:2013-10-12 修回日期:2014-01-27 出版日期:2014-03-10
  • 基金资助:
    财政部/科技部公益性行业(气象)科研专项#cod#x0201c;东亚区域云与陆表物理过程的模式参数化技术研究#cod#x0201d;(编号:GYHY201006014)和#cod#x0201c;东亚区域数值预报业务模式关键物理过程参数化技术系统研究#cod#x0201d;(编号:GYHY200806007)资助.

A Study of Characteristics of the Cloud Microphysical Parameterization Schemes in Mesoscale Models and Its Applicability to China

Jinfang Yin 1, Donghai Wang 1, Guoqing Zhai 2   

  1. 1. State Key Laboratory of Severe Weather, Chinese Academy of Meteorological Sciences, Beijing 100081,China
    2. Department of Earth Science, Zhejiang University, Hangzhou 310027, China
  • Received:2013-10-12 Revised:2014-01-27 Online:2014-03-10 Published:2014-02-10

云微物理参数化方案在数值模式中起着重要的作用,是影响数值天气预报和气候预测准确性的最大因素。系统回顾了中尺度数值模式中云微物理参数化方案的研究进展,并统计分析了最近十余年云微物理参数化方案在中国范围内的敏感性试验研究成果。Lin方案和RutledgeHobbs方案奠定了中尺度模式中云微物理参数化方案的基础,其他方案都是直接或间接在这2个方案的基础上从多方面改进而形成的。这些改进主要体现在:①水凝物粒子分类数目;②冰核活化;③粒子谱分布描述函数;④粒子谱截距的取值;⑤粒子间相互转换阈值大小的设定。中国范围内云微物理参数化方案敏感性试验研究成果统计表明,使用WRF模式中Lin方案的模拟效果较好,MM5模式采用Goddard和Reisner方案效果较好。

: Cloud microphysical scheme plays a significant role in cloud and precipitation simulation, and it is however one of the main error originations in predictions. An overview of the progresses in the cloud microphysical parameterization in mesoscale models has been done, and a statistical analysis of the sensitivity experiment results on the microphysical parameterization schemes over China have been performed. The Lin and RutledgeHobbs schemes lay a solid foundation for the development of cloud microphysical parameterization, and all later developed schemes were directly or indirectly based on the Lin and RutledgeHobbs schemes with some improvements. These improvements mainly include:①number of hydrometeor classicication; ②ice nucleation; ③hydrometeor particle size distributions; ④given values of intercept for the hydrometeor particle size distributions, and ⑤the threshold values for autoconversion processes. According to the statistical results, the Lin scheme in the Weather Research and Forecasting (WRF) model performed well in simulations, and the Goddard and Reisner schemes in the PSU/NCAR Mesoscale Model (MM5) simulated well.

中图分类号: 

图1 中尺度模式中混合相云微物理参数化方案之间的相互联系
Fig.1 Relationship among different bulk microphysical schemes in GRAPES, WRF, MM5, and ARPS models
表1 不同云微物理方案雪晶谱取值
Table 1 Values of intercept for snow crystal size distribution
表2 不同云微物理方案中自动转换过程中的阈值
Table 2 Threshold values for autoconversion processes in different schemes
表3 2000#cod#x02014;2012年期间中国范围内云微物理参数化方案敏感性试验结果
Table 3 Sensitivity experiment results for the cloud microphysical parameterization schemes over China during the period from 2000-2012
[1] Koenig L R. Numerical modeling of ice deposition[J]. Journal of the Atmospheric Sciences,1971, 28(2): 226-237.
[2] Danielsen E F, Bleck R, Morris D A. Hail growth by stochastic collection in a cumulus model[J]. Journal of the Atmospheric Sciences, 1972, 29(1): 135-155.
[3] Lin Y L, Farley R D, Orville H D. Bulk parameterization of the snow field in a cloud model[J]. Journal of Climate and Applied Meteorology, 1983, 22(6): 1 065-1 092.
