地球科学进展 ›› 2015, Vol. 30 ›› Issue (9): 1028 -1033. doi: 10.11867/j.issn.1001-8166.2015.09.1028

上一篇    下一篇

基于P-SV波分离的VTI介质射线追踪方法
郭恺 1( ), 王鹏燕 1, 娄婷婷 2   
  1. 1.中国石油化工股份有限公司石油物探技术研究院,江苏 南京 211103
    2.华润(南京)市政设计有限公司,江苏 南京 210000
  • 收稿日期:2015-03-02 修回日期:2015-07-30 出版日期:2015-09-20

A New Ray Tracing Method for VTI Medium Based on Separated P-SV Waves

Kai Guo 1( ), Pengyan Wang 1, Tingting Lou 2   

  1. 1 Sinopec Geophysical Research Institute, Nanjing 211103, China
    2 China resource(Nanjing) Municipal Design Co.Ltd, Nanjing 210000, China
  • Received:2015-03-02 Revised:2015-07-30 Online:2015-09-20 Published:2015-09-20

近年来,VTI介质参数建模和成像技术发展迅速,其中VTI介质射线追踪是基础,其精度和稳定性直接影响建模和成像的效果。VTI介质射线追踪大多通过前人提出的频散关系推导出程函方程和射线方程,该方法主要基于纵横波相互独立的假设,采用令横波速度等于零的手段,在某些特殊情况下精度较低、稳定性较差。针对其缺点提出一种新的射线追踪方法,该方法基于P=SV波分离得到的qP波频散关系,从而推导出程函方程和射线方程,提高了精度和稳定性。最后通过模型试算验证该方法的正确性和稳定性。

In recent years, modeling and imaging techniques for VTI medium have developed rapidly. Ray tracing in VTI medium is the key issue, whose precision and stability directly affect the results of modeling and imaging. Ray tracing in VTI medium is usually based on the eikonal equation and ray equation derived from the dispersion relation of Alkhalifah (2000). The assumption is that the P wave and S wave are independence, and the velocity of S wave is zero. Thus, in some particular cases, this method is lack of accuracy and stability. In this paper, a new ray tracing method was proposed to overcome this problem. We separated P-SV waves to get the phase velocity of the qP wave, and then to get the eikonal equation and ray equation of qP wave, through which the precision and stability were improved. At the end, numerical tests were made to prove the effectiveness of this method.

中图分类号: 

