地球科学进展 ›› 2007, Vol. 22 ›› Issue (11): 1150 -1159. doi: 10.11867/j.issn.1001-8166.2007.11.1150

干旱气候变化与可持续发展 上一篇    下一篇

极端干旱荒漠区典型晴天大气热力边界层结构分析
张强 1,赵映东 2,王胜 1,马芳 1   
  1. 1.中国气象局兰州干旱气象研究所 甘肃省暨中国气象局干旱气候变化与减灾重点(开放)实验室,甘肃 兰州 730020;2.甘肃省水文水资源勘测局,甘肃 兰州 730000
  • 收稿日期:2007-09-20 修回日期:2007-10-20 出版日期:2007-11-10
  • 通讯作者: 张强(1965-),男,甘肃靖远人,研究员,博士生导师,主要从事大气边界层、陆面过程、绿洲气象学、干旱区气候和城市大气环境等领域的研究.E-mail: zhangq@gsma.gov.cn E-mail:zhangq@gsma.gov.cn
  • 基金资助:

    国家自然科学基金项目“西北干旱荒漠区大气边界层厚度特征及其形成机制研究”(编号:40575006);国家重点基础研究发展规划项目“我国重大气候灾害形成机理和预测理论的研究”(编号:G1998040906)共同资助.

A Study on Atmospheric Thermal Boundary Layer Structure in Extremely Arid Desert and Gobi Region on the Clear Day in Summer

ZHANG Qiang 1, ZHAO Ying-dong 2, WANG Sheng 1, MA Fang 1   

  1. 1.Institute of Arid Meteorology, China Meteorological Administration Key Laboratory of Arid Climatic Change and Reducing Disaster, Lanzhou 730020,China;2.Gansu Province Bureau of Hydrology and Water Resource Survey, Lanzhou 730000,China
  • Received:2007-09-20 Revised:2007-10-20 Online:2007-11-10 Published:2007-11-10

利用极端干旱区敦煌野外观测试验资料,分析了极端干旱荒漠区夏季典型晴天位温、风速、比湿等主要物理要素的垂直结构特征及其地表热力和近地层大气运动特征的日变化规律。发现在极端干旱地区夏季晴天大气热力边界层结构十分独特。在夜间,贴地逆温层最低在900 m以上,最厚可以达到1 750 m,逆温层上面的残余层一般能达到4 000 m左右的高度。在白天,位温超绝热递减层高达1 000 m,超绝热递减层上面的混合层最高达3 700 m,混合层顶上还有大约450 m甚至更厚的夹卷层。当白天对流层发展达到残余层以后,混合层的发展明显加快。风速和比湿垂直廓线特征很好地印证了大气热力边界层独特的结构特征,地表热力和近地层大气运动特征也为这种独特的大气热力边界层结构提供了较好的物理支持。

Vertical structure characteristics of mainly physics factor such as potential temperature、wind speed and specific humidity etc., using field observation data in Dunhuang, Gansu Province, the diurnal rule of surface thermal and dynamical characteristics in surface layer is analyzed in the extremely arid desert and gobi region. the special thermal boundary layer structure in summer is found. In the nighttime, the lowest ground inversion layer exceeds the height of 900 m and maximum that reaches the 1 750 m. The residual layer can touch the height about the 4 000 m.The depth of the superadiabatic lapse layer for potential temperature and the depth of the mixed layer on it are 1 000 m and 3 700 m in the daytime, respectively, which are high. There is entrainment layer that the depth is more than 450m on the top of the mixed layer. The mixed layer develops rapidly when convective boundary layer product residual layer. The vertical profiles of wind speed and specific humidity confirm well the particular structure of atmospheric thermal boundary layer. Surface thermal and dynamical characteristics supply the physical support for the particular atmospheric thermal boundary layer structure.

中图分类号: 