[4] Rutledge S A, Hobbs P. The mesoscale and microscale structure and organization of clouds and precipitation in midlatitude cyclones. VIII: A model for the #cod#x0201c;seeder-feeder#cod#x0201d; process in warm-frontal rainbands[J]. Journal of the Atmospheric Sciences, 1983, 40(5): 1 185-1 206.
[5] Rutledge S A, Hobbs P V. The mesoscale and microscale structure and organization of clouds and precipitation in midlatitude cyclones. XII: A diagnostic modeling study of precipitation development in narrow cold-frontal rainbands[J]. Journal of the Atmospheric Sciences, 1984, 41(20): 2 949-2 972.
[6] Tao W K, Simpson J. Goddard cumulus ensemble model. Part I: Model description[J]. Terrestrail, Atmosphere and Oceanic Science, 1993, 4(1): 35-72.
[7] Meyers M P, Walko R L, Harrington J Y, et al. New RAMS cloud microphysics parameterization. Part II: The two-moment scheme[J]. Atmospheric Research, 1997, 45(1): 3-39.
[8] Morrison H, Thompson G, Tatarskii V. Impact of cloud Microphysics on the development of trailing stratiform precipitation in a simulated squall line: Comparison of one-and two-moment schemes[J]. Monthly Weather Review, 2009, 137(3): 991-1 007.
[9] Lin Y, Colle B A. A new bulk microphysical scheme that includes riming intensity and temperature-dependent ice characteristics[J]. Monthly Weather Review, 2011, 139(3): 1 013-1 035.
[10] Houghton J T,Ding Y,Griggs D J,et al. Climate Change 2001:The Scientific Basis[M]. Cambridge,United Kingdom and New York: Cambridge University Press, 2001.
[11] Lin Wenshi, Meng Jinping, Meng Weiguang, et al. Numerical simulation about a heavy snowfall event in north China:The sensitivity of cloud microphysical parameterization schemes[J]. Scientia Meteorologica Sinica, 2009, 29(2): 150-156.
[林文实, 孟金平, 蒙伟光, 等. 华北暴雪的云微物理参数化方案的比较模拟[J]. 气象科学, 2009, 29(2): 150-156.]
[12] Sun Jing, Wang Pengyun. Numerical study of heavy rainfall in south China with Reisner graupel scheme[J]. Meteorological Monthly, 2003, 29(4): 10-14.
[孙晶, 王鹏云. 用MM5模式Reisner霰方案对华南暴雨的数值模拟[J]. 气象, 2003, 29(4): 10-14.]
[13] Reisner J, Rasmussen R M, Bruintjes R T. Explicit forecasting of supercooled liquid water in winter storms using the MM5 mesoscale model[J]. Quarterly Journal of the Royal Meteorological Society, 1998, 124(548): 1 071-1 107.
[14] Rao Gangwei, Xu Suishan, Li Jiangnan. Sensitive studies of microphysics schemes on the frozen rain simulation over northern of Guangdong Province[J]. Guangdong Meteorology, 2008, 30(6): 20-23.
[饶纲伟, 徐穗珊, 李江南. 不同云微物理方案对粤北冻雨的敏感性试验[J]. 广东气象, 2008, 30(6): 20-23.]
[15] Tao W K, Simpson J, McCumber M. An ice-water saturation adjustment[J]. Monthly Weather Review, 1989, 117(1): 231-235.
[16] Yan Zhihui, Deng Liantang. Description of microphysical processes in WRF model and its prediction experiment[J]. Desert and Oasis Meteorology, 2007, 1(6): 1-6.
[闫之辉, 邓莲堂. WRF模式中的微物理过程及其预报对比试验[J]. 沙漠与绿洲气象, 2007,1(6): 1-6.]
[17] Niu Junli, Yan Zhihui. Impacts of microphysics schemes on the heavy rainfall simulation with WRF model[J]. Science & Technology Information, 2007,23: 17-20.
