地球科学进展 ›› 2023, Vol. 38 ›› Issue (7): 661 -674. doi: 10.11867/j.issn.1001-8166.2023.034

综述与评述    下一篇

数字全息云粒子测量技术现状及进展
曾庆伟 1( ), 刘磊 1 , 2( ), 胡帅 1 , 2, 刘西川 1, 高太长 1 , 2   
  1. 1.国防科技大学气象海洋学院,湖南 长沙 410073
    2.电磁环境效应与 光电工程国家级重点实验室,江苏 南京 211101
  • 收稿日期:2023-02-15 修回日期:2023-05-16 出版日期:2023-07-10
  • 通讯作者: 刘磊 E-mail:zengqw2021@163.com;liulei17c@nudt.edu.cn
  • 基金资助:
    国家自然科学基金青年科学基金项目“基于气液两相耦合流动特征的飞秒强激光穿云机理研究”(42105176);湖南省自然科学基金杰出青年基金项目“飞秒激光穿云效应非接触式测量方法”(2021JJ10047)

The Actuality and Progress of Digital Holographic Techniques for Cloud Particle Measurement

Qingwei ZENG 1( ), Lei LIU 1 , 2( ), Shuai HU 1 , 2, Xichuan LIU 1, Taichang GAO 1 , 2   

  1. 1.College of Meteorology and Oceanography, National University of Defense Technology, Changsha 410073, China
    2.National Key Laboratory on Electromagnetic Environment and Electro-optical, Engineering, Nanjing 211101, China
  • Received:2023-02-15 Revised:2023-05-16 Online:2023-07-10 Published:2023-07-19
  • Contact: Lei LIU E-mail:zengqw2021@163.com;liulei17c@nudt.edu.cn
  • About author:ZENG Qingwei (1990-), male, Baojing City, Hunan Province, Lecturer. Research areas include atmospheric physics and atmospheric environment. E-mail: zengqw2021@163.com
  • Supported by:
    the National Natural Science Foundation of China “Study on the mechanism of femtosecond intense laser pulse penetrating cloudy atmosphere based on gas-liquid two-phase coupled flow characteristics”(42105176);The Hunan Natural Science Foundation Outstanding Youth Project “Contactless measurement method of the penetrating effect of femtosecond laser in cloud”(2021JJ10047)

准确获取大气中云粒子的原位探测信息,对于揭示气溶胶—云—降水形成物理机制、改进数值预报模式微物理参数化方案、评估人工影响天气催化效果等具有重要的应用价值。数字全息测量技术能够同时获取云粒子的尺度、速度、相态和空间位置等信息,且具有覆盖粒子尺度范围广(μm~mm)、空间采样精度高(可达mm量级)和仪器采样体积可准确确定等诸多优点,在云微物理观测领域具有广阔的应用前景。总结了目前国内外数字全息云粒子测量仪器的研究现状,分析了仪器研制所涉及的全息光路设计、机械防护和全息图处理等几个关键技术问题,并介绍了全息云粒子观测结果在揭示混合云内冰晶冻结机制和云中湍流混合作用影响微物理机制等方面的应用。最后,从技术应用角度对全息光路优化设计、全息图处理方法、仪器结构防护和外场观测试验等方面作了一定的思考和展望,以期为开展相关仪器研制和云微物理观测应用研究提供参考。

The accurate acquisition of in situ particle detection information in clouds is important in revealing the physical mechanism of cloud precipitation formation, improving the parameterization scheme of numerical weather prediction models, and evaluating the seeding effect of weather modification. Digital holographic measurement technology can obtain three-dimensional positioning information of particles and has advantages, including a wide measurement range (μm to mm), high spatial resolution (mm magnitude), and accurate determination of instrument sampling space. Therefore, it has wide application prospects in cloud microphysics observations. This study summarizes the current situation of holographic cloud particle imagers worldwide. Several key technical issues involved in the development of instruments were analyzed, such as the holographic optical path design, mechanical protection design, and hologram processing. Applications of holographic observations to reveal the freezing mechanism of ice crystals in mixed-phase clouds and microphysical mechanisms in clouds with turbulent mixing were introduced. Finally, certain thoughts and prospects were discussed from the perspective of technology application, which can provide a reference for the development of related instruments and research on cloud microphysics observations.

