地球科学进展 ›› 2016, Vol. 31 ›› Issue (6): 603 -614. doi: 10.11867/j.issn.1001-8166.2016.06.0603.

研究论文 上一篇    下一篇

基于三维地质—地球物理模型的三维成矿预测——以安徽铜陵矿集区为例
向杰, 陈建平 *, 胡彬, 胡桥, 杨伟   
  1. 1.中国地质大学(北京) 地球科学与资源学院,北京 100083;
    2.中国地质大学(北京) 国土资源与高新技术研究中心,北京 100083
  • 收稿日期:2016-04-02 修回日期:2016-05-22 出版日期:2016-06-10
  • 通讯作者: 陈建平(1959-),男,北京人,教授,主要从事矿产资源定量预测与评价研究.E-mail:3s@cugb.edu.com
  • 基金资助:
    中国地质调查局项目“老矿山技术创新与示范”(编号:1212011220737)资助

3D Metallogenic Prediction Based on 3D Geological-Geophysical Model: A Case Study in Tongling Mineral District of Anhui

Xiang Jie, Chen Jianping *, Hu Bin, Hu Qiao, Yang Wei   

  1. 1.School of Earth Sciences and Resources,China University of Geosciences,Beijing 100083,China;
    2.Institute of Land Resources and High Techniques,China University of Geosciences,Beijing 100083,China
  • Received:2016-04-02 Revised:2016-05-22 Online:2016-06-10 Published:2016-06-10
  • About author:Xiang Jie (1990- ),male, Lixian County, Hu’nan Province, Ph.D Stuent. Research areas include mineral resources quantitative prediction and evaluation research.E-mail:xiangjie@cugb.edu.cnCorresponding author:Chen Jianping(1959- ), male, Beijing City, Professor. Research areas include mineral resources quantitative prediction and evaluation research.E-mail:3s@cugb.edu.cn
  • Supported by:
    Project supported by the China Geological Survey Project “Science and technology innovation and demonstration of the old mine”(No.1212011220737)
三维成矿预测已经成为当前国内外矿产勘查与资源评价研究的重要途径和热点。以安徽铜陵矿集区为例,开展了基于三维地质—地球物理模型的三维成矿预测,研究内容为:①在25条综合剖面基础上建立了三维地质模型,并采用三维重磁反演获取深部的三维物性特征,进而建立了三维地质—地球物理模型;②结合前人的成矿理论研究,分别总结了层控矽卡岩型与接触交代矽卡岩型矿床的有利控矿要素,建立了综合信息定量预测模型;③采用“立方块预测模型”找矿方法,根据信息量值结合地质基本情况圈定了15个找矿远景区。该研究成功地构建了三维地质—地球物理模型,并在地质找矿理论指导下,基于不同矿床类型定量提取了找矿有利信息,将传统的二维综合信息找矿方法拓展到三维空间,对于老矿山找矿具有重要指导意义。
3D metallogenic prediction is an important method and frontier of mineral resources exploration in the world. This paper introduces a case study of 3D metallogenic prediction based on 3D geological-geophysical model in Tongling mineral district. The research contents,methods,and results are summarized as the following aspects: ①Based on 25 comprehensive interpretation profiles,established 3D geological model of the study area. Using 3D property inversion of gravity-magnetic data technology to obtain 3D physical characteristics,a 3D geological-geophysical model was established;②Combined with the previous research on the metallogenic theory,this paper summed up some favorable geological conditions for ore-controlling,and established the quantitative prediction model;③By using“cubic predicting model”prospecting method, delineated 15 predicted targets according to the value of information and geological condition. This research built the 3D geological-geophysical model successfully,and under the guidance of geological prospecting theory,quantitatively extract the favorable prospecting information based on different deposit types. This research extends the traditional regional metallogenic prediction method to 3D space,and it has important guiding significance for the old mine prospecting.

中图分类号: 

