地球科学进展, 2021, 36(7): 663-670 DOI: 10.11867/j.issn.1001-8166.2021.067

综述与评述

远喷口型SEDEX铅锌矿床最新研究进展及发展趋势

孙华山,, 杨辉

中国地质大学(武汉)资源学院,湖北 武汉 430074

Advance and Trend of the Vent-Distal SEDEX Lead-Zinc Deposits

SUN Huashan,, YANG Hui

School of Earth Resources,China University of Geosciences (Wuhan),Wuhan 430074,China

收稿日期: 2021-05-06   修回日期: 2021-06-15   网络出版日期: 2021-08-20

基金资助: 国家自然科学基金面上项目“青海省锡铁山SEDEX型铅锌矿床成矿构造背景及关键成矿控制”.  41172087

Received: 2021-05-06   Revised: 2021-06-15   Online: 2021-08-20

作者简介 About authors

孙华山(1969-),男,河北承德人,副教授,主要从事矿产勘查与评价教学与研究工作.E-mail:sunhsh@cug.edu.cn

SUNHuashan(1969-),male,ChengdeCity,HebeiProvince,Associateprofessor.Researchareasincludemassivesulfidedeposits.E-mail:sunhsh@cug.edu.cn

摘要

远喷口型SEDEX矿床是全球铅锌矿产的主要来源,但是,长期以来有关其成因及判别的标志一直存在争议。最近全球几个典型的此类铅锌矿床成矿研究取得了一些重要进展:海底喷流沉积作用不是该类矿床成矿的唯一方式,纹层状矿化也不是其成因的直接诊断标志;与传统上认为该类矿床一般形成于封闭、还原的海底低洼沉积环境不同,远喷口型SEDEX矿床赋矿围岩可以形成于开放、氧化沉积环境;甲烷厌氧氧化作用和海底热液交代作用可能是该类矿床纹层状、条带状矿化形成的主要机制。这些认识不仅对该类矿床传统成因模式提出了挑战,而且也将引起传统找矿勘查评价准则的改变。因此,借鉴已有研究经验,加强该类矿床成矿研究是当前矿床学的迫切任务之一。

关键词: 远喷口型SEDEX矿床 ; 诊断标志 ; 沉积环境 ; 成矿机制

Abstract

Vent-distal Sedimentary-Exhalative(SEDEX)ore deposits are the main source of lead-zinc minerals worldwide,however,their genesis and diagnostic marks are yet controversial. Recently,some important discoveries have been made in the study of typical vent-distal SEDEX ore deposits in the world, including: Submarine exhalative sedimentation is not the unique way of mineralization, and laminated mineralization is not an exclusive diagnostic signature of the genesis of such deposits; Contrary to the traditional view given that vent-distal SEDEX deposits are generally formed in a closed,reduced and down-warped submarine sedimentary environment,the host rocks of these deposits can be formed in an open and oxidized sedimentary environment; Methane anaerobic oxidation and submarine hydrothermal alteration may be the main mechanisms for the formation of laminated and layered mineralization of this type of deposits. These understandings not only challenge the traditional genetic model of SEDEX deposits but also lead to the change of traditional prospecting and exploration evaluation criteria. Therefore,it is one of the urgent tasks to strengthen metallogenic research of this type of deposits learnt from the existing research experiences.

Keywords: Vent-distal SEDEX deposit ; Diagnostic signature ; Sedimentary environment ; Mineralized mechanism

PDF (3607KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

孙华山, 杨辉. 远喷口型SEDEX铅锌矿床最新研究进展及发展趋势. 地球科学进展[J], 2021, 36(7): 663-670 DOI:10.11867/j.issn.1001-8166.2021.067

SUN Huashan, YANG Hui. Advance and Trend of the Vent-Distal SEDEX Lead-Zinc Deposits. Advances in Earth Science[J], 2021, 36(7): 663-670 DOI:10.11867/j.issn.1001-8166.2021.067