[牛俊丽, 闫之辉. WRF模式微物理方案对强降水预报的影响[J]. 科技信息, 2007, 23: 17-20.]
[18] Kessler E. On the Distribution and Continuity of Water Substance in Atmospheric Circulations[C]. Boston: Meteorological Monographs, American Meteorological Society,1969.
[19] Dudhia J. Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model[J]. Journal of the Atmospheric Sciences, 1989, 46(20): 3 077-3 107.
[20] McCumber M, Tao W K, Simpson J, et al. Comparison of ice-phase microphysical parameterization schemes using numerical simulations of tropical convection[J]. Journal of Applied Meteorology, 1991, 30(7): 985-1 004.
[21] Morrison H, Curry J A, Khvorostyanov V I. A new double-moment microphysics parameterization for application in cloud and climate models. Part I: Description[J]. Journal of the Atmospheric Sciences, 2005, 62(6): 1 665-1 677.
[22] Thompson G, Field P R, Rasmussen R M, et al. Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. Part II: Implementation of a new snow parameterization[J]. Monthly Weather Review, 2008, 136(12): 5 095-5 115.
[23] Lou Xiaofeng, Hu Zhijin, Wang Pengyun, et al. Introduction to microphysical schemes of mesoscale atmospheric models and cloud models[J]. Quarterly Journal of Applied Meteorology, 2003, 14(Suppl.): 49-59.
[楼小凤, 胡志晋, 王鹏云, 等. 中尺度模式云物理降水物理方案介绍[J]. 应用气象学报, 2003, 14(增刊): 49-59.]
[24] Shi Yueqin, Lou Xiaofeng. Progress in researches on explicit cloud microphysical schemes[J]. Meteorological Science and Technology, 2006, 34(5): 513-520.
[史月琴, 楼小凤. 显式云物理方案的研究进展[J]. 气象科技, 2006, 34(5): 513-520.]
[25] Hong S Y, Sunny Lim K S, Kim J H, et al. Sensitivity study of cloud-resolving convective simulations with wrf using two bulk microphysical parameterizations: Ice-phase microphysics versus sedimentation effects[J]. Journal of Applied Meteorology and Climatology, 2009, 48(1): 61-76.
[26] Milbrandt J A, Yau M K, Mailhot J, et al. Simulation of an orographic precipitation event during improve-2. Part #cod#x02161;: Sensitivity to the number of moments in the bulk microphysics scheme[J]. Monthly Weather Review, 2010, 138(2): 625-642.
[27] Yin J, Wang D, Zhai G. A comparative study of cloud-precipitation microphysical properties between East Asia and other regions[J]. Journal of the Meteorological Society of Japan, 2013, 91(4): 507-526.
[28] Hu Zhijin, Lou Xiaofeng, Bao Shaowu, et al. A simplified explicit scheme of phase-mixed cloud and precipitation[J]. Quarterly Journal of Applied Meteorlolgy,1998, 9(3): 257-264.
[胡志晋, 楼小凤, 包绍武, 等. 一个简单的混合相云降水显示方案[J]. 应用气象学报, 1998, 9(3): 257-264.]
[29] Hong S Y, Juang H M H, Zhao Q. Implementation of prognostic cloud scheme for a regional spectral model[J]. Monthly Weather Review, 1998, 126(10): 2 621-2 639.
[30] Hong S Y, Dudhia J, Chen S H. A revised approach to ice microphysical processes for the bulk parameterization of clouds and precipitation[J]. Monthly Weather Review, 2004, 132(1): 103-120.
[31] Lim K S S, Hong S Y. Development of an effective double-moment cloud microphysics scheme with prognostic Cloud Condensation Nuclei (CCN) for weather and climate models[J]. Monthly Weather Review, 2010, 138(5): 1 587-1 612.
[32] Li Dashan. The Status and Prospects of Weather Modifications[M]. Beijing: Meteorological Press, 2004.