[1] Zhang Jun. Methodological foundation and methodology for the location forecasting of concealed orebody[J]. Journal of Precious Metallic Geology ,2000, 9(2): 100-104.
. 贵金属地质, 2000,9(2): 100-104.]
[2] Keith T A. Challenges and trends for geological modelling and visualization[J]. Bulletin of Engineering Geology and the Environment ,2006,65(2):109-127.
[3] Zhao Pengda. Quantitative mineral prediction and deep mineral exploration[J]. Earth Science Frontiers ,2007,14(5):1-10.
. 地学前缘, 2007, 14(5): 1-10.]
[4] Chen Jianping, Lü Peng, Wu Wen, et al . A 3D method for predicting blind orebodies, based on a 3D visualization model and its application[J]. Earth Science Frontiers , 2007, 14(5): 54-62.
. 地学前缘, 2007, 14(5):56-62.]
[5] Chen Jianping,Yu Pingping,Shi Rui, et al . Research on three-dimensional quantitative prediction and evaluation methods of regional concealed ore bodies[J]. Earth Science Frontiers ,2014,21(5):211-220.
. 地学前缘,2014,21(5):211-220.]
[6] Wang Gongwen, Zhang Shouting, Yan Changhai, et al . 3D geological modeling based on geological and gravity-magnetic data integration in the Luanchuan molybdenum polymetallic Deposit,China[J]. Earth Science — Journal of China University of Geosciences , 2011,36(2):360-366.
. 地球科学——中国地质大学学报,2011,36(2):360-366.]
[7] Moore R R, Johnson S E. Three-dimensional reconstruction and modeling of complexly folded surfaces using Mathematica[J]. Computers & Geosciences ,2001, 27(4):401-418.
[8] Sirakova N M,Granado I,Muge F H. Interpolation approach for 3D smooth reconstruction of subsurface objects[J]. Computers & Geosciences ,2002,28(8): 877-855.
[9] Wu Q,Xu H. An approach to computer modeling and visualization of geological faults in 3D[J]. Computers & Geosciences ,2003,29(4):503-509.
[10] Wu Lixin, Zhang Ruixin, Qi Yixin, et al . 3D geoscience modelling and virtual mine system[J]. Acta Geodaetica et Cartographica Sinica , 2002, 31(1):28-33.
. 测绘学报, 2002, 31(1):28-33.]
[11] Agterberg F P. Geomathematics:Mathematical Background and Geoscience Applications[M]. New York: Elsevier Scientific Publishing Company,1974.
[12] Zhao Pengda, Li Zijin, Hu Guangdao. Statistical Prediction of Three Dimensional Mineral Deposits in Key Metallogenic Areas—Anhui Mountain Area as an Example[M]. Wuhan: China University of Geosciences Press,1992.
. 武汉: 中国地质大学出版社,1992.]
[13] Zhao Pengda, Hu Wangliang, Li Zijin. Statistical Prediction of Mineral Deposits[M].Beijing: Geological Publishing House, 1994.
.北京:地质出版社,1994.]
[14] Singer D A. Basic concepts in three-part quantitative assessments of undiscovered mineral resources[J]. Nonrenewable Resources ,1993, 2(2):69-81.
[15] Zhao Pengda, Chi Shundou. A preliminery view on geological anomaly[J]. Earth Science — Journal of China University of Geosciences ,1991, 16(3):241-248.
. 地球科学——中国地质大学学报,1991,16(3):241-248.]
[16] Wang Shichen, Chen Yongliang, Xia Lixian. Theory and Method of Comprehensive Information Mineral Resources Prediction[M]. Beijing: Science Press, 2000.
. 北京:科学出版社,2000.]
[17] Ye Tianzhu, Xiao Keyan, Yan Guangsheng.Methodology of deposit modeling and mineral resource potential assessment using integrated geological information[J]. Earth Science Frontiers ,2007, 14(5):11-19.
. 地学前缘,2007,14(5):11-19.]
[18] Bonham-Carter G F,Agterberg F P,Wright D. Weights of evidence modeling:A new approach to mapping mineral potential[J]. Statistical Applications in Earth Sciences ,1989,89(9):171-183.
[19] Cheng Q,Agterberg F P,Bonham-Carter G F. Fractal pattern integration for mineral potential mapping[J]. Nonrenewable Resources ,1996,5(2):117-130.
[20] Cheng Q,Agterberg F P. Fuzzy weights of evidence method and its application in mineral potential mapping[J]. Natural Resources Research ,1999,8(1):27-35.
[21] Xiao Keyan, Zhu Yusheng, Rong Guoyao. Mineral resource quantitative evaluation based on the GIS[J]. Chinese Geology , 2000,27(7):29-32.
. 中国地质,2000,27(7):29-32.]