1 引 言

SEDEX型铅锌矿床,也称海底热液喷流沉积矿床(Sedimentary Exhalative Deposit),是世界铅锌资源的主要来源,占全球铅锌资源的56%1。海底热液喷流沉积成矿被认为是该类矿床有别于其他类型矿床的根本特征,并以发育纹层状、条带状矿化作为海底热液喷流成矿的主要鉴别标志之一2。根据是否存在海底热液喷流管道相,Sangster等3将该类矿床进一步划分为远喷口型SEDEX矿床(vent-distal SEDEX)和近喷口型SEDEX矿床(vent-proximal SEDEX)。其中,远喷口型SEDEX矿床具有更重要的工业意义,在全球142个具有重要工业意义的SEDEX型矿床统计中,远喷口型SEDEX矿床占到84%。鉴于该类矿床如此重要的工业意义,它们一直是国际矿床学成矿研究的热点领域,近年来取得了一些创新性研究成果,其中的一些认识正在挑战人们对该类矿床的一些固有观念,有可能对该类矿床成因模式及找矿勘查评价准则带来深刻的影响,应引起我们的高度关注。鉴于此,本文总结了近年来远喷口型SEDEX矿床的一些重要研究进展及发展趋势,希望能对促进该类矿床进一步深入研究有所裨益。

2 研究进展

2.1 成因模式

传统上,受现代海底热液喷流作用影响,SEDEX型矿床被认为属于同生沉积矿床(Syn-Sedimentary Deposit),即成矿作用与沉积作用是同时进行的。在此过程中,海水下渗形成海底热液环流,通过断裂管道喷出海底,当热液密度小于周围海水密度时(III型流体4),喷出的热液注入海水,通过混合,导致热液中携带的金属物质析出,并与水体中的碎屑组分一起沉淀于海底。此外,为确保金属硫化物大规模聚集,要求沉积环境封闭及还原,以利于大规模硫化物形成与保存;当热液密度远大于周围海水时(I型流体4),喷出海底的热卤水沿海底—海水界面迁移至盆地内部的低洼中心,在此汇聚并通过与还原硫结合沉淀硫化物。同样,为确保热液中的金属离子聚集与保存,封闭、还原的沉积环境是其形成的必要条件。基于以上认识,Goodfellow等5和Lydon6构建了海底喷流管道沉积成因模式[简称Sullivan式,图1(a)];Large等8构建了海底喷流卤水池沉积成因模式[Proterozoic McArthur River,HYC;图1(b)]。其中,后者又称远喷口型SEDEX矿床成因模式3。这些成因模式得到了普遍认可并被广泛应用。尤其是海底喷流沉积成矿作用被视为该类矿床与其他类型矿床的根本区别。也正是由于上述原因,以往一般将该类矿床中发育的与围岩地层整合产出的纹层状、条带状矿化成因解释为海底热液喷流沉积作用的产物。同时,将纹层状、条带状矿化及其伴生的软沉积构造作为识别是否存在海底热液喷流沉积的诊断标志之一239~12

图1

图1   SEDEXPb-Zn矿床成因模式对比7

(a)近喷口型成因模式;(b)远喷口型成因模式;(a)和(b)成因模式中成矿均受海底喷流沉积作用及封闭、还原沉积环境控制;(c)热液交代成因模式,成矿受压实成岩地层热液交代作用控制,沉积环境为开放、氧化环境

Fig. 1   Genetic model comparison of SEDEX Pb-Zn deposits7

(a)Vent-proximal genetic model; (b)Vent-distal genetic model; Both of (a) and (b) are controlled by submarine sedimentary exhalative and enclosed and reduced sedimentary environment; (c)Hydrothermal altered genetic model of SEDEX Pb-Zn deposits. Notably, mineralization is controlled by hydrothermal alteration within the diagenetic strata and formed in the open and oxidation environments