[李大山. 人工影响天气现状与展望[M]. 北京: 气象出版社,2004.]
[33] Straka J M, Mansell E R. A bulk microphysics parameterization with multiple ice precipitation categories[J]. Journal of Applied Meteorology, 2005, 44(4): 445-466.
[34] Ogura Y, Takahashi T. Numerical simulation of the life cycle of a thunderstorm cell[J]. Monthly Weather Review, 1971, 99(12): 895-911.
[35] Koenig L R, Murray F W. Ice-bearing cumulus cloud evolution: Numerical simulation and general comparison against observations[J]. Journal of Applied Meteorology, 1976, 15(7): 747-762.
[36] Orville H D, Kopp F J. Numerical simulation of the life history of a hailstorm[J]. Journal of the Atmospheric Sciences, 1977, 34(10): 1 596-1 618.
[37] Milbrandt J A, Yau M K. A multimoment bulk microphysics parameterization. Part II: A proposed three-moment closure and scheme description[J]. Journal of Atmospheric Sciences, 2005, 62: 3 065-3 081.
[38] Schultz P. An explicit cloud physics parameterization for operational numerical weather prediction[J]. Monthly Weather Review, 1995, 123(11): 3 331-3 343.
[39] Bergeron T. On the physics of cloud and precipitation[C]∥Proceeding of 5th Assembly 2, U. G. G. I. Lisbon, 1935:156. [40]Fletcher N H. The Physics of Rain Clouds[M]. London: Cambridge University Press, 1962.
[41] Cooper W A. Ice initiation in natural clouds. Precipitation enhancement#cod#x02014;A scientific challenge[J]. Meteorological Monographs, 1986, 21: 29-32.
[42] Hu Zhijin, Yan Caifan. Numerical simulation of microphysical processes in stratiform clouds(I)#cod#x02014;Microphysical model[J]. Journal of Academy of Meteorological Science, 1986, 1(1): 37-52.
[胡志晋, 严采蘩. 层状云微物理过程的数值模拟(一)#cod#x02014;#cod#x02014;微物理模式[J]. 气象科学研究院院刊, 1986, 1(1): 37-52.]
[43] Xu Huanbin,Duan Ying,Liu Haiyue. Microphysical Processes of Hail and the Theory and Design for Hail Suppression[M]. Beijing: Meteorological Press, 2004.
[许焕斌,段英,刘海月. 雹云物理与防雹的原理和设计[M]. 北京: 气象出版社, 2004.]
[44] Yin J, Wang D, Zhai G. An evaluation of ice nuclei characteristics from the long-term measurement data over North China[J]. Asia-Pacific Journal of Atmospheric Sciences, 2012, 48(2): 197-204.
[45] Chen S H, Sun W Y. A one-dimensional time dependent cloud model[J]. Journal of the Meteorological Society of Japan, 2002, 80(1): 99-118.
[46] Gilmore M S, Straka J M, Rasmussen E N. Precipitation uncertainty due to variations in precipitation particle parameters within a simple microphysics scheme[J]. Monthly Weather Review, 2004, 132(11): 2 610-2 627.
[47] Mansell E R, Ziegler C L, Bruning E C. Simulated electrification of a small thunderstorm with two-moment bulk microphysics[J]. Journal of the Atmospheric Sciences, 2010, 67(1): 171-194.
[48] Srivastava R C. Parameterization of raindrop size distributions[J]. Journal of the Atmospheric Sciences, 1978, 35(1): 108-117.
[49] Xu Huanbin, Duan Ying. Some questions in studying the evolution of size distribution spectaum of hydrometeor particles[J]. Acta Meteorologica Sinica, 1999, 57(4): 451-460.
[许焕斌, 段英. 云粒子谱演化研究中的一些问题[J]. 气象学报, 1999, 57(4): 451-460.]