[22] Xiao Keyan. Research and ways on large scale integrated information metallogenic prediction[J]. Gold geological Science and Technology , 1993,(4):34-39.
. 黄金地质科技,1993,(4):34-39.]
[23] Xiao Keyan, Li Nan, Sun Li, et al . Large scale 3D mineral prediction methods and channels based on 3D information technology[J]. Journal of Geology ,2012,36(3): 229-236.
. 地质学刊,2012,36(3): 229-236.]
[24] Chen Jianping, Shang Beichuan, Lü Peng, et al . Large-scale 3D metailogenic prediction of concealed orebody in Gejiu, Yunnan Province[J]. Chinese Journal of Geology , 2009,44(1):324-337.
. 地质科学,2009,44(1):324-337.]
[25] Chen Jianping, Lü Peng, Wu Wen, et al . A 3D method for predicting blind orebodies, based on a 3D visualization model and its application[J]. Earth Science Frontiers , 2007, 14(5):54-62.
. 地学前缘,2007,14(5):56-64.]
[26] Chen Jianping, Chen Yong,Zeng Min, et al . 3D positioning and quantitative prediction of the Koktokay No.3 pegmatite dike, Xinjiang, China, based on the digital mineral deposit model[J]. Geological Bulletin of China ,2008, 27(4):552-559.
. 地质通报,2008,27(4):552-559.]
[27] Mao Xiancheng, Dai Tagen, Wu Xiangbin, et al . The stereoscopic quantitative prediction of concealed ore bodies in the deep and marginal parts of crisis mines:A case study of the Dachang tin polymetallic ore deposit in Guangxi[J]. Geology in China ,2009,36(2):424-435.
. 中国地质,2009, 36(2):424-435.]
[28] Mao Xiancheng, Zou Hongyan, Chen Jin, et al . Three Dimensional Visualization Prediction of Concealed Ore Bodies[M]. Changsha: Central South University Press, 2011.
. 长沙: 中南大学出版社,2011.]
[29] Mao Xiancheng, Tang Yanhua,Deng Hao. Three-dimensional morphological analysis method for geologic bodies and its application[J]. Journal of Central South University ( Science and Technology ),2012,43(2):588-595.
. 中南大学学报:自然科学版,2012,43(2):588-595.]
[30] Fallara F,Legault M,Rabeau O. 3-D integrated geological modeling in the Abitibi Subprovince (Québec,Canada):Techniques and applications[J]. Exploration and Mining Geology ,2006,15(1/2):27-43.
[31] Wang G,Zhang S,Yan C, et al . Mineral potential targeting and resource assessment based on 3D geological modeling in Luanchuan region,China[J]. Computers & Geosciences ,2011,37(12):1 976-1 988.
[32] Li Y, Oldenburg D W. 3D inversion of gravity data[J]. Geophysics ,1998,63(1):109-119.
[33] Portniaguine O, Zhdanov M S. 3-D magnetic inversion with data compression and image focusing[J]. Geophysics ,2002, 67(5):1 532-1 541.
[34] Chen Zhaoxi, Meng Xiaohong, Guo Lianghui. Review of 3D property inversion of gravity and magnetic data[J]. Progress in Geophysics ,2012,27(2):503-511.
. 地球物理学进展,2012, 27(2):503-511.]
[35] Guo Dong, Yan Jiayong, Lü Qingtian, et al . 3D density mapping constrained by geological information model study and application[J]. Acta Geologica Sinica ,2014,88(4):763-776.
. 地质学报,2014,88(4):763-776.]
[36] Yan Jiayong, Lü Qingtian, Wu Ming’an, et al . Prospecting indicator of Anhui Shaxi porphyry copper deposit based on regional gravity and magnetic 3D inversion[J]. Acta Geologica Sinica ,2014,88(4):507-518.
. 地质学报,2014,88(4):507-518.]
[37] Qi Guang,Lü Qingtian,Yan Jiayong, et al . 3D geological modeling of Luzong ore district based on priori information constrained[J]. Acta Geologica Sinica ,2014,88(4):466-477.
. 地质学报,2014,88(4):466-477.]
[38] Li Wenda. On the Yangze type copper ore deposits and its origin[J]. Bulletin of the Nanjing Institute of Geology and Mineral Resources , Chinese Academy of Geological Sciences ,1989,10(2):1-14.
. 中国地质科学院南京地质矿产研究所所刊,1989,10(2):1-14.]
[39] Chang Yinfu, Liu Xiangpei, Wu Yanchang. Copper and Iron Metallogenic Belt in the Middle and Lower Yangtze[M]. Beijing: Geological Publishing House, 1991.
. 北京:地质出版社,1991.]
[40] Mao Jingwen,Shao Yongjun,Xie Guiqing, et al . Mineral deposit model for porephy-skarn polymetallic copper deposits in Tongling ore dense district of Middle-Lower Yangtze Valley metallogenic belt[J]. Mineral Deposits ,2009,28(2):109-119.
.矿床地质,2009,28(2):109-119.]
