地球科学进展, 2021, 36(6): 579-591 DOI: 10.11867/j.issn.1001-8166.2021.066

综述与评述

印度洋偶极子研究进展回顾

姜继兰,1,2, 刘屹岷,1,2, 李建平3,4, 张人禾5

1.中国科学院大气物理研究所大气科学和地球流体力学数值模拟国家重点实验室,北京 100029

2.中国科学院大学地球与行星科学学院,北京 100049

3.中国海洋大学深海圈层与地球系统前沿 科学中心/物理海洋教育部重点实验室,山东 青岛 266100

4.青岛海洋科学与技术 国家实验室区域海洋动力学与数值模拟功能实验室,山东 青岛 266237

5.复旦大学 大气与海洋科学系/大气科学研究院,上海 200438

Indian Ocean Dipole: A Review and Perspective

JIANG Jilan,1,2, LIU Yimin,1,2, LI Jianping3,4, ZHANG Renhe5

1.State Key Laboratory of Numerical Modelling for Atmospheric Sciences and Geophysical Fluid Dynamics,Institute of Atmospheric Physics,Chinese Academy of Sciences,Beijing 100029,China

2.College of Earth and Planetary Sciences,University of Chinese Academy of Sciences,Beijing 100049,China

3.Frontiers Science Center for Deep Ocean Multispheres and Earth System (FDOMES)/ Key Laboratory of Physical Oceanography/ Institute for Advanced Ocean Studies,Ocean University of China,Qingdao 266100,China

4.Laboratory for Ocean Dynamics and Climate,Pilot Qingdao National Laboratory for Marine Science and Technology,Qingdao 266237,China

5.Department of Atmospheric and Oceanic Sciences & Institute of Atmospheric Sciences,Fudan University,Shanghai 200438,China

通讯作者: 刘屹岷(1965-),女,河南信阳人,研究员,主要从事气候动力学和数值模拟研究. E-mail:lym@lasg.iap.ac.cn

收稿日期: 2021-04-02   修回日期: 2021-05-25   网络出版日期: 2021-07-22

基金资助: 中国科学院战略性先导科技专项“工业革命以来海陆气相互作用的气候环境影响”.  XDB40030204
国家自然科学基金项目“青藏高原地—气耦合过程和海洋对区域能量和水分循环及全球气候的协同影响”.  91637312

Corresponding authors: LIU Yimin (1965-), female, Xinyang City, Henan Province, Professor. Research areas include climate dynamics and numerical modeling. E-mail:lym@lasg.iap.ac.cn

Received: 2021-04-02   Revised: 2021-05-25   Online: 2021-07-22

作者简介 About authors

姜继兰(1994-),女,四川宜宾人,博士研究生,主要从事海气相互作用研究.E-mail:jiangjilan@lasg.iap.ac.cn

JIANGJilan(1994-),female,YibinCity,SichuanProvince,Ph.Dstudent.Researchareasincludesea-airinteraction.E-mail:jiangjilan@lasg.iap.ac.cn

摘要

印度洋偶极子是热带印度洋中重要的年际变率之一,对印度洋周边国家乃至全球的气候有着重要的影响,关于其形成机制及气候影响的研究对于气候预测具有重要意义。主要回顾了近10年印度洋偶极子的相关研究进展,包括印度洋偶极子的基本特征、与热带太平洋中厄尔尼诺—南方涛动之间的关系、与亚洲夏季风之间的关系、对全球气候的影响以及全球变暖背景下的变化等。印度洋偶极子与热带太平洋中厄尔尼诺—南方涛动之间的关系体现为二者之间是相互影响的,但不同类型的印度洋偶极子对热带太平洋中厄尔尼诺—南方涛动的影响机制尚不明确,还需进一步的研究。印度洋偶极子与亚洲夏季风之间的关系体现为二者之间存在强烈的相互作用,印度洋偶极子与印度洋东部夏季风环流之间存在相互促进作用,而印度洋偶极子与印度夏季风环流之间的相互作用尚需进一步研究。此外,研究表明全球变暖背景下极端正印度洋偶极子的发生将增多,同时极端印度洋偶极子对我国极端气候事件的发生有着重要影响。以往的研究主要集中于单独的印度洋偶极子或印度洋偶极子和热带太平洋中厄尔尼诺—南方涛动的结合对我国极端气候的影响,而印度洋偶极子与中高纬环流系统或泛热带海洋之间的协同作用对我国极端气候事件的影响还亟需相关研究。对印度洋偶极子的系统性回顾可为未来印度洋偶极子的研究提供一定的科学基础。