中图分类号: 

图1 数字同轴全息测量原理示意图
Fig. 1 Schematic diagram of the principle of digital in-line holography
图2 地基全息云粒子测量仪
Fig. 2 Ground-based holographic cloud particle measuring instrument
图3 机载式全息云粒子测量仪HALOHolo结构图 39
Fig. 3 Structure diagram of airborne holographic cloud particle measuring instrument HALOHolo 39
图4 空基全息云粒子测量仪
Fig. 4 Space-based holographic cloud particle detector
1 STEVENS B, BONY S. What are climate models missing?[J]. Science, 2013, 340(6 136): 1 053-1 054.
2 VOGEL R, ALBRIGHT A L, VIAL J, et al. Strong cloud-circulation coupling explains weak trade cumulus feedback[J]. Nature, 2022, 612(7 941): 696-700.
3 BONY S, STEVENS B, FRIERSON D M W, et al. Clouds, circulation and climate sensitivity[J]. Nature Geoscience, 2015, 8(4): 261-268.
4 WANG Peng, LIU Lei, LIU Xichuan, et al. Research status and progress of balloon-borne cloud and precipitation particles probe [J]. Advances in Earth Science, 2020, 35(7): 704-714.
王鹏, 刘磊, 刘西川, 等. 球载云降水粒子探测器研究现状及进展[J]. 地球科学进展, 2020, 35(7): 704-714.
5 GUO Xueliang, FU Danhong, GUO Xin, et al. Advances in aircraft measurements of clouds and precipitation in China [J]. Journal of Applied Meteorological Science, 2021, 32(6): 641-652.
郭学良, 付丹红, 郭欣, 等. 我国云降水物理飞机观测研究进展 [J]. 应用气象学报, 2021, 32(6): 641-652.
6 ROSENFELD D, ZHU Y N, WANG M H, et al. Aerosol-driven droplet concentrations dominate coverage and water of oceanic low-level clouds[J]. Science, 2019, 363(6 427). DOI: 10.1126/science.aav0566 .
7 WANG Chunxiao, MA Yaoming, HAN Cunbo. Research on the atmospheric boundary layer structure and its development mechanism in the Tibetan Plateau [J]. Advances in Earth Science, 2023, 38(4): 414-428.
王春晓, 马耀明, 韩存博. 青藏高原大气边界层结构及其发展机制研究 [J]. 地球科学进展, 2023, 38(4): 414-428.
8 PU Lingbing, GAO Aizhen, YUAN Jing, et al. New cloud droplet probe and its first observation results [J]. Acta Photonica Sinica, 2014, 43(1): 31-35.
卜令兵, 高爱臻, 袁静, 等. 一种新型云粒子探测仪的研制及初步观测结果分析 [J]. 光子学报, 2014, 43(1): 31-35.
9 ABDELMONEM A, JÄRVINEN E, DUFT D, et al. PHIPS-HALO: the airborne particle habit imaging and polar scattering probe-part 1: design and operation[J]. Atmospheric Measurement Techniques, 2016, 9(7): 3 131-3 144.
10 HEYMSFIELD A J. On measurements of small ice particles in clouds[J]. Geophysical Research Letters, 2007, 34(23). DOI:10.1029/2007GL030951 .
11 GUO Xueliang, YU Ziping, YANG Zehou, et al. Development and application of the high-performance airborne cloud particle imager [J]. Acta Meteorologica Sinica, 2020, 78(6): 1 050-1 064.
郭学良, 于子平, 杨泽后, 等. 高性能机载云粒子成像仪研制及应用 [J]. 气象学报, 2020, 78(6): 1 050-1 064.
