Please wait a minute...
img img
地球科学进展  2009, Vol. 24 Issue (11): 1195-1201    DOI: 10.11867/j.issn.1001-8166.2009.11.1195
1.中国科学院海洋研究所海洋生态和环境科学重点实验室,山东青岛266071; 2.中国科学院研究生院,北京100049
Role of Microzooplankton in Marine Planktonic Ecosystem
ZHANG Wuchang1, ZHANG Cuixia1,2, XIAO Tian1
1.Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology,Chinese Academy of Sciences, Qingdao 266071, China;  2.Graduate University of Chinese Academy of Sciences, Beijing 100049, China
 全文: PDF(1027 KB)  


关键词: 小型浮游动物浮游生态系统海洋    

Microzooplankton is heterotrophic planktons in the size range of 0~200 mm. They graze on the phytoplankton primary production and bacteria production. At the same time, they are food items of planktonic copepods. Role of microzooplankton in marine pelagic ecosystem is (1) the magnitude of energy transferred from microzooplankton to copepods and (2) the contribution of microzooplankton to the food item (microzooplankton and phytoplankton) of copepods. The energy transfer efficiencies between every trophic level (primary production-microzooplankton, bacterial secondary productionmicrozooplankton, microzooplankton growth efficiency, microzooplankton-mesozooplankton) should be studied. This paper reviewed the status of above mentioned energy transfer efficiencies in order to provide references to microzooplankton studies in China. About 60%~75% of Phyplankton primary production is grazed by microzooplankton per day. This value is significantly larger than grazing pressure by copepods (10% d-1). The secondary production of marine planktonic bacteria equals 30% of primary production. About 80%~180% of the bacteria production was grazed by microzooplankton. The gross growth efficiency (GGE) of microzooplankton is 30%~40%. Therefore, microzoopolankton production is 21%~34% of the primary production. Copepods grazing pressure on microzooplankton production is 2%~51% per day (north coastal Spain). Thus, energy flow from microbial food web to copepod should be 0.4%~17% of the primary production, which is in the same level with the contribution of primary production. If the contribution of detritus was not considered, microzooplankton contributed more than 20% (some times as high as 50%) of the copepod food ingestion. Marine planktonic food web is a complex system. More studies are needed to elucidate every details of the production and transfer efficiency of every trophic level and, in the case of microzooplankton, of every group.

Key words: Microzooplankton    Planktonic ecosystem    Ocean
收稿日期: 2009-01-07 出版日期: 2001-11-10
:  Q178.53  


通讯作者: 张武昌(1973-),男,山东济南人,副研究员,主要从事海洋浮游生态学研究.     E-mail:
作者简介: 张武昌(1973-),男,山东济南人,副研究员,主要从事海洋浮游生态学研究.
E-mail Alert


张武昌,张翠霞,肖天. 海洋浮游生态系统中小型浮游动物的生态功能[J]. 地球科学进展, 2009, 24(11): 1195-1201.

ZHANG Wuchang, ZHANG Cuixia, XIAO Tian. Role of Microzooplankton in Marine Planktonic Ecosystem. Advances in Earth Science, 2009, 24(11): 1195-1201.


[1] Pomeroy L R. The ocean′s food web, a changing paradigm
[J].BioScience,1974, 24: 499-504.

[2] Murrell M C, Hollibaugh J T. Microzooplankton grazing in northern San Francisco Bay measured by the dilution method
[J].Aquatic Microbial Ecology,1998, 15(1): 53-63.

[3] Sherr E B, Sherr B F. Significance of predation by protists in aquatic microbial food webs
[J].Antonie Van Leeuwenhoek,2002, 81(1/4): 293-308.

[4] Ducklow H W. Production and fate of bacteria in the oceans
[J].BioScience,1983, 33: 494-501.

[5] Vadstein O, Stibor H, Lippert B, et al. Moderate increase in the biomass of omnivorous copepods may ease grazing control of planktonic algae
[J].Marine Ecology-Progress Series,2004, 270: 199-207.

[6] Sherr E B, Sherr B F. Heterotrophic dinoilagellates: A significant component of microzooplankton biomass and major grazers of diatoms in the sea
[J].Marine Ecology-Progress Series, 2007, 352:187-197.

[7] Fenchel T. Ecology of protozoa: The Biology of Free Living Phagotrophic Protists
[M]. Madison: Science Tech Publications, 1987.