但是,近年来随着研究工作的不断深入,尤其是矿物微观结构及物质成分的研究,发现以往被视为经典海底热液喷流沉积的矿床,事实上它们的铅锌成矿作用不是发生在同沉积作用阶段的海底,而是发生在压实成岩或成岩后热液作用阶段。如澳大利亚北部McArthur元古界沉积盆地中的HYC铅锌矿床曾被认为是远喷口型SEDEX矿床的典型代表813。但是,最近Spinks等14基于岩芯标本微米尺度μXRF扫描及黄铁矿微区物质组分分带研究,证实碳酸盐顺层交代是本矿床纹层状矿化形成的根本原因,进而提出该矿床成矿作用不是发生在海底,而是发生在海底之下、已经固结成岩的地层,不是热液喷流沉积成矿而是热液交代成矿。此外,加拿大Yukon地区Selwyn盆地中发育有很多远喷口型SEDEX型矿床,它们也曾经被视为海底喷流沉积成矿的典型代表(如Howard's Pass SEDEX矿田5),但是,最近通过矿物微区结构与同位素地球化学研究,目前已经发现2个矿床(Howards Pass, Macmillan Pass)的成矿作用不是以往认为的海底喷流沉积,而是海底之下压实成岩阶段热液交代的结果7。由此可见,海底喷流沉积成矿并不是该类矿床形成的唯一方式,成岩阶段的热液作用也可以形成该类矿床。正如Leach等215指出的:SEDEX型矿床定义中的“喷流(exhalation)”一词本身就是对该类矿床成矿作用的一种误导,是否存在海底喷流不是该类矿床能否形成的关键控制因素。而被视为该类矿床直接诊断标志之一的纹层状和条带状矿化特征,完全可以通过成岩过程中的热液交代作用形成。为此Magnall等7以产于Selwyn盆地的SEDEX型矿床为例,提出了不同于以往传统认识的SEDEX型矿床成因模型[图1(c)]。

2.2 沉积环境

如上所述,在以往构建的该类矿床海底喷流沉积成因模式中,为确保海底沉积物中金属物质的硫化还原及保存,一个封闭、还原的海底沉积环境是不可或缺的条件[图1(a)和(b)]。但是,这一条件也正在受到新发现的挑战。如以往判断地层沉积环境氧化还原条件一般依据岩石总有机碳含量(Total Organic Carbon, TOC),TOC越高认为地层有机质含量越高、越还原、沉积环境越封闭8131617。但是,当前地层中的TOC主要来自生物死亡后沉积,未必能够代表当时沉积水体的氧化还原环境。此外,它们也有可能来自后期成岩过程中的有机质带入(如油气运移所致)。尤其是以往认为的封闭还原环境有利于该类矿床形成的认识,与统计表明的该类矿床绝大多数形成于被动大陆边缘浅海环境,以及地质历史上该类矿床出现在地球大氧化事件之后的事实相矛盾215。因此,有人对利用TOC方法确定地层沉积环境的氧化还原状态提出质疑18~20。近年来,利用地层的Ce和Eu异常及Mo和V元素含量等沉积环境氧化还原评价标志,对加拿大Yukon地区的Citronen Fjord、Howards Pass和Anvil Range 3个SEDEX型矿床研究表明,其赋矿地层(分别为晚奥陶世、早志留世和晚寒武世)沉积环境均为氧化环境[图1(c)],而非以往认为的封闭还原环境20~22。此外,研究显示,很多远喷口型SEDEX矿床成矿流体明显具有氧化性质(近喷口型一般为还原性质223),当这种流体注入海底/海底之下沉积物时,至少短时间内提升了环境的氧化程度2823。因此,最近Sangster20认为,沉积水体是否还原与该类矿床的形成关系不大。但是,水体之下的沉积柱/成岩地层必须是还原的,以确保高密度的、氧化性质的成矿流体在向下渗滤过程中受到还原,继而与还原硫结合,形成硫化物沉淀。