12 BAUMGARDNER D, ABEL S J, AXISA D, et al. Cloud ice properties: in situ measurement challenges[J]. Meteorological Monographs, 2017, 58. DOI:10.1175/AMSMONOGRAPHS-D-16-0011.1 .
13 WANG L, LI T X, ZHAO Y, et al. 65 kHz picosecond digital off-axis holographic imaging of 3D droplet trajectory in a kerosene swirl spray flame[J]. Optics and Lasers in Engineering, 2023, 160. DOI:10.1016/j.optlaseng.2022.107236 .
14 MEMMOLO P, MICCIO L, PATURZO M, et al. Recent advances in holographic 3D particle tracking[J]. Advances in Optics and Photonics, 2015, 7(4). DOI:10.1364/AOP.7.000713 .
15 BERG M J. Tutorial: aerosol characterization with digital in-line holography[J]. Journal of Aerosol Science, 2022, 165. DOI:10.1016/j.jaerosci.2022.106023 .
16 WU Yingchun, WU Xuecheng, CENG Kefa. Development of digital holography in particle field measurement [J]. Chinese Journal of Lasers, 2014, 41(6): 7-17.
吴迎春, 吴学成, 岑可法. 数字全息测量颗粒场研究进展 [J]. 中国激光, 2014, 41(6): 7-17.
17 KUNKEL B A. Fog drop-size distributions measured with a laser hologram camera[J]. Journal of Applied Meteorology, 1971, 10(3): 482-486.
18 THOMPSON B J, PARRENT G B, WARD J H, et al. A readout technique for the laser fog disdrometer[J]. Journal of Applied Meteorology, 1966, 5(3): 343-348.
19 SILVERMAN B A, THOMPSON B J, WARD J H. A laser-fog disdrometer[J]. Journal of Applied Meteorology, 1964, 3(6): 792-801.
20 TROLINGER J D, BELZ R A, FARMER W M. Holographic techniques for the study of dynamic particle fields[J]. Applied Optics, 1969, 8(5). DOI:10.1364/AO.8.000957 .
21 TROLINGER J D. Airborne holography techniques for particle field analysis[J]. Annals of the New York Academy of Sciences, 1976, 267(1): 448-459.
22 TROLINGER J D, FARMER W M, BELZ R A. Multiple exposure holography of time varying three-dimensional fields[J]. Applied Optics, 1968, 7(8). DOI:10.1364/AO.7.001640 .
23 KOZIKOWSKA A, HAMAN K, SUPRONOWICZ J. Preliminary results of an investigation of the spatial distribution of fog droplets by a holographic method[J]. Quarterly Journal of the Royal Meteorological Society, 1984, 110(463): 65-73.
24 BORRMANN S, JAENICKE R, NEUMANN P. On spatial distributions and inter-droplet distances measured in stratus clouds with in-line holography[J]. Atmospheric Research, 1993, 29(3/4): 229-245.
25 UHLIG E M, BORRMANN S, JAENICKE R. Holographic in situ measurements of the spatial droplet distribution in stratiform clouds[J]. Tellus B: Chemical and Physical Meteorology, 1998, 50(4). DOI:10.3402/TELLUSB.V50I4.16210 .
26 BROWN P R A. Use of holography for airborne cloud physics measurements[J]. Journal of Atmospheric and Oceanic Technology, 1989, 6(2): 293-306.
27 BEALS M, FUGAL J, SHAW R, et al. Holographic measurements of inhomogeneous cloud mixing at the centimeter scale[J]. Science, 2015, 350: 87-90.
28 TIITTA P, LESKINEN A, KAIKKONEN V A, et al. Intercomparison of holographic imaging and single-particle forward light scattering in situ measurements of liquid clouds in changing atmospheric conditions[J]. Atmospheric Measurement Techniques, 2022, 15(9): 2 993-3 009.