[8] Jonnson P R. Particle size selection, feeding rates and growth dynamics of marine heterotrophic planktonic oligotrichous ciliates
[J].Marine Ecology-Progress Series,1986, 33: 568-572.

[9] Lessard E J, Swift E. Dinoflagellates from the North Atlantic classified as phototrophic or heterotrophic by epifluorescence microscopy
[J].Journal of Plankton Research,1986,8:1 209-1 215.

[10] Lessard E J, Swift E. Species-specific grazing rates of heterotrophic dinoflagellates in oceanic waters, measured with a dual-label radioisotope technique
[J].Marine Biology, 1985, 87: 289-296.

[11] Landry M R, Hassett R P. Estimating the grazing impact of marine micro-zooplankton
[J].Marine Biology,1982, 67:283-288.

[12] Bamstedt U, Gifford D J, Irigoien X, et al. Feeding
[C]Harris R P, Wiebe P H, lenz J, eds. Zooplankton Methodology Manual. San Diego: Academic Press, 2000: 314-316.

[13] Calbet A, Landry M R. Phytoplankton growth, microzooplankton grazing, and carbon cycling in marine systems
[J]. Limnology and Oceanography, 2004, 49(1): 51-57.

[14] Liu H, Dagg M. Interactions between nutrients, phytoplankton growth, and micro- and mesozooplankton grazing in the plume of the Mississippi River
[J]. Marine Ecology-Progress Series, 2003, 258: 31-42.

[15] Palomares-Garcial R, Bustillos-Guzman J J, Lopez-Cortes D. Pigment-specific rates of phytoplankton growth and microzooplankton grazing in a subtropical lagoon
[J]. Journal of Plankton Research, 2006, 28(12): 1 217-1 232.

[16] Putland J N. Microzooplankton herbivory and bacterivory in Newfoundland coastal waters during spring, summer and winter
[J]. Journal of Plankton Research, 2000, 22(2): 253-277.

[17] Worden A Z, Binder B J. Application of dilution experiments for measuring growth and mortality rates among Prochlorococcus and Synechococcus populations in oligotrophic environments
[J]. Aquatic Microbial Ecology, 2003, 30(2):159-174.

[18] Umani S F, Beran A. Seasonal variations in the dynamics of microbial plankton communities: First estimates from experiments in the Gulf of Trieste, Northern Adriatic Sea
[J]. Marine Ecology-Progress Series, 2003, 247: 1-16.

[19] Shinada A, Ban S, Ikeda T. Seasonal changes in nano/micro-zooplankton herbivory and heterotrophic nano-flagellates bacterivory off Cape Esan, southwestern Hokkaido, Japan
[J]. Journal of Oceanography, 2003, 59(5): 609-618.

[20] Xiao Tian. The study on marine bacterioplankton ecology
[J]. Advances in Earth Science, 2001, 16(1): 60-64.
[肖天. 海洋浮游细菌的生态学研究
[J]. 地球科学进展, 2001, 16(1): 60-64.]

[21] Baretta-Bekker J G, Baretta J W, Rasmussen E K. The microbial food web in the European regional seas ecosystem model
[J]. Netherlands Journal of Sea Research, 1995, 33: 363-379.

[22] Robinson C, Williams P J L. Plankton net community production and dark respiration in the Arabian Sea during September 1994
[J]. Deep-Sea Research, 1999,46(3/4): 745-765.

[23] Caron D A, Goldman J C, Fenchel T. Protozoan respiration and metabolism
[C]Capriulo G M, ed. Ecology of Marine Protozoa. Oxford: Oxford University Press, 1990: 307-322.

[24] Uye S, Nagano N, Tamaki H. Geographical and seasonal variations in abundance, biomass and estimated production rates of microzooplankton in the inland sea of Japan
[J]. Journal of Oceanography, 1996, 52: 689-703.

[25] Batten S D, Fileman E S, Halvorsen E. The contribution of microzooplankton to the diet of mesozooplankton in an upwelling filament off the north west coast of Spain
[J]. Progress in Oceanography, 2001, 51(2/4): 385-398.

[26] Straile D. Gross growth efficiencies of protozoan and metazoan zooplankton and their dependence on food concentration, predator-prey weight ratio, and taxonomic group
[J]. Limnology and Oceanography, 1997, 42(6):1 375-1 385.

[27] McManus G. Flow analysis of a planktonic microbial food web model
[J]. Marine Microbial Food Webs, 1991, 5(1): 145-160.