2.3 硫化物沉淀机制

以往对该类矿床硫化物沉淀机制的认识主要来源于对硫同位素组成特征及其分馏机制的研究理解。硫同位素组成变化范围很大是该类矿床的普遍特征(δ34S:-30‰~>+30‰12)。近年来随着微区同位素测试技术的应用,查明该类矿床中硫化物的δ34S亏损一般与早期沉积/成岩阶段的草莓状黄铁矿关系密切,结合现代浅海沉积物中生物硫酸盐还原菌的广泛发育19,目前普遍认同该类矿床早期沉积/成岩阶段硫化物中还原硫主要与生物硫酸盐还原作用(Bio-Sulfate Reduced, BSR)有关81317192425,并且发现此种作用形成的硫化物δ34S组成与同时代海水δ34S组成之间存在协同变化关系26。但是,生物硫酸盐细菌适宜生活的温度一般不超过80 ℃19,当超出这个温度后,生物硫酸盐细菌还原作用受到抑制,热化学硫酸盐还原(Thermochemical Sulfate Reduced, TSR)开始起作用,由此作用形成的硫化物一般以富集δ34S>0‰为特征225。该类矿床中伴随成矿作用从早至晚,硫化物δ34S常表现出逐渐富集的特征。针对这一现象,Kelley等27认为这是成矿过程中硫的还原机制变化的结果,即由早期的BSR作用转变为晚期的TSR作用。同位素分馏系数是温度的函数,温度越高同位素分馏系数/差值越小。依此制约,该类矿床成矿作用过程是一个温度逐渐升高的过程,由此导致该类矿床硫化物由早至晚δ34S逐渐增大。这也与该类矿床成矿作用过程的理论认识相符。即由早至晚,伴随海底喷流热液的汇聚,成矿场所的温度越来越高,硫酸盐还原机制逐渐由生物硫酸盐还原为主转变为热化学硫酸盐还原为主225

长期以来,BSR和TSR两种硫酸盐还原机制是解释该类矿床还原硫来源及硫同位素组成变化特征的理论基础。最近,针对该类矿床成矿沉积环境认识的改变(即成矿由海底沉积成矿→海底之下压实成岩—成岩后热液作用成矿,成矿沉积环境由封闭、还原→开放、氧化),其形成过程中的另一种新的硫酸盐还原机制被发现。如Johnson等22通过对加拿大Yukon地区Howards Pass SEDEX型铅锌矿床硫化物矿体及其上、下赋矿围岩地层中沉积作用和热液充填交代作用形成的硫化物和碳酸盐矿物硫、碳同位素组成及变化特征的系统研究,提出该矿床硫酸盐还原不是以往认为的BSR/TSR作用,而是发生在硫酸盐—甲烷过渡带(Sulfate-Methane Transition, SMT)的甲烷厌氧氧化作用(Anaerobic Oxidation of Methane,AOM)。SMT被现代海底沉积研究证实广泛发育,它是处于海底沉积上部未固结带与下部成岩带之间的一个过渡带28~31。该带中的海底沉积上部未固结带的海水硫酸根向下渗透,下部成岩带中生物有机体分解形成的甲烷向上渗透,在二者之间形成了硫酸盐—甲烷过渡带。在该带甲烷通过还原硫酸根被氧化为碳酸氢根,继而与周围环境中的钙离子结合形成碳酸盐矿物;同时,硫酸根被还原为硫氢根,与周围环境中的金属离子结合形成硫化物(图2)。

图2

图2   海底硫酸盐—甲烷过渡带(a)及甲烷厌氧氧化作用(b)示意图29

(a)上部硫酸盐还原带,下部甲烷带,二者之间为硫酸盐—甲烷过渡带;(b)粗黑色箭头代表上部SO42-向下渗透,下部CH4向上渗透,二者渗透过程中出现甲烷厌氧氧化作用(AOM)及主要化学反应。此外,深部有机质分解形成的甲烷越向上δ13C越亏损,相反,硫酸盐还原形成的硫化物越向上δ34S越富集

Fig. 2   Schematic figures for submarine sulphate-methane transition zone a and anaerobic oxidation of methane b29

(a)Sulphate reduced zone in the upper level, methane forming zone in the lower level, sulphate methane transition zone between them; (b)Thicked black arrows denote that SO42- infiltrates downward, whereas CH4 transfers upward, and anaerobic oxidation of methane occurs in the sulphate methane transition zone. In addition, in the upward stratigraphic sequences, it is the characteristics of depletion in δ13C while enrichment in δ34S