29 GLIENKE S, KOSTINSKI A B, SHAW R A, et al. Holographic observations of centimeter-scale nonuniformities within marine stratocumulus clouds[J]. Journal of the Atmospheric Sciences, 2020, 77(2): 499-512.
30 BAUMGARDNER D, BRENGUIER J L, BUCHOLTZ A, et al. Airborne instruments to measure atmospheric aerosol particles, clouds and radiation: a cook’s tour of mature and emerging technology[J]. Atmospheric Research, 2011, 102(1/2): 10-29.
31 FUGAL J P, SHAW R A, SAW E W, et al. Airborne digital holographic system for cloud particle measurements[J]. Applied Optics, 2004, 43(32). DOI:10.1364/AO.43.005987 .
32 SPULER S M, FUGAL J. Design of an in-line, digital holographic imaging system for airborne measurement of clouds[J]. Applied Optics, 2011, 50(10): 1 405-1 412.
33 AMSLER P, STETZER O, SCHNAITER M, et al. Ice crystal habits from cloud chamber studies obtained by in-line holographic microscopy related to depolarization measurements[J]. Applied Optics, 2009, 48(30): 5 811-5 822.
34 HENNEBERGER J, FUGAL J P, STETZER O, et al. HOLIMO II: a digital holographic instrument for ground-based in situ observations of microphysical properties of mixed-phase clouds[J]. Atmospheric Measurement Techniques, 2013, 6(11): 2 975-2 987.
35 RAMELLI F, BECK A, HENNEBERGER J, et al. Using a holographic imager on a tethered balloon system for microphysical observations of boundary layer clouds[J]. Atmospheric Measurement Techniques, 2020, 13(2): 925-939.
36 BECK A, HENNEBERGER J, SCHÖPFER S, et al. HoloGondel: in situ cloud observations on a cable car in the Swiss Alps using a holographic imager[J]. Atmospheric Measurement Techniques, 2017, 10(2): 459-476.
37 SCHLENCZEK O, FUGAL J P, LLOYD G, et al. Microphysical properties of ice crystal precipitation and surface-generated ice crystals in a high alpine environment in Switzerland[J]. Journal of Applied Meteorology and Climatology, 2017, 56(2): 433-453.
38 O'SHEA S J, CHOULARTON T W, LLOYD G, et al. Airborne observations of the microphysical structure of two contrasting cirrus clouds[J]. Journal of Geophysical Research: Atmospheres, 2016, 121(22): 13 510-13 536.
39 LLOYD G, CHOULARTON T, BOWER K, et al. Small ice particles at slightly supercooled temperatures in tropical maritime convection[J]. Atmospheric Chemistry and Physics, 2020, 20(6): 3 895-3 904.
40 KAIKKONEN V A, MOLKOSELKÄ E O, MÄKYNEN A J. A rotating holographic imager for stationary cloud droplet and ice crystal measurements[J].Optical Review, 2020, 27(2): 205-216.
41 LIN Xiaodan. 3D holographic visualization of combustion particle fragmentation and droplet splash and wind tunnel test research of cloud particle [D]. Hangzhou: Zhejiang University, 2021.
林小丹. 燃烧颗粒破碎和液滴飞溅全息三维可视化及云雾颗粒风洞测试研究[D]. 杭州: 浙江大学, 2021.
42 GAO P, WANG J, GAO Y Z, et al. Observation on the droplet ranging from 2 to 16 μm in cloud droplet size distribution based on digital holography[J]. Remote Sensing, 2022, 14(10). DOI: 10.3390/rs14102414 .
43 BECK A, HENNEBERGER J, FUGAL J P, et al. Impact of surface and near-surface processes on ice crystal concentrations measured at mountain-top research stations[J]. Atmospheric Chemistry and Physics, 2018, 18(12): 8 909-8 927.
44 ZAKHAROV V, RASOUMOV L, BIRGER E, et al. Raindrop measurements by holography[J]. IEEE Journal of Quantum Electronics, 1975, 11(9). DOI:10.1109/JQE.1975.1068817 .