[50] Thompson G, Rasmussen R M, Manning K. Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. Part I: Description and sensitivity analysis[J]. Monthly Weather Review, 2004, 132(2): 519-542.
[51] Kong F, Yau M K. An explicit approach to microphysics in MC2[J]. Atmosphere-Ocean, 1997, 35(3): 257-291.
[52] Hu Zhijin, Cai Lidong. A parameterized numerical simulation of warm rain and salt-seeding in cumulus clouds[J]. Chinese Journal of Atmospheric Sciences, 1979, 3(4): 334-342.
[胡志晋, 蔡利栋. 积云暖雨过程及其盐粉催化的参数化数值模拟[J]. 大气科学, 1979, 3(4): 334-342.]
[53] Xu Huanbin, Wang Siwei. A numerical model of hail-bearingconvective cloud (1): Biparameter evolution of size distribution of raindrops, frozen raindrops and hailstones[J]. Acta Meteorologica Sinica, 1985, 43(1): 13-25.
[许焕斌, 王思微. 一维时变雹云模式研究(一)#cod#x02014;#cod#x02014;反映雨和冰雹双参数演变[J]. 气象学报, 1985, 43(1): 13-25.]
[54] Hu Zhijin, He Guanfang. Numerical simulation of microprocesses in cumulonimbus clouds (I) microphysical model[J]. Acta Meteorologica Sinica, 1987, 45(4): 467-484.
[胡志晋, 何观芳. 积雨云微物理过程的数值模拟(一)微物理模式[J]. 气象学报, 1987,45(4): 467-484.]
[55] Liu Gongbo, Hu Zhijin, You Laiguang. A mixed-phase stratiform cloud system model and the cases modeling on two low level mesoscale vortexes[J]. Acta Meteorologica Sinica, 1994, 52(1): 78-89.
[刘公波, 胡志晋, 游来光. 混合相层状云系模式和中尺度低涡云系的实例模拟[J]. 气象学报, 1994, 52(1): 78-89.]
[56] Liu Qijun, Hu Zhijin, Zhou Xiuji. Explicit cloud schemes of hlafs and simulation of heavy rainfall and clouds, part #cod#x02160;: Explicit cloud schemes[J]. Quarterly Journal of Applied Meteorology, 2003, 14(Suppl.): 60-66.
[刘奇俊, 胡志晋, 周秀骥. HLAFS显式云降水方案及其对暴雨和云的模拟(I)云降水显式方案[J]. 应用气象学报, 2003, 14(增刊): 60-66.]
[57] Lou Xiaofeng. Development and Implemementation of A New Explicit Microphysical Scheme and Comparisons of Original Scheme of MM5[D]. Beijing:Peking University, 2002.
[楼小凤.MM5模式的新显式云物理方案的建立和耦合及原来微物理方案的对比分析[D]. 北京:北京大学, 2002.]
[58] Sun Jing, Lou Xiaofeng, Hu Zhijin, et al. Numerical experiment of the coupling of CAMS complex microphysical scheme and grapes model[J]. Journal of Applied Meteorological Science, 2008, 19(3): 315-325.
[孙晶, 楼小凤, 胡志晋, 等. CAMS复杂云物理方案与GRAPES模式耦合的数值试验[J]. 应用气象学报, 2008, 19(3): 315-325.]
[59] Gao W, Zhao F, Hu Z, et al. A two-moment bulk microphysics coupled with a mesoscale model WRF: Model description and first results[J]. Advances in Atomspheric Sciences, 2011, 28(5): 1 184-1 200.
[60] Yin Jinfang. The Study on Observation and Prameterization of Cloud-Precipitation Microphysical Properties over East Asia[D]. Hangzhou: Zhejiang University, 2013.
[尹金方. 东亚区域云和降水微物理特征及云微物理参数化方案构建[D]. 杭州: 浙江大学, 2013.]
[61] Hong Yanchao. A 3D hail cloud numerical seeding model[J]. Acta Meteorologica Sinica, 1998, 56(6): 641-653.