关键词: 印度洋偶极子 ; 厄尔尼诺—南方涛动 ; 亚洲夏季风 ; 相互作用 ; 全球增暖

Abstract

The Indian Ocean Dipole (IOD) is one of the dominant interannual variabilities in the tropical Indian Ocean, which has important impacts on countries around the Indian Ocean and even the global climate. The research on the formation mechanism of IOD and its climatic effects is of great significance for climate prediction. This study mainly reviews the related research progress of IOD during the past 10 years, such as its basic characteristics, its relationship with El Niño-Southern Oscillation (ENSO) and the Asian summer monsoon, its climate effect, and its variation under the global warming. The relationship between IOD and ENSO is reflected in their mutual influence. The influence mechanism of different types of IOD on the development of ENSO is not clear and needs further investigation. A strong interaction between IOD and the Asian summer monsoon is found. The positive IOD and the summer monsoon circulation in the eastern Indian Ocean mutually promote, while the interaction between the IOD and the Indian summer monsoon needs further study. Furthermore, the extreme positive IOD will increase under the global warming, which has an important influence on extreme climatic events in China. Researches primarily focus on the effect of IOD alone or the combination effect of IOD and ENSO on extreme climatic events in China, but the synergistic effect between IOD and the mid-high latitude circulation system or the pan-tropical ocean on extreme climatic events in China needs further studies. A systematic review of IOD research progress during the past 10 years can provide a scientific basis for the future research of IOD.

Keywords: Indian Ocean Dipole ; ENSO ; Asian summer monsoon ; Interaction ; Global warming

PDF (3767KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

姜继兰, 刘屹岷, 李建平, 张人禾. 印度洋偶极子研究进展回顾. 地球科学进展[J], 2021, 36(6): 579-591 DOI:10.11867/j.issn.1001-8166.2021.066

JIANG Jilan, LIU Yimin, LI Jianping, ZHANG Renhe. Indian Ocean Dipole: A Review and Perspective. Advances in Earth Science[J], 2021, 36(6): 579-591 DOI:10.11867/j.issn.1001-8166.2021.066

1 引 言

印度洋偶极子(Indian Ocean Dipole, IOD)是热带印度洋中重要的年际变率之一。正IOD的主要特征表现为热带东南印度洋海表面温度(Sea Surface Temperature, SST)冷异常和热带西印度洋SST暖异常12。早于20世纪80年代,Reverdin等3和Nicholls4已揭示出了印度洋中的类偶极子海温结构,但对IOD的广泛研究是在1994年和1997年强IOD事件发生之后开始的。Saji等1在1999年首次提出IOD概念,同时定义了衡量IOD强度的IOD指数,即热带西印度洋(10°S~10°N,50°~70°E)与热带东南印度洋(10°S~0°,90°~110°E)区域平均的SST异常之差。