[28] Muren H, Berglund J, Samuelsson, et al. Potential effects of elevated sea-water temperature on pelagic food webs
[J]. Hydrobiologia, 2005, 545: 153-166.

[29] Newell R C, Linley E A S. Significance of microheterotrophs in the decomposition of phytoplankton: Estimates of carbon and nitrogen flow based on the biomass of plankton communities
[J]. Marine Ecology-Progress Series, 1984, 16: 105-119.

[30] Landry M R, Calbet A. Microzooplankton production in the oceans
[J]. ICES Journal of Marine Science, 2004, 61: 501-507.

[31] Zeng Xiangbo, Huang Bangqin, Chen Jixin, et al. Grazing impact of microzooplankton on algal bloom in the Taiwan Strait in summer
[J]. Acta Oceanologica Sinica, 2006, 28(5): 107-116.
[J]. 海洋学报, 2006, 28(5): 107-116.]

[32] Berk S G, Brownlee D C, Heinle D R, et al. Ciliates as a food source for marine planktonic copepods
[J]. Microbial Ecology, 1977, 4: 27-40.

[33] Suzuki K, Nakamura Y, Hiromi J. Feeding by the small calanoid copepod Paracalanus sp on heterotrophic dinoflagellates and ciliates
[J]. Aquatic Microbial Ecology, 1999, 17(1): 99-103.

[34] Calbet A, Saiz E. The ciliate-copepod link in marine ecosystems
[J]. Aquatic Microbial Ecology, 2005, 38(2): 157-167.

[35] Dolan J R, McKeon K. The reliability of grazing rate estimates from dilution experiments: Have we over-estimated rates of organic carbon consumption by microzooplankton?
[J]. Ocean Science, 2005, 1: 1-7.

[36] Reckermann M, Veldhuis M J W. Trophic interactions between picophytoplankton and micro-and nanozooplankton in the western Arabian Sea during the NE monsoon 1993
[J]. Aquatic Microbial Ecology, 1997, 12(3): 263-273.

[37] Lessard E J, Murrell M C. Microzooplankton herbivory and phytoplankton growth in the northwestern Sargasso Sea
[J]. Aquatic Microbial Ecology, 1998, 16(2): 173-188.

[38] Calbet A, Trepat I, Almeda R, et al. Impact of micro- and nanograzers on phytoplankton assessed by standard and size-fractionated dilution grazing experiments
[J]. Aquatic Microbial Ecology, 2008, 50(2): 145-156.

[39] Zhang W, Wang R. Summertime ciliate and copepod nauplii distributions and micro-zooplankton herbivorous activity in the Laizhou Bay, Bohai Sea, China
[J]. Estuarine Coastal and Shelf Science, 2000, 51(1): 103-114.

[40] Zhang Wuchang, Wang Rong. Microzooplankton and their grazing pressure on phytoplankton in Bohai Sea
[J]. Oceanologia et Limnologia Sinica, 2000, 31(3): 252-258.
[张武昌,王荣. 渤海微型浮游动物及其对浮游植物的摄食压力
[J]. 海洋与湖沼, 2000, 31(3): 252-258.]

[41] Zhang W C, Xu K D, Wan R J, et al. Spatial distribution of ciliates, copepod nauplii and eggs, Engraulis japonicus post-larvae and microzooplankton herbivorous activity in the Yellow Sea, China
[J]. Aquatic Microbial Ecology, 2002, 27(3): 249-259.

[42] Sun Jun, Dawson J, Liu Dongyan. Microzooplankton grazing on phytoplankton in summer in the Jiaozhou Bay, China
[J]. Chinese Journal of Applied Ecology, 2004, 15(7): 1 245-1 252.
[孙军, Dawson J, 刘东燕. 夏季胶州湾微型浮游动物摄食初步研究
[J]. 应用生态学报, 2004, 15(7): 1 245-1 252.]

[43] Sun Jun, Liu Dongyan, Wang Zongling, et al. Microzooplankton herbivory during red tide-frequent-occurence period in spring in the East China Sea
[J]. Chinese Journal of Applied Ecology, 2003, 14(7): 1 073-1 080.
[J]. 应用生态学报, 2003, 14(7): 1  073-1 080.]

[44] Liu Zhensheng, Wang Chunsheng, Zhang Zhinan, et al. Seasonal dynamics of zooplankton and microzooplankton grazing impact in Sanmen Bay, China
[J]. Acta Ecologica Sinica, 2006, 26(12): 3 931-3 941.
[刘镇盛,王春生,张志南,等. 三门湾浮游动物的季节变动及微型浮游动物摄食研究
[J]. 生态学报, 2006, 26(12): 3 931-3 941.]