45 CONWAY B J, CAUGHEY S J, BENTLEY A N, et al. Ground-based and airborne holography of ice and water clouds[J]. Atmospheric Environment (1967), 1982, 16(5): 1 193-1 207.
46 PAVITT K W, JACKSON M C, ADAMS R J, et al. Holography of fast-moving cloud droplets[J]. Journal of Physics E: Scientific Instruments, 1970, 3(12): 971-975.
47 LAWSON R P, CORMACK R H. Theoretical design and preliminary tests of two new particle spectrometers for cloud microphysics research[J]. Atmospheric Research, 1995, 35(2/3/4): 315-348.
48 WEITZEL M, MITRA S K, SZAKÁLL M, et al. Application of holography and automated image processing for laboratory experiments on mass and fall speed of small cloud ice crystals[J]. Atmospheric Chemistry and Physics, 2020, 20(23): 14 889-14 901.
49 LI H Q, JI F, LI L, et al. In-lab in-line digital holography for cloud particle measurement experiment[C]// SPIE proceedings, hyperspectral remote sensing applications and environmental monitoring and safety testing technology. Beijing, 2016.
50 WU Xuecheng, WU Yingchun, CENG Kefa. Particle holographic measurement technique[M]. Beijing: Science Press, 2021.
吴学成, 吴迎春, 岑可法. 颗粒全息测量技术[M]. 北京: 科学出版社, 2021.
51 LAWSON R P, WOODS S, MORRISON H. The microphysics of ice and precipitation development in tropical cumulus clouds[J]. Journal of the Atmospheric Sciences, 2015, 72(6): 2 429-2 445.
52 FOURNEY M E, MATKIN J H, WAGGONER A P. Aerosol size and velocity determination via holography[J]. Review of Scientific Instruments, 1969, 40(2): 205-213.
53 FUGAL J P, SHAW R A. Cloud particle size distributions measured with an airborne digital in-line holographic instrument[J]. Atmospheric Measurement Techniques, 2009, 2(1): 259-271.
54 SHAW R, SPULER S, BEALS M, et al. Final report on HOLODEC 2 technology: readiness level[R]. United States: n. p., 2012. DOI:10.2172/1043293 .
55 WANG J, WOOD R, JENSEN M P, et al. Aerosol and cloud experiments in the eastern North Atlantic (ACE-ENA)[J]. Bulletin of the American Meteorological Society, 2022, 103(2): E619-E641.
56 ALBRECHT B, GHATE V, MOHRMANN J, et al. Cloud System Evolution in the Trades (CSET): following the evolution of boundary layer cloud systems with the NSF-NCAR GV[J]. Bulletin of the American Meteorological Society, 2019, 100(1): 93-121.
57 KONOW H, EWALD F, GEORGE G, et al. EUREC4A’s HALO[J]. Earth System Science Data, 2021, 13(12): 5 545-5 563.
58 KEMPPINEN O, LANING J C, MERSMANN R D, et al. Imaging atmospheric aerosol particles from a UAV with digital holography[J]. Scientific Reports, 2020, 10. DOI:10.1038/s41598-020-72411-x .
59 AYE T. Holographic spectrometer/counter for ice nuclei detection [R]. United States: USDOE Office of Science, 2019.
60 MCADAMS D, JOHNSON E B U S N P. Holographic Cloud Particle Imager (HCPI) [R]. Watertown, MA (United States): Radiation Monitoring Devices, Inc., 2022.
61 EGERER U, GOTTSCHALK M, SIEBERT H, et al. The new BELUGA setup for collocated turbulence and radiation measurements using a tethered balloon: first applications in the cloudy Arctic boundary layer[J]. Atmospheric Measurement Techniques, 2019, 12(7): 4 019-4 038.