最初Saji等1提出IOD概念时,认为IOD是独立于热带太平洋中厄尔尼诺—南方涛动(El Niño-Southern Oscillation, ENSO)现象的,由热带印度洋中局地海气相互作用触发1256。但后来大量研究指出IOD与ENSO之间存在密切关系,认为IOD主要由热带太平洋中ENSO所强迫7~11。Fischer等12同时揭示了2种相互独立的触发机制,一种是独立于ENSO的异常Hadley环流型,另一种是与ENSO相关的异常沃克环流型。因此,IOD既可由ENSO强迫触发也可由独立于ENSO的海气相互作用触发1213。相关研究表明澳大利亚以北的SST冷异常14、青藏高原和中亚4月异常多的雪盖15、南半球副热带高压系统16、澳大利亚与中国南海(菲律宾海)之间的强气压梯度17以及春季热带西南印度洋温跃层的增暖18等均可通过影响印度洋中的局地海气相互作用而触发独立于ENSO的IOD事件。此外,大量研究也集中于夏季风环流系统对IOD发展的影响,并指出亚洲夏季风环流异常与IOD之间存在强的相互作用71319~21。IOD之所以引起大家的关注,是因为IOD具有重要的气候效应。IOD不仅影响全球热带海洋,还影响全球其他气候要素,比如降水和海冰等22~26。IOD在1994年东亚极端气候异常事件的形成中起着重要作用2728。因此,研究IOD对于气候短期预测具有重要的意义。

关于IOD的研究近几十年取得了许多重要的成果,相关的文献和专著对IOD与ENSO之间的关系、IOD对印度夏季风降雨的影响、IOD的遥相关、IOD的预测等进行了相应的回顾29~34,但其中关于IOD的基本特征、不同类型ENSO对IOD的影响以及亚洲夏季风与IOD之间的相互作用等方面涉及较少,仍需进一步对相关研究进展进行深入回顾。因此,本文对近10年IOD相关研究进展的回顾,主要涉及到IOD的基本特征、 IOD与ENSO之间的关系、IOD与亚洲夏季风之间的关系、IOD的气候效应以及全球变暖背景下IOD的变化等。

2 IOD的基本特征

2.1 IOD的东西极SST异常特征

经典正IOD以东南印度洋的SST冷异常为主,西印度洋的SST暖异常相对较弱,IOD东极的SST冷异常主导着IOD的发展3536。一般情况下,IOD东极SST冷异常的演变超前于西极SST暖异常的演变3738,Wang等38认为IOD发展过程中热带印度洋上空沃克环流对异常大气扰动位能响应的正反馈机制导致了西极SST异常的延迟发展。Sun等39根据东西印度洋SST异常的强度差异将IOD分为对称性IOD和非对称性IOD,对称性IOD即IOD东西极SST异常的强度均是显著的,非对称性IOD即IOD东极SST异常很强,西极SST异常很弱,整个热带印度洋呈现单极型。此外,部分IOD西极SST异常发生发展的位置与经典IOD存在显著差异,Endo等40基于IOD发展过程中西极SST异常形成位置的差异,将IOD分为经典IOD和中部型IOD(IOD Modoki), 经典正IOD的SST负(正)异常形成于热带印度洋东部(中西部);而正IOD Modoki的SST负(正)异常形成于热带印度洋东西部(中部),经典负IOD和负IOD Modoki反之。两类IOD对应着不同的沃克环流结构,经典正IOD对应着单一的沃克环流结构,整个赤道印度洋均为表面东风异常,而正IOD Modoki的赤道东风异常仅延伸至印度洋中部,其西侧边缘为赤道西风异常,对应着双圈沃克环流结构41

2.2 IOD的季节锁相特征

IOD具有强季节锁相特征,该特征强烈依赖于印度洋上的夏季风环流。在夏季,当苏门答腊沿岸的东南风异常叠加到气候态东南风上时,会加强风—蒸发—SST(Wind-Evaporation-SST, WES)反馈和风—温跃层—SST反馈(Wind-Thermocline-SST, Bjerknes反馈),促进东南印度洋SST冷异常的发展。在冬季,气候态风场从夏季的东南风转变为西北风,异常东南风则会减弱总的风速,耗散掉原来的SST冷异常14243。此外,印度洋西边界反射的海洋波动也会在冬季减弱甚至截断印度洋东部的沿岸上升流,抑制SST冷异常的发展4445。因此,经典正IOD一般从春末夏初开始发展,夏季加强,秋季达到峰值,冬季逐渐消亡。当然也有部分IOD发生发展的时间不同于经典IOD,Du等36根据IOD发生峰值季节和存在时间的不同,将IOD分为3类(发展和成熟均在夏季的不合季节的IOD,发展和成熟均在秋季的正常的IOD,发展在夏季成熟在秋季的延长的IOD),其中强调了不合季节的IOD发生的原因,即由沿着赤道印度洋纬向风的改变而导致。