由此可见,甲烷厌氧氧化还原作用形成硫化物沉淀的同时,也形成碳酸盐矿物沉淀,一般以自生碳酸盐胶结物形式存在。硫同位素组成具有由早至晚,富集重硫的特征。自生碳酸盐胶结矿物的碳同位素组成比沉积成因的碳酸盐矿物更富13C同位素。图3展示了加拿大Selwyn盆地SEDEX型Pb-Zn矿床赋矿DLK组地层有机质含量(C有机%)、黄铁矿δ34S组成和自生碳酸盐矿物δ13C组成与层位变化关系。由图3可见,自下而上黄铁矿δ34S逐渐富集,自生碳酸盐矿物δ13C逐渐亏损,这一特征与海底硫酸盐—甲烷过渡带中甲烷厌氧氧化作用形成的硫化物及碳酸盐矿物硫、碳同位素组成特征一致(图2)。此外,赋矿DLK组地层底部含黄铁矿泥岩(Pyritic Siliceous Mudstone, PSM)层位有机质含量(C有机%)明显比上覆层位低,结合碳、硫同位素组成特征,认为上覆地层有机碳含量高主要是下伏地层有机物分解形成的甲烷向上渗透的结果,进一步揭示AOM的存在22。海底热液交代成矿作用早已被很多研究者应用于碳酸盐容矿型SEDEX矿床的成因解释(如澳洲Century32、加拿大Anarraaq33、美国Red Dog27和伊朗Mehdiabad34),或者重晶石交代型SEDEX矿床(如美国Red Dog27、加拿大Macmillan Pass14和伊朗Mishu35)。无论碳酸盐交代还是重晶石交代,均可导致海底喷流热液pH值的改变,进而导致硫化物沉淀。尽管海底热液交代作用常被用来解释一些碳酸盐赋矿型SEDEX矿床的成因,但是,被用于解释砂页岩赋矿的纹层状铅锌矿床的成因却十分罕见。但是,最近Spinks等14证实澳洲HYC矿床砂页岩中的纹层状矿石与碳酸盐中的角砾状矿石成因机制一致,均为热液交代碳酸盐作用的结果。热动力学模拟表明,该矿床黄铁矿、富Tl黄铁矿、闪锌矿和方铅矿等硫化物生成顺序完全受碳酸盐溶解程度控制,伴随热液中碳酸盐溶解程度的升高,热液的pH值逐渐升高,继而导致不同硫化物矿物的先后沉淀(图4)。

图3

图3   加拿大Selwyn盆地SEDEXPb-Zn矿床赋矿DLK组地层有机碳含量、黄铁矿δ34S组成和自生碳酸盐矿物δ13C组成与层位变化关系图22

Fig. 3   Correlation diagrams between organic carbon contentδ34S of pyrites and δ13C of autogenetic carbonate minerals and strata sequence in the ore-hosted DLK formation of SEDEX Pb-Zn deposit in Selwyn basin Canada22


图4

图4   交代作用对溶液pH值改变及其对硫化物沉淀顺序影响的热动力学模拟图解14

(a)黄铁矿稳定域pH值变化范围3~9;(b)闪锌矿稳定域pH值变化范围5~11; SEDEX型Pb-Zn矿床一般黄铁矿形成早于闪锌矿,闪锌矿形成与交代作用导致的溶液pH值升高有关

Fig. 4   Thermodynamic modeling diagrams illustrate how the pH value change which is caused by the alteration between hydrothermal fluids and rocks to effect on the precipitation sequence of sulfides from the hydrothermal fluids14

(a)Stable area of pyrite ranges from 3 to 9 in pH; (b)Higher pH value of 5~11 for sphalerite. Which gives a reasonable explanation for the formation of pyrite before sphalerite, and the latter is the result of alteration triggering pH value increasing