[1]Stull R B.An Introduction to Boundary Layer Meteorology[M].Dordrecht:Kluwer Academic Publisher,1988.
[2]Zhao Ming, Miao Manqian, Wang Yanchang.Boundary Meteorology[M].Beijing: Meteorology Press, 1991.[赵鸣,苗曼倩,王彦昌.边界层气象学教程[M].北京:气象出版社,1991.]
[3]Garratt J R. The Atmospheric Boundary Layer[M].Cambridge University Press: Combridge, 1992.
[4]Jiang Weimei, Xu Yumao,Yu Hongbin. Base of Boundary-layer Meteorology[M]. Nanjing: Nanjing University Press, 1994.[蒋维楣,徐玉貌,于洪彬.边界层气象学基础[M].南京:南京大气出版社,1994.]
[5]Raman S B, Templeman T Holt,Murthy A B.Structure of the Indian southwesterly pre-monsoon and monsoon boundary layers: Observations and numerical simulation[J]. Atmospheric Environment, 1990, 24a(4):723-734.
[6]Zhang Qiang,Wei Guoan, Hou Ping. Observational study on a case of the atmosphere boundary layer characteristics in Dunhuang region[J].Plateau Meteorology, 2004,23(5):587-597.[张强,卫国安,侯平.初夏敦煌戈壁大气边界结构特征的一次观测[J].高原气象,2004,23(5):587-597.]
[7]Zhang Qiang,Wang Sheng,Li Yanying, The depth of atmospheric boundary layer in arid region of northwest China[J]. Acta Meteorologica Sinica,2006, 20(suppl.):1-12.
[8]Zhang Qiang. Study on depth of atmospheric thermal boundary layer in extreme arid desert regions[J].Journal of Desert Research,2007,27(4):614-620.[张强.荒漠地区大气热力边界层厚度研究[J].中国沙漠,2007,27(4):614-620.]
[9]Zhang Qiang, Huang Ronghui, Wei Guoan,et al.NWC-ALIEX and its research advances[J].Advances in Earth Science,2005,20(4):427-441.[张强,黄荣辉,卫国安,等.西北干旱区陆面过程观测野外试验(NWC-ALIEX)及其研究进展[J].地球科学进展,2005,20(4):427-441.]
[10]Zhang Qiang, Wei Guoan, Huang Ronghui. The study of the atmospheric bulk transfer coefficient over Desert and Gobi in arid region of northwestern China[J]. Science in China (Series D),2001, 31(9) :783-792.[张强,卫国安,黄荣辉.敦煌戈壁大气曳力系数的观测与研究[J].中国科学:D辑, 2001, 31(9):783-792.]
[11]Zhang Qiang, Huang Ronghui. Water vapor exchange between soil and atmosphere over a Gobi surface near an Oasis in summer[J]. Journal of Applied Meteorology,2004,43(12) :1 917-1 928.
[12]Zhang Qiang, Huang Ronghui. Parameters of land surface processes on Gobi in northwest China[J].Boundary-Layer Meterology,2004, 110(3) :471-478.
[13]Zhang Qiang, Wang Sheng. The annual variation and the climatic importance about characteristics of water and heat in soil and the surface radiation equilibrium over Gobi in the arid region[J].Progress in Natural Science,2007,17(2):211-216.[张强,王胜.干旱荒漠地区土壤水热特征和地表辐射平衡的年变化及其气候学意义研究[J].自然科学进展,2007,17(2):211-216.]
[14]Crum T D, Stull R B,Eloranta E W.Coincident lidar and aircraft observations of entrainment into thermals and mixed layer[J].Journal of Climate and Applied Meteorology, 1987, 26:774-788.
[15]Angevine W M, White A B, Avery S K. Boundary layer depth and entrainment zone characterization with a boundary-layer profiler[J].Boundary Layer Meteorology, 1994,68:375-385.
[16]Zhang Qiang, Cao Xiaoyan.A Study of Surface heat and radiation budget energy in Gobi in Dunhuang region[J].Chinese Journal of Atmosphere Sciences,2003,27(2):245-254.[张强,曹晓彦. 荒漠戈壁地区地表热量和辐射平衡特征[J].大气科学,2003,27(2):245-254.]
[17]Zhang Qiang, Cao Xiaoyan, Wei Guoan, et al.Observation and study of some key parameters of land surface process of Gobi in arid region[J].Advances in Atmospheric Science,2002, 19(1):1-14.
[18]Deardorf J W.Convective velocity and temperature scale for the unstable planetary boundary layer and for Rayleigh convection[J].Journal of Atmospheric Sciences,1970,27:1 211-1 213.
[19]Redelsperger J L, Mondon S, Guichard F.Parameterization of mesoscale enhancement of surface fluxes in general circulation model[J].Bulletin of the American Meteorological Society,1998, 79(3):89-102.

[1] 赵中阔,廖菲,刘春霞,毕雪岩,王介民,万齐林,黄建. 近岸海洋气象平台涡动相关数据处理与质量控制[J]. 地球科学进展, 2011, 26(9): 954-964.
[2] 徐兴奎. 1970—2000年中国近地层大气热力增强的气候效应[J]. 地球科学进展, 2011, 26(1): 48-56.
[3] 王旭峰,马明国. 基于LPJ模型的制种玉米碳水通量模拟研究[J]. 地球科学进展, 2009, 24(7): 734-740.
[4] 任宏利,封国林,张培群. 论动力相似预报的物理基础问题[J]. 地球科学进展, 2007, 22(10): 1027-1035.
[5] 高丽,李建平. 大气能量有效性的研究进展[J]. 地球科学进展, 2007, 22(5): 486-494.
[6] 赵南,沈新勇,丁一汇. 大气运动的慢流形概论[J]. 地球科学进展, 2007, 22(4): 331-340.
[7] 刘罡;蒋维楣;罗云峰. 非均匀下垫面边界层研究现状与展望[J]. 地球科学进展, 2005, 20(2): 223-230.
[8] 杨健,吕达仁. 平流层—对流层交换研究进展[J]. 地球科学进展, 2003, 18(3): 380-385.
[9] 李薇,郭裕福,张学洪. 热带大气季节内振荡研究进展——观测、动力机制和数值模拟[J]. 地球科学进展, 2001, 16(1): 72-78.
[10] 谢志辉,丑纪范. 大气动力学方程组全局分析的研究进展[J]. 地球科学进展, 1999, 14(2): 133-139.
阅读次数
全文


摘要