2.3 IOD的偏度特征

正负IOD事件存在强的偏度特性,正IOD事件的振幅比负IOD事件的振幅更强43。Hong等4647指出正IOD事件东南印度洋的SST冷异常比负IOD事件东南印度洋的SST暖异常更强,并归因于风应力—海洋平流—SST反馈和SST—云—辐射反馈的非对称性。前者指非线性海洋平流在IOD的正负位相,均会促进IOD东极SST冷异常的发展,即加强正IOD的发展而削弱负IOD的发展。后者指东南印度洋的SST冷异常在达到一定程度之后,随着SST冷异常的继续发展,正的云辐射强迫不会继续加强,以致阻碍SST冷异常的发展,而随着SST暖异常的增加,负的云辐射强迫却会线性增加,阻碍SST暖异常的发展。同时,东南热带印度洋更深的平均温跃层也会导致IOD的非对称性,因为正IOD事件中温跃层的变浅相比负IOD事件中温跃层的加深更强434849。Zhang等49也指出正负IOD在东南印度洋的海洋平流的强度差异会促成IOD的非对称性,正IOD的东风异常所对应的冷平流比负IOD期间所产生的平流更强。

3 ENSO与IOD之间的关系

IOD与ENSO之间的关系一直是研究IOD触发机制中的重要科学问题。正如Wang50和Cai等51提出的大洋之间相互作用的概念,其中包括了热带印度洋和热带太平洋之间的相互作用,IOD和ENSO之间就是一种相互作用的关系3552。ENSO主要通过热带印度洋和热带太平洋之间相互耦合的沃克环流异常(图1)以及海洋路径影响IOD50。El Niño主要影响热带印度洋西部的SST异常5556。伴随El Niño同时发生的正IOD,其西极的SST暖异常比独立于El Niño的正IOD所对应西极的SST暖异常更强613图1)。关于IOD对ENSO的影响,早期研究指出IOD主要通过沃克环流异常以及与纬向风异常相关的海洋波动过程影响同期ENSO的发展3557~60。伴随正IOD的El Niño事件的强度比独立El Niño事件的强度更强60,El Niño和正IOD之间的相互作用有利于东太平洋中超级El Niño的形成52。近期研究表明IOD的发展也可影响次年太平洋中ENSO的发展,Izumo等61表明赤道印度洋的SST异常通过影响赤道西太平洋上的纬向风异常,促进次年ENSO的发展;Yuan等4462~66的系列研究揭示了海洋过程的影响,表明IOD事件发展中,赤道印度洋上产生的开尔文波会沿着苏门答腊—爪洼沿岸向东传,通过印度尼西亚贯穿流引起西赤道太平洋的温跃层异常以及次表层温度异常,进一步向东传影响滞后1年的太平洋中ENSO的发展,正IOD有利于次年太平洋中La Niña的发展67。下文将主要回顾ENSO对IOD发展的影响。

图1

图1   IODSST异常(阴影,单位:)和925 hPa风异常(矢量箭头,单位:m/s)的双月平均合成图

(a)~(d)伴随El Niño的正IOD年(包括:1951年、1963年、1972年、1977年、1982年、1987年、1991年、1994年、1997年、2002年、2006年和2015年)的合成图;(e)~(h)为独立于El Niño的正IOD年(包括:1961年、1967年、2011年和2019年)的合成图。数据为来自哈德莱中心的SST53和来自NCEP/NCAR再分析资料154的风场。图中打点区域表示通过显著性水平α为0.1的双侧学生t检验,图中仅给出了通过显著性水平α为0.1的风矢量