62 MAZUMDAR Y C, SMYSER M E, HEYBORNE J D, et al. Megahertz-rate shock-wave distortion cancellation via phase conjugate digital in-line holography[J]. Nature Communications, 2020, 11. DOI:10.1038/s41467-020-14868-y .
63 ROYER H. Holographic velocimetry of submicron particles[J]. Optics Communications, 1977, 20(1): 73-75.
64 RAUPACH S F, VÖSSING H J, CURTIUS J, et al. Digital crossed-beam holography for in situimaging of atmospheric ice particles[J]. Journal of Optics A: Pure and Applied Optics, 2006, 8(9): 796-806.
65 KOROLEV A, EMERY E, CREELMAN K. Modification and tests of particle probe tips to mitigate effects of ice shattering[J]. Journal of Atmospheric and Oceanic Technology, 2013, 30(4): 690-708.
66 MASUDA N, ITO T, KAYAMA K, et al. Special purpose computer for digital holographic particle tracking velocimetry[J]. Optics Express, 2006, 14(2): 587-592.
67 AHRENBERG L, PAGE A J, HENNELLY B M, et al. Using commodity graphics hardware for real-time digital hologram view-reconstruction[J]. Journal of Display Technology, 2009, 5(4): 111-119.
68 ZHANG H Q, STANGNER T, WIKLUND K, et al. UmUTracker: a versatile MATLAB program for automated particle tracking of 2D light microscopy or 3D digital holography data[J]. Computer Physics Communications, 2017, 219: 390-399.
69 FUGAL J P, SCHULZ T J, SHAW R A. Practical methods for automated reconstruction and characterization of particles in digital in-line holograms[J]. Measurement Science and Technology, 2009, 20(7). DOI:10.1088/0957-0233/20/7/075501 .
70 MOLKOSELKÄ E O, KAIKKONEN V A, MÄKYNEN A J. Measuring atmospheric icing rate in mixed-phase clouds using filtered particle data[J]. IEEE Transactions on Instrumentation and Measurement, 2021, 70: 1-8.
71 PU Shiliang, JIN Qiwen, CHEN Xiaofeng, et al. Fast reconstruction of particle hologram based on two-level parallel framework [J]. Laser Technology, 2021, 45(6): 806-810.
浦世亮, 金其文, 陈晓锋, 等. 基于二级并行架构的颗粒全息图快速重建方法 [J]. 激光技术, 2021, 45(6): 806-810.
72 WU Yufeng, WU Jiachen, HAO Ran, et al. Research progress of particle field digital holography based on deep learning [J]. Journal of Applied Optics, 2020, 41(4): 662-674.
吴羽峰, 吴佳琛, 郝然, 等. 基于深度学习的粒子场数字全息成像研究进展 [J]. 应用光学, 2020, 41(4): 662-674.
73 SHAO S Y, MALLERY K, KUMAR S S, et al. Machine learning holography for 3D particle field imaging[J]. Optics Express, 2020, 28(3): 2 987-2 999.
74 YEVICK A, HANNEL M, GRIER D G. Machine-learning approach to holographic particle characterization[J]. Optics Express, 2014, 22(22): 26 884-26 890.
75 SHIMOBABA T, TAKAHASHI T, YAMAMOTO Y, et al. Digital holographic particle volume reconstruction using a deep neural network[J]. Applied Optics, 2019, 58(8). DOI:10.1364/AO.58.001900 .
76 TOULOUPAS G, LAUBER A, HENNEBERGER J, et al. A convolutional neural network for classifying cloud particles recorded by imaging probes[J]. Atmospheric Measurement Techniques, 2020, 13(5): 2 219-2 239.
77 SCHRECK J S, GANTOS G, HAYMAN M, et al. Neural network processing of holographic images[J]. Atmospheric Measurement Techniques, 2022, 15(19): 5 793-5 819.
78 HEYMSFIELD A J, SCHMITT C, CHEN C C J, et al. Contributions of the liquid and ice phases to global surface precipitation: observations and global climate modeling[J]. Journal of the Atmospheric Sciences, 2020, 77(8): 2 629-2 648.