图1 新射线方程旅行时等值线图
Fig.1 Traveltime contours using new ray equation
图2 各向同性介质相速度曲线(ε=δ=0) 黑线表示准确相速度曲线;红线表示VSO=0时的相速度曲线;绿线表示P-SV波分离后的相速度曲线
Fig.2 The curves of phase velocity for isotropic medium Black expresses the exact phase velocity curve;Red expresses the phase velocity curve when VSO=0;Green expresses the phase velocity curve of separated P-SV waves
图3 ε=0.065,δ=0.059时的VTI介质相速度曲线 黑线表示准确相速度曲线;红线表示VSO=0时的相速度曲线;绿线表示P-SV波分离后的相速度曲线
Fig.3 The curve of phase velocity for Mesa clay Shale VTI medium Black expresses the exact phase velocity curve;Red expresses the phase velocity curve when VSO=0;Green expresses the phase velocity curve of separated P-SV waves
图4 ε=0.11,δ=-0.035时的VTI介质相速度曲线 黑线表示准确相速度曲线;红线表示VSO=0时的相速度曲线;绿线表示P-SV波分离后的相速度曲线
Fig.4 The curve of phase velocity for Taylor Sand VTI medium Black expresses the exact phase velocity curve,red expresses the phase velocity curve when VS0=0,green expresses the phase velocity curve of separated P=SV waves
图5 VTI介质ε=0.065,δ=-0.059常梯度速度模型等值线图 (a)Alkhalifah射线方程旅行时等值线;(b)新射线方程旅行时等值线;(c)二者叠合对比结果
Fig.5 Analysis on VTI medium velocity isoline in constant gradient model and composite (a)Travel time isoline of Alkhalifah ray function;(b)travel time isoline of new ray function;(c)composite of two functions
图6 VTI介质ε=0.11,δ=-0.035常梯度速度模型等值线图 (1)Alkhalifah射线方程旅行时等值线;(b)新射线方程旅行时等值线;(c)二者叠合对比结果
Fig.6 Analysis on VTI medium velocity isoline in constant gradient model and composite (a)Travel time isoline of Alkhalifah ray function;(b)Travel time isoline of new ray function;(c)Composite of two functions
[1] Thomsen L.Weak elastic anisotropy[J]. Geophysics, 1986, 51(10): 1 954-1 966.
[2] Alkhalifah T.An acoustic wave equation for anisotropic media[J]. Geophysics, 2000, 65(4): 1 239-1 250.
[3] Ĉerveny V.Seismic Ray Theory[M]. Cambridge: Cambridge University Press, 2001.
[4] Zheng X, Psencik I.Local determination of weak anisotropy parameters from qP-wave slowness and particle motion measurements[J]. Pure and Applied Geophysics, 2002,159(7): 1 881-1 905.
[5] Psencik I, Farra V.First-order ray tracing for qP waves in inhomogeneous, weakly anisotropic media[J]. Geophysics, 2005, 70(10): 65-75.
[6] Farra V.First-order ray tracing for qS waves in inhomogeneous, weakly anisotropic media[J]. Geophysics, 2005, 161(2): 309-324.
[7] Alkhalifah T.Velocity analysis using nonhyperbolic moveout in transversely isotropic media[J]. Geophysics, 1997, 62(6): 1 839-1 854.
[8] Alkhalifah T, Tsvankin I.Velocity analysis for transversely isotropic media[J]. Geophysics, 1995, 60(5): 1 550-1 566.
[9] Alkhalifah T.Scanning anisotropy parameters in complex media[J]. Geophysics, 2001, 76(2): U13-U22.
[10] Aki K, Richards P G.Quantitative Seismology: Theory and Methods[M].New York: W. H. Freeman and Co, 1980.
[11] Pestana R C, Ursin B, Stoffa P L.Separate P-and SV-wave equations for VTI media[C]∥SEG Technical Progam Expanded Abstracts, 2011:163-167.
[12] Wang Yongfeng, Jin Zhenmin.Seismic anisotropy: A probe to understand the structure in Earth’s interior[J]. Advances in Earth Science, 2005,20(9): 946-953.
[王永锋,金振民.地震波各向异性:窥测地球深部构造的“探针”[J]. 地球科学进展, 2005, 20(9): 946-953.]
[13] Wang Zhenyu, Yang Qinyong, Li Zhenchun.Research status and development trend of near-surface velocity modeling[J]. Advances in Earth Science, 2014, 29(10): 1 138-1 148.
[王振宇,杨勤勇,李振春. 近地表速度建模研究现状及发展趋势[J]. 地球科学进展, 2014, 29(10): 1 138-1 148.]
[14] Ju Yiwen, Bu Hongling, Wang Guochang.Main characteristics of shale gas reservoir and its effect on the reservoir reconstruction[J]. Advances in Earth Science, 2014, 29(4): 492-506.
[琚宜文,卜红玲,王国昌. 页岩气储层主要特征及其对储层改造的影响[J]. 地球科学进展, 2014, 29(4): 492-506.]
[1] 黄文星, 朱本铎, 刘丽强, 张金鹏. 国际海底命名争端案例研究及其启示[J]. 地球科学进展, 2016, 31(1): 78-85.
[2] 张志禹,樊婷,王喜乐. 孔隙结构参数对地震各类波传播的影响研究[J]. 地球科学进展, 2015, 30(12): 1306-.
[3] 杨扬, 马劲风, 李琳. CO 2地质封存四维多分量地震监测技术进展[J]. 地球科学进展, 2015, 30(10): 1119-1126.
[4] 冯斌,赵峰华,王淑华. 地震分频解释技术在河道砂预测中的应用[J]. 地球科学进展, 2012, 27(5): 510-514.
[5] 高建虎,刘全新,雍学善,刘洪. 双相介质叠前储层参数反演方法研究[J]. 地球科学进展, 2007, 22(10): 1048-1053.
阅读次数
全文


摘要