Fig. 1   Bimonthly averaged composite SST anomaly shading and 925 hPa wind anomaly vectors m/s for positive IODs

(a)~(d) for positive IODs co-occurring with El Niño, including 1951,1963,1972,1977,1982,1987,1991,1994,1997,2002,2006,2015; (e)~(h) for positive IODs independent on El Niño, including 1961,1967,2011,2019. SST and wind field data are obtained from Hadley Center53 and NCEP/NCAR reanalysis154, respectively. Cyan stipples indicate the 0.1 significance level from a Student's two-tailed t test. Only wind vectors that are significant at the 0.1 significance level are plotted


3.1 El Niño爆发时间与正IOD之间的关系

El Niño爆发时间的不同会导致其不同的演化以及不同的强度6869,相应对IOD的影响存在显著差异。大量研究表明春季和早夏开始发展的El Niño有利于正IOD的发展,而晚夏和秋季开始发展的El Niño不利于正IOD的发展107071。当然El Niño也不是发展越早越有利于促进正IOD的发展,Roxy等72指出从前冬开始发展的El Niño所引发的正IOD比从春夏开始发展的El Niño所引发的正IOD弱。因为在前冬,El Niño所导致的东南印度洋的反气旋式环流会抵消气候态的气旋式环流,从而减弱蒸发,促进SST暖异常的发展,不利于正IOD的发展。El Niño与IOD之间季节循环的位相锁定关系对于IOD的发生和发展来说非常重要。

3.2 El Niño空间多样性与正IOD之间的关系

Ashok等73和Weng等74根据El Niño发展过程中SST暖异常形成位置的差异,提出一类不同于经典El Niño的El Niño Modoki,即SST暖异常形成于热带太平洋中部,而SST冷异常形成于热带太平洋东西部的El Niño。同时期,类似于这两类El Niño,Yu等75和Kao等76提出东部型El Niño(EP-El Niño)和中部型El Niño(CP-El Niño)。EP-El Niño的SST暖异常形成于热带太平洋东部,而CP-El Niño的SST暖异常形成于热带太平洋中部。不同类型的El Niño对 IOD的影响是不同的,Zhang等8提出EP-El Niño与IOD之间的关系主要由El Niño振幅所决定,弱EP-El Niño伴随着弱的大气响应,在印度洋东部导致弱的表面东风异常,不利于诱发局地海气相互作用,而强EP-El Niño能导致印度洋东部强的表面东风异常,因此强EP-El Niño更利于正IOD的发生。CP-El Niño与IOD之间的关系主要由CP-El Niño的SST暖异常的纬向位置所决定,SST暖异常的位置偏西时,热带太平洋上的大气对流也偏西,在苏门答腊沿岸没有显著的东南风异常,不能有效地触发WES反馈和Bjerknes正反馈;SST暖异常的位置偏东时,苏门答腊沿岸存在显著的东南风异常,则CP-El Niño的SST暖异常位置偏东更利于正IOD发展。Wang等77根据El Niño对中国南部降水和台风路径的不同影响,进一步将El Niño Modoki分为El Niño Modoki I 和El Niño Modoki II。El Niño Modoki II发生时,赤道太平洋上的沃克环流上升区向西移,印度洋东部出现异常上升运动,印度洋西部出现异常下沉运动,赤道印度洋上西风异常发展,不利于正IOD的触发;而经典El Niño和El Niño Modoki I发生时,沃克环流的下沉分支在赤道西太平洋和东印度洋发展,东南印度洋出现显著的东南风异常,促进SST冷异常发展,有利于正IOD的发生与发展7879。2015年的极端El Niño是经典El Niño和El Niño Modoki II的混合,印度洋上减弱的沃克环流和加强的沃克环流竞争,结果导致赤道印度洋西部(中东部)出现西风(东风)异常,弱的Bjerknes正反馈过程使得IOD发展很弱79