[45] Liu Zhensheng, Wang Chunsheng, Zhang Zhinan, et al. Seasonal dynamics and grazing rate of zooplankton in the Yueqing Bay
[J]. Acta Ecologica Sinica, 2005, 25(8): 1 853-1 862.
[刘镇盛,王春生,张志南,等. 乐清湾浮游动物的季节变动及摄食研究率
[J]. 生态学报, 2005, 25(8): 1 853-1 862.]

[46] Zhang W C, Li H B, Xiao T, et al. Impact of microzooplankton and copepods on the growth of phytoplankton in the Yellow Sea and East China Sea
[J]. Hydrobiologia, 2006, 553: 357-366.

[47] Chiang K, Lin C, Lee C, et al. The coupling of oligotrich ciliate populations and hydrography in the East China Sea: Spatial and temporal variations
[J]. Deep-Sea Research II, 2003, 50:1 279-1 293.

[48] Ota T, Taniguchi A. Standing crop of planktonic ciliates in the East China Sea and their potential grazing impact and contribution to nutrient regeneration
[J]. Deep-Sea Research II, 2003, 50: 423-442.

[49] Zeng Xiangbo, Huang Bangqin. The role of microzooplankton in the carbon cycle in the Xiamen Harbor in winter
[J].Journal of Jimei University(Natural Science), 2005, 10(4): 289-296.
[曾祥波,黄邦钦. 厦门港西海域冬季微型浮游动物在碳循环中的作用
[J]. 集美大学学报, 2005, 10(4): 289-296.]

[50] Zeng Xiangbo, Huang Bangqin. Grazing pressure and production of microzooplankton in Southern Taiwan Strait in summer
[J].Journal of Oceanography in Taiwan Strait, 2006, 25(1): 1-9.
[曾祥波,黄邦钦. 台湾海峡南部夏季微型浮游动物对浮游植物的摄食压力及其生产力
[J]. 台湾海峡, 2006, 25(1): 1-9.]

[51] Liu Yuan, Huang Bangqin, Cao Zhenrui, et al. Grazing pressure of microzooplankton on phytoplankton in Xiamen Waters
[J].Marine Environmental Science, 2005, 24(1): 9-12.
[J]. 海洋环境科学, 2005, 24(1): 9-12.]

[52] Shen Jinlan, Lin Yuanshao, Yang Shengyun, et al. Studies on grazing pressure of microzooplankton on phytoplankton in Xinglin shrimp pond in summer and winter
[J].Journal of Oceanography in Taiwan Strait, 2002, 21(1): 31-36.
[J]. 台湾海峡, 2002, 21(1): 31-36.]

[53] Hwang J,Lo W T. The coupling of tintinnid ciliate community and hydrography in the coastal waters southwest of Taiwan
[J]. Journal of the Fisheries Society of Taiwan, 2002, 29(4): 334-342.

[54] Su Q, Huang L M, Tan Y H, et al. Preliminary study of microzooplankton grazing and community composition in the North of South China Sea in autumn
[J]. Marine Science Bulletin, 2007, 9(2): 43-53.

[55] Sun Jun, Song Xiuxian, Yin Kedong, et al. Preliminnary study of microzooplankton herbivory in Hong Kong in summer
[J]. Acta Ecologica Sinica, 2003, 23(4): 712-724.
[J].生态学报, 2003, 23(4): 712-724.]

[56] Wang Xuefeng, Li Chunhou, Jia Xiaoping, et al. Study on the microzooplankton herbivory in winter and spring in the Daya Bay
[J].Marine Environmental Science,2006,25(suppl.1): 44-47.
[J]. 海洋环境科学, 2006, 25(增刊1): 44-47.]

[57] Sun Jun, Song Shuqun, Wang Dan, et al. The selective grazing of calanus sinicus during a karenia mikimotol bloom in the East China Sea
[J].Acta Ecologica Sinica,2007, 27(8): 3 302-3 315.
[孙军,宋书群,王丹,等.中华哲水蚤(Calanus Sinicus)对浮游植物和微型浮游动物的摄食速率估算
[J]. 生态学报, 2007, 27(8): 3 302-3 315.]

[1] 黄邦钦, 柳欣. 边缘海浮游生态系统对生物泵的调控作用[J]. 地球科学进展, 2015, 30(3): 385-395.