3 发展趋势

综上可见,近年来随着微区技术在矿物结构及物质组分研究中的应用,对SEDEX型矿床的成矿认识发生了很多改变,由传统的同生沉积成矿转变为同生沉积成矿与后生热液成矿共存,从已有研究案例来看,铅锌成矿可能与后者的关系更大。由此可见,SEDEX型铅锌矿床的成因远比以往认为的海底喷流沉积作用复杂,其成矿作用过程跨越了盆地沉积、压实成岩和挤压反转多个地质作用阶段。因此,有必要从盆山演化过程视角开展SEDEX型铅锌矿床成因分析,而不是仅仅停留在海底沉积作用阶段。以往由于技术手段制约,限制了人们对该类矿床形成作用过程的全面理解,再加之现代海底热液喷流成矿作用的存在,使我们习惯了运用“将今论古”的地质思维,以为今天海底热液喷流沉积作用就是古代SEDEX型铅锌矿床的唯一成因。现在来看,该类矿床的形成可以出现在海底沉积作用阶段,也可以出现在后期压实成岩或者成岩后盆地卤水作用阶段,海底喷流沉积与否不是该类矿床形成的唯一控制作用。而由盆地卤水作用形成的SEDEX型铅锌矿床与MVT型铅锌矿床很可能具有相同的成因模式,这也与最近Sangster20提出“向着构建远喷口型SEDEX铅锌矿床和MVT型铅锌矿床统一成因模式迈进”的方向一致。

此外,作者认为,对海底热液矿床而言,无论是远喷口型还是近喷口型SEDEX矿床,沉积之后都会遭受压实成岩和挤压反转,因此,当前研究思路和研究方法同样适用于近喷口型SEDEX矿床成矿作用过程的研究,尤其是那些似是而非、充满争议的SEDEX型矿床更需要借鉴当前新的理论认识重新加以审视。最后,有必要强调,该研究对找矿勘查具有重要意义。原因在于,新的成矿认识导致了该类矿床有利成矿条件的显著改变。如以往认为该类矿床形成需要一个封闭/半封闭、还原的沉积环境,同生断裂控制的三级断陷盆地有利于层状矿化的形成等,在新的认识下,这些曾经被视为该类矿床形成不可或缺的条件将不再有效。相反,有利于盆地卤水迁移及后生交代成矿的特殊层位及岩性条件将成为该类矿床成矿的关键控制因素。因此,作者认为,采用先进技术方法,重新审视该类矿床的成矿条件及成因模式是当前矿床学研究的迫切任务之一。

参考文献

HANNINGTON M DDE RONDE C E JPETERSEN S.

Sea-floor tectonics and submarine hydrothermal systems

[J]. Economic Geology, 2005100111-141.

[本文引用: 2]

LEACH D LSANGSTER D FKELLEY K Det al.

Sediment-hosted lead-zinc deposits: a global perspective

[J]. Economic Geology, 2005100561-607.

[本文引用: 9]

SANGSTER D FHILLARY E M.

SEDEX lead-zinc deposits: proposed sub-types and their characteristics

[J]. Exploration and Mining Geology, 19987341-357.

[本文引用: 3]

SATO T.

The behaviours of ore-forming solutions in seawater

[J]. Mining Geology, 19722231-42.

[本文引用: 2]

GOODFELLOW W DLYDON J WTURNER R J W.

Geology and genesis of stratiform sediment-hosted (SEDEX) zinc-lead-silver sulphide deposits: mineral deposit modeling

[J]. Geological Association of Canada Special Paper, 199340201-251.

[本文引用: 2]

LYDON J W.

Genetic models for Sullivan and other SEDEX deposits

[C]//MIHIR Deb, GOODFELLOW W D. Sediment-hosted lead-zinc sulphide depositsattributes and models of some major deposits in India, Australia and Canada. New Delhi, IndiaNarosa Publishing House2004149-190.

[本文引用: 1]

MAGNALL J MGLEESON S ACREASER R Aet al.