4 IOD与亚洲夏季风之间的关系

IOD的发生和发展强烈依赖于夏季季风环流场1,Cai等43指出IOD的季节锁相与印度洋上的基本环流以及亚洲夏季风的爆发、转换和衰退密切相关。Huang等80利用耦合试验验证了在没有ENSO的情况下,强西北太平洋夏季风有利于正IOD的发展。与Kajikawa等81文中的结论一致。Zhang等82指出强南海夏季风(South China Sea Summer Monsoon, SCSSM)有利于促进正IOD的发展,同时Zhang等55也给出了SCSSM和ENSO在促进IOD发展中的相对作用,SCSSM主要通过影响印度洋东部的局地经向环流,导致苏门答腊沿岸的东南风异常,对IOD东极的发展起主要作用,而ENSO主要通过与海洋过程相耦合的沃克环流异常影响IOD西极的发展(图2)。孟加拉湾夏季风的早爆发83,或初夏孟加拉湾上空的降水正异常37,均有利于加强东南印度洋的东南风异常,从而导致热带东南印度洋的变冷以及西印度洋的增暖,触发独立于ENSO的IOD。同时,IOD的发生与发展也会对东亚夏季风产生显著影响。IOD可通过改变对流层低层流场直接对夏季风产生影响,正IOD有利于加强南海夏季风,负IOD有利于减弱南海夏季风。此外,IOD也可通过影响南亚高压和西北太平洋副热带高压,进而对亚洲夏季风产生影响,正IOD对应着偏弱的南亚高压与西北太平洋副热带高压,负IOD反之8485。1994年夏季,IOD通过罗斯贝波列的传播引起东亚环流的改变,导致对流层低层向北季风流的削弱27

图2

图2   夏季SCSSM和秋季ENSO 影响IOD的过程示意图(据参考文献[55]修改)

Fig. 2   Schematic diagram of the SCSSM JJA and ENSO SON affecting the IOD modified after reference 55])


相对于印度洋东部的夏季风而言,印度夏季风与IOD的关系较为复杂。早期部分研究指出弱印度夏季风通过减弱西部赤道印度洋的上翻,同时加强苏门答腊沿岸的上翻,促进正IOD的发展208687;而正IOD的发展有利于加强印度夏季风、非洲沿岸向北的越赤道气流以及赤道印度洋中部的气旋性西风,进而对IOD产生负反馈,促进正IOD的耗散42。但也有部分研究指出印度夏季风的加强有利于正IOD的发生和发展,Drbohlav等13指出非El Niño年,加强的夏季风环流会加强西北印度洋的西风和东南印度洋的东南风,形成以东南印度洋SST冷异常为主的正IOD。Krishnan21也指出正IOD和强印度夏季风同时发生时,加强的印度夏季风降水和夏季风经向环流会促进赤道南侧强东风异常的发展,导致东南印度洋强SST冷异常的发展。从以上回顾可以看出,目前关于印度夏季风对IOD发生与发展的影响还没有十分明确的结论,需进一步深入研究。而关于IOD对印度夏季风降水影响的观点则较为一致,观测和模式结果均表明正IOD增加印度夏季风降水21428889,减少El Niño所导致的印度地区降水负异常8890~92。Hrudya等93也指出IOD与印度夏季风降水之间的关系在夏季不同月份间存在显著差异,并且在1951—1980年和1986—2015年这两个时段内也存在着显著的变化。Hrudya等94近期较全面地回顾了IOD和ENSO对印度夏季风降水的影响。