[洪延超. 三维冰雹云催化数值模式[J].气象学报, 1998, 56(6): 641-653.]
[62] Guo Xueliang, Huang Meiyuan, Hong Yanchao, et al. A study of three-dimensional hail-category hailstorm model part #cod#x02160;: Model description and the mechanism of hail recirculation growth[J]. Chinese Journal of Atmospheric Sciences, 2001, 25(5): 707-720.
[郭学良, 黄美元, 洪延超, 等. 三维冰雹分档强对流云数值模式研究I. 模式建立及冰雹的循环增长机制[J]. 大气科学, 2001,25(5): 707-720.]
[63] Kong Fanyou, Huang Meiyuan, Xu Huaying. Simulations study of ice microphysical processes in convective clouds with a three dimension model (I): Development of model and ice clouds parameterization[J]. Chinese Journal of Atmospheric Sciences, 1990, 14(4): 442-453.
[孔凡铀, 黄美元, 徐华英. 对流云中冰相过程的三维数值模拟1:模式建立及冷云参数化[J]. 大气科学, 1990, 14(4): 442-453.]
[64] Zhao Zhen, Lei Hengchi, Wu Yuxia. A new explicit microphysical scheme in MM5 and numerical simulation[J]. Chinese Journal of Atmospheric Sciences, 2005, 29(4): 609-619.
[赵震, 雷恒池, 吴玉霞. MM5中新显式云物理方案的建立和数值模拟[J]. 大气科学, 2005, 29(4): 609-619.]
[65] Liu Weiguo,Liu Qijun. The numerical simulation of orographic cloud structure and cloud microphysical processes in Qilian Mountains in summer. Part(I):Cloud microphysical scheme and orographic cloud stucture[J]. Plateau Meteorology, 2007, 26(1): 1-15.
[刘卫国, 刘奇俊. 祁连山夏季地形云结构和云微物理过程的模拟研究(I):模式云物理方案和地形云结构[J]. 高原气象, 2007,26(1): 1-15.]
[66] Liu C, Moncrieff M W. Sensitivity of cloud-resolving simulations of warm-season convection to cloud microphysics parameterizations[J]. Monthly Weather Review, 2007, 135(8): 2 854-2 868.
[67] Rajeevan M, Kesarkar A, Thampi S B, et al. Sensitivity of WRF cloud microphysics to simulations of a severe thunderstorm event over Southeast India[J]. Annales Geophysicae, 2010, 28(2): 603-619.
[68] Wang Xiaojun, Ma Hao. Progress of application of the Weather Research and Forecast (WRF) model in China[J]. Advances in Earth Science, 2011, 26(11): 1 191-1 199.
[王晓君, 马浩. 新一代中尺度预报模式(WRF)国内应用进展[J]. 地球科学进展, 2011, 26(11): 1 191-1 199.]
[69] Wang Chenxi.Experiments of influence of planetary boundary layer parameterization on muifa typhoon prediction[J]. Advances in Earth Science, 2013, 28(2): 197-208.
[王晨稀. 边界层参数化影响#cod#x0201c;梅花#cod#x0201d;台风的敏感性试验[J]. 地球科学进展, 2013, 28(2): 197-208.]
[70] Zhang D L, Hsie E Y, Moncrieff M W. A comparison of explicit and implicit predictions of convective and stratiform precipitating weather systems with a meso-beta-scale numerical model[J]. Quarterly Journal of the Royal Meteorological Society, 1988, 114: 31-60.
[71] Wu Hongyu, Chen Dehui, Xu Guoqiang. Sensitive experiments of various parameterization schemes in different physical processes on Guizhou precipitation[J]. Meteorological Monthly, 2007, 33(4): 23-28.
[伍红雨, 陈德辉, 徐国强. 不同物理过程参数化方案对贵州降水的敏感性试验[J]. 气象, 2007, 33(4): 23-28.]