The mineralogical evolution of the clastic dominant-type Zn-Pb±Ba deposits at Macmillan Pass (Yukon, Canada)—tracing subseafloor barite replacement in the layered mineralization

[J]. Economic Geology, 2020115961-979.

[本文引用: 4]

LARGE RBULL S WCOOKE D Ret al.

A genetic model for the HYC deposit, Australia: based on regional sedimentology, geochemistry, and sulfide-sediment relationships

[J]. Economic Geology, 1998931 345-1 368.

[本文引用: 5]

GU Lianxing.

Advances in research on massive sulfide deposits: a review

[J]. Geological Review, 1999453): 265-275.

[本文引用: 1]

顾连兴.

块状硫化物矿床研究进展评述

[J]. 地质论评, 1999453): 265-275.

[本文引用: 1]

HAN FaSUN Haitian.

Metallogenic system of SEDEX type deposits

[J]. Earth Science Frontiers, 199961): 139-162.

韩发孙海田.

SEDEX 型矿床成矿系统

[J]. 地学前缘, 199961): 139-162.

LIU JiajunZHENG MinghuaLIU Jianminget al.

The geological features and prospecting marks of the exhalative type of stratabound gold deposits in western Qinling

[J]. Gold, 1997189): 9-12.

刘家军郑明华刘建明.

西秦岭喷流型层控金矿床的地质特征及其找矿标志

[J]. 黄金, 1997189): 9-12.

SANGSTER D F.

The role of dense brines in the formation of ventdistal Sedimentary-Exhalative (SEDEX) lead-zinc deposits: field and laboratory evidence

[J]. Mineral Deposita, 200237149-157.

[本文引用: 1]

IRELAND TLARGE R RMCGOLDRICK Pet al.

Spatial distribution patterns of sulfur isotopes, nodular carbonates, and ore textures in the McArthur River (HYC) Zn-Pb-Ag deposit, northern Territory, Australia

[J]. Economic Geology, 2004991 687-1 709.

[本文引用: 3]

SPINKS S CPEARCE M ALIU W Het al.

Carbonate replacement as the principal ore formation process in the Proterozoic McArthur River (HYC) sediment-hosted Zn-Pb deposit Australia

[J]. Economic Geology, 20211163): 693-718.

[本文引用: 5]

LEACH D LBRADLEY D CHUSTON Det al.

Sediment-hosted lead-zinc deposits in Earth history

[J]. Economic Geology, 2010105593-625.

[本文引用: 2]

MA GBEAUDOIN GZHONG Set al.

Geology and geochemistry of the Dengjishan Zn-Pb SEDEX deposit, Qinling belt, China

[J]. Canadian Journal of Earth Sciences, 200744479-492.

[本文引用: 1]

GADD M GLAYTON-MATTHEWS DPETER J Met al.

The worldclass Howard's Pass SEDEX Zn-Pb district, Selwyn Basin, Yukon. Part I: trace element compositions of pyrite record input of hydrothermal, diagenetic and metamorphic fluids to mineralization

[J]. Mineral Deposita, 201651319-342.

[本文引用: 2]

RAISWELL RBUCKLEY FBERNER R Aet al.

Degree of pyritization of iron as a paleoenvironmental indicator of bottom water oxygenation

[J]. Journal of Sedimentary Research, 198858812-819.

[本文引用: 1]

GOLDHABER M B.

Sulfur-rich sediments

[C]// MACKENZIE F T. Treatise on geochemistry. AmsterdamElsevier20037257-288.

[本文引用: 3]

SANGSTER D F.

Toward an integrated genetic model for vent-distal SEDEX deposits

[J]. Mineral Deposita, 201853509-527.

[本文引用: 4]

SLACK J FFALCK HKELLEY K Det al.

Geochemistry of host rocks in the Howards Pass district, Yukon-Northwest Territories, Canada: implications for sedimentary environments of Zn-Pb and phosphate mineralization

[J]. Mineral Deposita, 201752565-593.

JOHNSON C ASLACK J FDUMOULIN J Aet al.