5 IOD的气候效应

IOD作为印度洋中重要的海气相互作用现象,对海洋过程和印度洋周边乃至全球的气候均存在显著影响。相关研究表明正IOD可通过局地风异常或海洋波动过程加强印度尼西亚贯穿流95、促进夏秋季印度洋东部赤道潜流及上翻的年际变率的发展9697,进一步的研究也表明在夏秋季,与正IOD相关的强赤道潜流维持着赤道印度洋东部的上翻98。IOD的发展可通过影响热带环流系统而引起赤道印度洋海表盐度的变化99。IOD对印度洋周边地区降水及环流的影响主要包括:正IOD导致赤道印度洋东部、印度尼西亚地区以及澳大利亚南部降水减少,非洲东侧沿岸降水增加22526100~104,印度大陆夏季风降水增加91,北印度洋热带气旋活动频次减少105,南亚高压和副热带高压减弱84等。此外,IOD对其他区域的气候也存在显著影响,比如与欧洲、南北美和南非的陆地表面温度及降雨等均有显著联系2223。IOD的发展也会影响南极海冰的分布,当去除ENSO的影响之后,正IOD导致北半球秋季印度洋中60°E(90°E)附近海冰的增加(减少)24。超强IOD的发展可能导致极端气候事件,比如2015年的强正IOD导致秋季南海地区出现过去140年以来破纪录的SST暖异常,对海洋环境造成了严重的影响106;2018年和2019年连续发生的正IOD和CP El Niño共同导致澳大利亚夏季的干旱及严重的森林火灾107108;2019年的极端正IOD导致大西洋的热带气旋活动异常增加109、冬季东亚地区出现极端暖异常110以及2020年初夏东亚地区极端梅雨的发生111112

IOD对中国的气候同样存在显著影响29113114。夏秋季正IOD的发展导致秋季中国西南地区低层受异常气旋环流控制,降水增加115。进一步研究表明,夏季IOD对中国南部降水的影响是较弱的,而秋季正(负)IOD显著增加(减少)中国南部的降水,并且正IOD对中国南部降水的影响更强116。正IOD的发展促进华西区域秋季降水增加117。近期研究也表明正IOD可通过调整冬季青藏高原的降水,从而加深其南部雪深,增加次年夏季长江流域的降水118。此外,IOD与ENSO对我国降水的影响存在相互加强或抵消效应,1994年夏季正IOD同El Niño Modoki的结合效应,导致中国南方地区严重的洪涝灾害以及长江流域严重的干旱;1983年夏季强El Niño Modoki负位相、中等强度的El Niño和正IOD,共同导致了长江流域的洪涝灾害和中国南方地区严重的干旱28。El Niño(La Niña)和正(负)IOD的结合对应着秋季中国南部(黄土高原地区)显著的降雨正异常119。2019年CP El Niño与超强正IOD的结合导致了8~10月长江中下游地区的极端干旱120。独立于El Niño的和伴随El Niño的正IOD对我国降水的季节演变存在不同的影响,纯正IOD年,中国南部地区在IOD发展年春季(夏秋季)对应着降水负(正)异常;中国北部和西北部地区在IOD发展年秋季和衰退年夏季出现降水正异常;中国东北地区在IOD发展年夏季(秋季)和衰退年(冬季)夏季出现降水负(正)异常。同El Niño相结合的正IOD年,中国南部从IOD发展年夏季到次年春季(发展年春季和衰退年夏季)均存在一致的降水正(负)异常;中国西北部地区在IOD发展年夏季异常湿,中国北部地区在IOD发展年秋季异常干121。Heng等122指出El Niño加强了正IOD对中国南部地区降水发展和峰值阶段的影响,对其衰减阶段的影响较小。年代际时间尺度上,20世纪70年代以来正IOD的增多加强了中国西南部低纬度高地地区降雨和IOD之间的关系,可能会引起该区域干旱频发123