79 MÜLMENSTÄDT J, SOURDEVAL O, DELANOË J, et al. Frequency of occurrence of rain from liquid-, mixed-, and ice-phase clouds derived from A-Train satellite retrievals[J]. Geophysical Research Letters, 2015, 42(15): 6 502-6 509.
80 KOROLEV A, MCFARQUHAR G, FIELD P R, et al. Mixed-phase clouds: progress and challenges[J]. Meteorological Monographs, 2017, 58. DOI:10.1175/AMSMONOGRAPHS-D-17-0001.1 .
81 HALLETT J, MOSSOP S C. Production of secondary ice particles during the riming process[J]. Nature, 1974, 249(5 452): 26-28.
82 LOHMANN U, HENNEBERGER J, HENNEBERG O, et al. Persistence of orographic mixed-phase clouds[J]. Geophysical Research Letters, 2016, 43(19): 10 512-10 519.
83 KOROLEV A. Limitations of the Wegener-bergeron-findeisen mechanism in the evolution of mixed-phase clouds[J]. Journal of the Atmospheric Sciences, 2007, 64(9): 3 372-3 375.
84 MORRISON H, de BOER G, FEINGOLD G, et al. Resilience of persistent Arctic mixed-phase clouds[J]. Nature Geoscience, 2012, 5(1): 11-17.
85 HENNEBERG O, HENNEBERGER J, LOHMANN U. Formation and development of orographic mixed-phase clouds[J]. Journal of the Atmospheric Sciences, 2017, 74(11): 3 703-3 724.
86 TARGINO A C, COE H, COZIC J, et al. Influence of particle chemical composition on the phase of cold clouds at a high-alpine site in Switzerland[J]. Journal of Geophysical Research: Atmospheres, 2009, 114(D18). DOI:10.1029/2008JD011365 .
87 DESAI N, CHANDRAKAR K K, KINNEY G, et al. Aerosol-mediated glaciation of mixed-phase clouds: steady-state laboratory measurements[J]. Geophysical Research Letters, 2019, 46(15): 9 154-9 162.
88 HOBBS P V, RANGNO A L. Ice particle concentrations in clouds[J]. Journal of the Atmospheric Sciences, 1985, 42(23): 2 523-2 549.
89 LASHER-TRAPP S, LEON D C, DEMOTT P J, et al. A multisensor investigation of rime splintering in tropical maritime cumuli[J]. Journal of the Atmospheric Sciences, 2016, 73(6): 2 547-2 564.
90 LAUBER A, HENNEBERGER J, MIGNANI C, et al. Continuous secondary-ice production initiated by updrafts through the melting layer in mountainous regions[J]. Atmospheric Chemistry and Physics, 2021, 21(5): 3 855-3 870.
91 KOROLEV A, HECKMAN I, WOLDE M, et al. A new look at the environmental conditions favorable to secondary ice production[J]. Atmospheric Chemistry and Physics, 2020, 20(3): 1 391-1 429.
92 RAMELLI F, HENNEBERGER J, DAVID R O, et al. Influence of low-level blocking and turbulence on the microphysics of a mixed-phase cloud in an inner-Alpine valley[J]. Atmospheric Chemistry and Physics, 2021, 21(6): 5 151-5 172.
93 RAMELLI F, HENNEBERGER J, DAVID R O, et al. Microphysical investigation of the seeder and feeder region of an Alpine mixed-phase cloud[J]. Atmospheric Chemistry and Physics, 2021, 21(9): 6 681-6 706.
94 PASQUIER J T, HENNEBERGER J, RAMELLI F, et al. Conditions favorable for secondary ice production in Arctic mixed-phase clouds[J]. Atmospheric Chemistry and Physics, 2022, 22(23): 15 579-15 601.