[41] Ma X Y, He G Q. Precambrian crustal evolution of eastern Asia[J]. Journal of Southeast Asian Earth Sciences ,1989,3(1/4):9-15.
[42] Wang H Z, Mo X X. An outline of the tectonic evolution of China[J]. Episodes ,1995, 18(1/2): 6-16.
[43] Liu Wencan, Li Dongxu, Gao Dezhen. Analysis of the time sequence of compounding of structural deformation systems and the resulting effects in Tongling area[J]. Journal of Geomechanics , 1996,2(1):42-48.
. 地质力学学报,1996,2(1):42-48.]
[44] Fan Ziliang, Xu Xiaochun, Chen Linjie, et al . The geological features and metallogenic setting of the porphyry copper-molybdenum-old deposits in Tongling ore district Anhui Province[J]. Acta Petrologica Sinica ,2016, 32 (2):351-368.
. 岩石学报,2016,32(2):351-368.]
[45] Yao Xiaode, Du Jianguo, Xu Wei, et al . Regional metallogenic model in Tongling ore cluster area,Anhui Province[J]. Journal of Hefei University of Technology ( Natural Science ),2012,35(7):965-976.
. 合肥工业大学学报:自然科学版,2012,35(7):965-976.]
[46] Xu Xiaochun, Bai Ruyu,Xie Qiaoqin, et al . Re-understanding of the geological and geochemical characteristics of the Mesozoic intrusive rocks from Tongling area of Anhui Province,and discussions on their genesis[J]. Acta Petrologica Sinica ,2012, 28(10):3 139-3 169.
.岩石学报, 2012, 28(10): 3 139-3 169.]
[47] Xie Jiancheng, Yang Xiaoyong, Xiao Yilin, et al . Petrogenesis of the mesozoic intrusive rocks from the Tongling ore cluster region:The metallogenic significance[J]. Acta Geologica Sinica ,2012,86(3):423-459.
. 地质学报,2012,86(3):423-459.]
[48] Chang Yinfo, Liu Xuegui. On strata-bound skarn deposits[J]. Mineral Deposits ,1983,2(1):11-20.
. 矿床地质,1983,2(1):11-20.]
[49] Chu Guozheng, Li Dongxu. Bedding slipping structures control on the “Multistorey” ore deposits in the Shizishan orefield of Anhui[J]. Geoscience ,1992,6(4):504-513.
. 现代地质,1992,6(4):504-513.]
[50] Guo Wenkui. On the origin of Tongguanshan copper mine in Anhui[J]. Acta Geological Sinica ,1957,37(3):317-332.
. 地质学报,1957,37(3):317-322.]
[51] Gu Lianxing, Xu Keqin. On the carboniferous submarine massive sulfide deposits in the lower reaches of Changjiang (Yangtze) River[J]. Acta Geological Sinica ,1986, (2): 176-188.
. 地质学报,1986,(2):176-188.]
[52] Tang Yongcheng, Wu Yanchang, Chu Guozheng, et al . Polymetallic Copper and Gold Deposits along the Yangtze River in Anhui[M]. Beijing: Geological Publishing House, 1998.
. 北京:地质出版社,1998.]
[53] Mao Jingwen, Hu Ruizhong,Chen Yuchuan, et al . The Large-scale Mineralization and Ore Districts[M]. Beijing: Geological Publishing House, 2006.
. 北京:地质出版社,2006.]
[54] Shi Rui, Chen Jianping,Liu Handong, et al . The 3D prediction model and division of targets in Jiaojia gold ore belt, Shandong Province[J]. Geoscience ,2014,28(4):743-750.
. 现代地质,2014,28(4):743-750.]
[55] Xiang Jie, Chen Jianping, Hu Qiao, et al . 3D metallogenic prediction based on minerogenetic series:A case study in Tongling mineral district of Anhui[J]. Geoscience ,2016,30(1):230-238.
. 现代地质,2016,30(1):230-238.]
[56] Shao Ke, Chen Jianping, Ren Mengyi. Evaluation methodology and indicator system of poly-metallic sulfide mineral resources in the Indian Ocean[J]. Advances in Earth Science ,2015, 30(7): 812-822.
. 地球科学进展, 2015, 30(7): 812-822.]
[57] Meng Guixiang. The Reaearch on the Location Prediction of the Reserve Resource of the Large-Scale Ore Concentration Area[D]. Beijing: Chinese Academy of Geological Sciences, 2006.
. 北京: 中国地质科学院, 2006.]
[58] Yan Qiong, Chen Jianping, Shang Beichuan. The 3D prediction model and division of targets in Lutangba study area of Gaosong ore field in Gejiu, Yunnan Province[J]. Geoscience ,2012,26(2):286-293.
. 现代地质,2012,26(2):286-293.]
[1] 王春连,刘成林,王立成,张林兵. 钾盐矿床成矿条件研究若干进展[J]. 地球科学进展, 2013, 28(9): 976-987.
[2] 华仁民,李晓峰,陆建军,陈培荣,邱德同,王 果. 德兴大型铜金矿集区构造环境和成矿流体研究进展[J]. 地球科学进展, 2000, 15(5): 525-533.
[3] 徐兴旺,蔡新平. 隐伏矿床预测理论与方法的研究进展[J]. 地球科学进展, 2000, 15(1): 76-83.
[4] 张均. 矿体定位预测的研究现状与趋向[J]. 地球科学进展, 1997, 12(3): 242-246.
阅读次数
全文


摘要