Sulfur isotopes of host strata for Howards Pass (Yukon-Northwest Territories) Zn-Pb deposits implicate anaerobic oxidation of methane, not basin stagnation

[J]. Geology, 201846619-622.

[本文引用: 5]

COOKE D RBULL S WLARGE R Ret al.

The importance of oxidized brines for the formation of Australian Proterozoic stratiform sediment-hosted Pb-Zn (SEDEX) deposits

[J]. Economic Geology, 2000951-18.

[本文引用: 2]

ELDRIDGE C SWILLIAMS NWALSHE J L.

Sulfur isotope variability in sediment-hosted massive sulfide deposits as determined using the ion microprobe SHRIMP: II. a study of the H.Y.C. deposit at McArthur River, northern Territory, Australia

[J]. Economic Geology, 1993881-26.

[本文引用: 1]

GADD M GLAYTON-MATHEWS DPETER J Met al.

The world-class Howard's Pass SEDEX Zn-Pb district, Selwyn Basin, Yukon. Part II: the roles of thermochemical and bacterial sulfate reduction in metal fixation

[J]. Mineral Deposita, 201752405-419.

[本文引用: 3]

GOODFELLOW W DJONASSON I R.

Ocean stagnation and ventilation defined by δ34S secular trends in pyrite and barite, Selwyn Basin, Yukon

[J]. Geology, 198412583-586.

[本文引用: 1]

KELLEY K DLEACH D LJOHNSON C Aet al.

Textural, compositional, and sulfur isotope variations of sulfide minerals in the Red Dog Zn-Pb-Ag deposits, Brooks Range, Alaska: implications for ore formation

[J]. Economic Geology, 2004991 509-1 532.

[本文引用: 3]

BOROWSKI W S.

A review of methane and gas hydrates in the dynamic, stratified system of the Blake Ridge region, offshore southeastern North America

[J]. Chemical Geology, 2004205311-346.

[本文引用: 1]

LASH G G.

Pyritization induced by Anaerobic Oxidation of Methane (AOM)—an example from the upper Devonian shale succession, western New York, USA

[J]. Marine and Petroleum Geology, 201568520-535.

[本文引用: 2]

LIN Z YSUN X MPECKMANN Jet al.

How sulfate-driven anaerobic oxidation of methane affects the sulfur isotopic composition of pyrite: a SIMS study from the South China Sea

[J]. Chemical Geology, 201644026-41.

LIN Z YSUN X MSTRAUSS Het al.

Multiple sulfur isotope constraints on sulfate-driven anaerobic oxidation of methane: evidence from authigenic pyrite in seepage areas of the South China Sea

[J]. Geochimica et Cosmochimica Acta, 2017211153-173.

[本文引用: 1]

BROADBENT G CMYERS R EWRIGHT J V.

Geology and origin of shale-hosted Zn-Pb-Ag mineralization at the Century deposit, northwest Queensland, Australia

[J]. Economic Geology, 1998931 264-1 294.

[本文引用: 1]

KELLEY K DDUMOULIN J AJENNINGS Set al.

The Anarraaq Zn-Pb-Ag and barite deposit, northern Alaska: evidence for replacement of carbonate by barite and sulfides

[J]. Economic Geology, 2004991 577-1 591.

[本文引用: 1]

MAGHFOURI SHOSSEINZADEH M RCHOULET Fet al.

Vent-proximal sub-seafloor replacement clastic-carbonate hosted SEDEX-type mineralization in the Mehdiabad world-class Zn-Pb-Ba-(Cu-Ag) deposit, southern Yazd Basin, Iran

[J]. Ore Geology Reviews, 2019113. DOI:10.1016/j.oregeorev.2019.103047.

[本文引用: 1]

DERAKHSHI M GHOSSEINZADEH M RMOAYYED Met al.

Geological, isotope geochemical and fluid inclusion constraints on the Mishu SEDEX-type Barite (Pb-Cu-Zn) system, NW Iran

[J]. Ore Geology Reviews, 2020121. DOI:10.1016/j.oregeorev.2020.103493.

[本文引用: 1]

/