95 PASQUIER J T, HENNEBERGER J, KOROLEV A, et al. Understanding the history of two complex ice crystal habits deduced from a holographic imager[J]. Geophysical Research Letters, 2023, 50(1). DOI:10.1029/2022GL100247 .
96 GÖTZFRIED P, KUMAR B, SHAW R A, et al. Droplet dynamics and fine-scale structure in a shearless turbulent mixing layer with phasechanges[J]. Journal of Fluid Mechanics, 2017, 814: 452-483.
97 DEVENISH B J, BARTELLO P, BRENGUIER J L, et al. Droplet growth in warm turbulent clouds[J]. Quarterly Journal of the Royal Meteorological Society, 2012, 138(667): 1 401-1 429.
98 BODENSCHATZ E, MALINOWSKI S P, SHAW R A, et al. Can we understand clouds without turbulence?[J]. Science, 2010, 327(5 968): 970-971.
99 FALKOVICH G, FOUXON A, STEPANOV M G. Acceleration of rain initiation by cloud turbulence[J]. Nature, 2002, 419(6 903): 151-154.
100 BURNET F, BRENGUIER J L. Observational study of the entrainment-mixing process in warm convective clouds[J]. Journal of the Atmospheric Sciences, 2007, 64(6): 1 995-2 011.
101 YUM S S, WANG J, LIU Y G, et al. Cloud microphysical relationships and their implication on entrainment and mixing mechanism for the stratocumulus clouds measured during the VOCALS project[J]. Journal of Geophysical Research: Atmospheres, 2015, 120(10): 5 047-5 069.
102 LARSEN M L, SHAW R A, KOSTINSKI A B, et al. Fine-scale droplet clustering in atmospheric clouds: 3D radial distribution function from airborne digital holography[J]. Physical Review Letters, 2018, 121(20). DOI:10.1103/PhysRevLett.121.204501 .
103 LARSEN M L, SHAW R A. A method for computing the three-dimensional radial distribution function of cloud particles from holographic images[J]. Atmospheric Measurement Techniques, 2018, 11(7): 4 261-4 272.
104 GEERTS B, RAYMOND D J, GRUBIŠIĆ V, et al. Recommendations for in situ and remote sensing capabilities in atmospheric convection and turbulence[J]. Bulletin of the American Meteorological Society, 2018, 99(12): 2 463-2 470.
105 DESAI N, CHANDRAKAR K K, CHANG K, et al. Influence of microphysical variability on stochastic condensation in a turbulent laboratory cloud[J]. Journal of the Atmospheric Sciences, 2018, 75(1): 189-201.
106 BORRMANN S, JAENICKE R. Application of microholography for ground-based in situ measurements in Stratus cloud layers: a case study[J]. Journal of Atmospheric and Oceanic Technology, 1993, 10(3): 277-293.
107 DESAI N, GLIENKE S, FUGAL J, et al. Search for microphysical signatures of stochastic condensation in marine boundary layer clouds using airborne digital holography[J]. Journal of Geophysical Research: Atmospheres, 2019, 124(5): 2 739-2 752.
108 DESAI N, LIU Y G, GLIENKE S, et al. Vertical variation of turbulent entrainment mixing processes in marine stratocumulus clouds using high-resolution digital holography[J]. Journal of Geophysical Research: Atmospheres, 2021, 126(7). DOI:10.1029/2020JD033527 .
109 LA I, YUM S S, YEOM J M, et al. Influence of entrainment on centimeter-scale cloud microphysics in marine stratocumulus clouds observed during CSET[J]. Journal of the Atmospheric Sciences, 2022, 79(11): 2 935-2 948.
[1] 王鹏,刘磊,刘西川,胡帅,赵世军,姬文明,高太长. 球载云降水粒子探测器研究现状及进展[J]. 地球科学进展, 2020, 35(7): 704-714.
[2] 许昆明,胡融刚. 微电极技术在沉积物化学原位测量中的应用[J]. 地球科学进展, 2006, 21(8): 863-869.
阅读次数
全文


摘要