[72] Sun Jing, Lou Xiaofeng, Shi Yueqin. The effects of different microphysical schemes on the simulation of a meiyu front heavy rainfall[J]. Acta Meteorologica Sinica, 2011, 69(5): 799-809.
[孙晶, 楼小凤, 史月琴. 不同微物理方案对一次梅雨锋暴雨过程模拟的影响[J]. 气象学报, 2011, 69(5): 799-809.]
[73] Xu Guoqiang, Liang Xudong, Yu Hui, et al. Precipitation simulation using different cloud-precipitation schemes for a landfall typhoon[J]. Plateau Meteorology, 2007, 26(5): 891-900.
[徐国强, 梁旭东, 余晖, 等. 不同云降水方案对一次登录台风的降水模拟[J]. 高原气象, 2007, 26(5): 891-900.][74]Wu Huaping, Shu Jiong, Gu Ying, et al. The effects of different cumulus parameterization schemes in wrf on heavy rainfall in Hunan Province[J]. Journal of Tropical Meteorology, 2009, 25(2): 175-180.[伍华平, 束炯, 顾莹, 等. 暴雨模拟中积云对流参数化方案的对比试验[J]. 热带气象学报, 2009, 25(2): 175-180.]
[75] HA HyeKyeong,Wang Zhenhui, Kim JeoungYun, et al. The impact of cumulus parameterizations and micro-physics schemes of different combinations on typhoon track prediction[J]. Journal of Tropical Meteorology, 2009, 25(4): 435-441.
[河惠卿, 王振会, 金正润, 等. 积云参数化和物理方案不同组合应用对台风路径模拟效果的影响[J]. 热带气象学报, 2009, 25(4): 435-441.]
[76] Huang Haibo, Chen Chunyan, Zhu Wenna. Impacts of different cloud microphysical processes and horizontal resolutions of WRF model on precipitation forecast effect[J]. Meteorological Science and Technology,2011, 39(5): 529-536.
[黄海波, 陈春艳, 朱雯娜. WRF模式不同云微物理参数化方案及水平分辨率对降水预报效果的影响[J]. 气象科技, 2011, 39(5): 529-536.]
[77] Xu Jianjun, Wan Qilin. Influence of physical parameterizations and initialization on simulation of rainstorm over Southeast China[J]. Transactions of Atmospheric Sciences, 2011, 34(2): 129-134.
[徐建军, 万齐林. 物理参数化和资料初始化对中国东南部暴雨模拟的影响[J]. 大气科学学报, 2011, 34(2): 129-134.]
[78] Li Antai, He Hongrang. Impact of different cloud microphysical parameterization schemes on the numeric simulation results of "8.8" rainstorm process in Zhouqu[J]. Meteorology and Disaster Reduction Research, 2011, 34(3): 9-16.
[李安泰, 何宏让. 不同云微物理参数化方案对舟曲#cod#x0201c;8.8#cod#x0201d;暴雨过程模拟的影响[J]. 气象与减灾研究, 2011, 34(3): 9-16.]
[79] Duan Xu, Wang Man, Chen Xinmei, et al. Localization of operational experiment on the WRF mesoscale numerical modeling system[J]. Meteorological Monthly, 2011, 37(1): 39-47.
[段旭, 王曼, 陈新梅, 等. 中尺度WRF数值模式系统本地化业务试验[J]. 气象, 2011, 37(1): 39-47.]
[80] Chen Gong, Liao Jie, Sun Ling. Effect of micro-physical scheme on simulation of a heavy rainfall process in Sichuan[J]. Plateau and Mountain Meteorology Research, 2012, 32(1): 43-50.
[陈功, 廖捷, 孙凌. WRF微物理方案对四川一次强降水模拟的影响[J]. 高原山地气象研究, 2012, 32(1): 43-50.]
[81] Duan Xu, Wang Man, Liu Jianyu, et al. Simulation experiments of precipitation prediction with MM5v3#cod#x02019;s different parameterization schemes over low latitude plateau[J]. Meteorological Monthly, 2006, 32(4): 16-23.
[段旭, 王曼, 刘建宇, 等. 低纬高原地区MM5v3不同参数化方案降水模拟试验[J].气象, 2006, 32(4): 16-23.]
[82] Cheng Linsheng, Feng Wuhu. Analyses and numerical simulation on an abrupt heavy rainfall and structure of a mesoscale vortex during July 1998[J]. Chinese Journal of Atmospheric Sciences, 2001, 25(4): 465-478.
[程麟生, 冯伍虎. #cod#x0201c;987#cod#x0201d;突发大暴雨及中尺度低涡结构的分析和数值模拟[J].大气科学, 2001, 25(4): 465-478.]
[83] Ju Y, Wang H, Zhong Z, et al. A simulation study on the characteristies of cloud microphsics of heavy rainfall in the meiyu front[J]. Acta Meteorologica Sinica, 2009, 23(2): 206-222.
[84] Lin W, Cholaw B. The cloud proeesses of a simulated moderate snowfall event in north china[J]. Advances in Atmospheric Science, 2006, 23(2): 235-242.
[85] Kang Lili, Lei Hengchi, Xiao Wenan. Simulation of various moist physical processes in mesoscale model[J]. Journal of Nanjing Institute of Meteorology, 2003, 26(1): 76-83.
[康丽莉, 雷恒池, 肖稳安. 中尺度模式中各种湿物理过程的数值模拟[J]. 南京气象学院学报, 2003, 26(1): 76-83.]
[86] Zhou Zugang,Tan Zhemin,Zhang Yi, et al. The impact of combination of model moist physics process on numerical simulation of a Nanjing heavy rainfall event[J]. Journal of Nanjing University(Natural Sciences), 2011, 47(4): 481-492.
[周祖刚, 谈哲敏, 张熠, 等. 模式湿物理过程的组合对一次南京大暴雨降水模拟的影响分析[J]. 南京大学学报:自然科学版, 2011,47(4): 481-492.]
[87] Ren Jianqi, Yan Wei, Ye Jing, et al. Advance in the study of cloud phase discrimination using satellite reote sensing data[J]. Advances in Earth Science, 2010, 25(10): 1 051-1 060.
[任建奇, 严卫, 叶晶, 等. 云相态的卫星遥感研究进展[J]. 地球科学进展, 2010, 25(10): 1 051-1 060.]
[88] Zhou Haiguang. A review on the development and application of the airborne doppler radar technique[J]. Advances in Earth Science, 2010, 25(5): 453-462.
[周海光. 机载多普勒天气雷达及应用研究进展[J]. 地球科学进展, 2010, 25(5): 453-462.]
[89] Zhu Yaqiao, Liu Yuanbo. Advances in measurement techniques and statistics features of surface raindrop size distribution[J]. Advances in Earth Science, 2013, 28(6): 685-694.
[朱亚乔, 刘元波. 地面雨滴谱观测技术及特征研究进展[J]. 地球科学进展, 2013, 28(6): 685-694.]
[90] Liu Yang, Cai Bo, Ban Xianxiu, et al. Research progress of retrieving atmosphere humidity profiles form AIRS data[J]. Advances in Earth Science, 2013, 28(8): 890-896.
[刘旸, 蔡波, 班显秀, 等. AIRS红外高光谱资料反演大气水汽廓线研究进展[J]. 地球科学进展, 2013, 28(8): 890-896.]
[91] Yin J F, Wang D H, Zhai G Q, et al. An investigation into the relationship between liquid water content and cloud number concentration in the stratiform clouds over north China[J]. Atmospheric Research, 2014, 139: 137-143.
[1] 胡娅敏,丁一汇. 东亚地区区域气候模拟的研究进展[J]. 地球科学进展, 2006, 21(9): 956-964.
阅读次数
全文


摘要