6 全球变暖背景下IOD的变化

在全球变暖背景下,热带印度洋SST异常增暖存在空间不一致性,大量观测和模式预估研究表明,热带印度洋的平均态海温的增暖呈现正IOD型海温分布43124~127,即表现为印度洋东部的增暖比印度洋西部缓慢,沿着赤道印度洋出现东风异常,赤道印度洋东部的温跃层变浅,有利于苏门答腊沿岸上翻和SST冷异常的发展3643125126128~130。Zheng等125126指出赤道印度洋东部温跃层的变浅,使得IOD的偏度减弱,但由于在全球变暖背景下,大气反馈过程削弱所导致的效应与温跃层变浅所导致的效应相反,最终使得IOD的方差没有显著的变化。在全球变暖背景下,印度洋中平均态的改变有利于极端正IOD的发生129~132。Cai等133的研究进一步表明,在全球变暖背景下强的正IOD将增加而中等强度的正IOD将减少,极端正IOD所导致的极端气候和天气事件也会增加。因此,进一步研究全球变暖背景下IOD的变化及其影响十分重要。

关于全球变暖背景下IOD变化的研究,大多是基于模式数据进行的。那么,模式对印度洋平均态模拟的偏差,则可能会影响对IOD未来变化的预估。相关研究表明大部分模式模拟的印度洋气候态SST,均在赤道西(东南)印度洋呈现暖(冷)偏差134~136。模式模拟的秋季赤道东西印度洋偏强的气候态SST梯度,伴随着赤道印度洋上强的东风异常,赤道东印度洋偏浅的温跃层及加强的Bjerknes反馈,有利于正IOD的发生,同时导致模拟的IOD相比于观测具有更强的振幅134137。Wang等135138的研究也表明赤道东印度洋温跃层的偏浅会导致对增暖背景下未来IOD发生频率增加的低估。此外,IOD具有强的气候效应,对IOD振幅的模拟偏差会影响对全球变暖背景下IOD所影响区域降水趋势的预估139。进一步提高模式对印度洋平均态的模拟技巧,以及运用历史海温变化的归因分析结果作为约束条件进行海温未来变化的预估140141,将有助于提高IOD的气候预测与预估水平。

7 总结和展望

关于IOD的研究被提出至今已有二十多年,对其形成机制和气候效应的研究已相对全面。总的来说,IOD是热带印度洋中重要的年际变率之一,它既可由热带太平洋中ENSO触发也可由印度洋中局地海气相互作用触发。热带印度洋的表面风异常可通过WES反馈、Bjerknes反馈12以及海洋波动过程4445142等影响IOD的发生与发展。

本文主要回顾了IOD的相关特征、IOD与ENSO之间的关系、IOD与亚洲夏季风之间的关系、IOD的气候效应以及全球变暖背景下IOD的变化。在揭示IOD季节锁相以及正偏度特征的基础上,已有研究提出了一些不同于经典IOD的其他类别IOD,比如不合季节的IOD36、非对称性IOD39以及IOD Modoki40等。在IOD与ENSO之间的关系方面,ENSO可通过大气桥及海洋路径对IOD产生影响50,且ENSO不同的爆发时间1070~72以及不同的SST异常位置897879均会对IOD产生不同的影响。IOD通过海气相互作用3559~61及印度尼西亚贯穿流62~66对ENSO的发生发展产生影响。关于亚洲夏季风与IOD之间的关系方面,强西北太平洋夏季风80,强SCSSM5582,孟加拉湾夏季风的早爆发83等均有利于正IOD的发展。正IOD的发展也有利于印度夏季风降水的增加21428889。关于IOD对气候的影响方面,IOD对海洋过程以及印度洋周边地区甚至全球气候均具有重要影响,尤其对我国降水、气温等的分布具有显著的影响。在全球变暖背景下,极端IOD的增多将可能导致极端气候事件频发。综上所述,IOD对气候预测具有重要意义,进一步加强对IOD的研究是极其重要的。

尽管已有丰富的成果,当前IOD相关的研究仍存在有待完善的方面。概括起来主要有以下几个方面:

(1) 不同分布型IOD的起源和气候影响问题。基于IOD东西极SST异常强度差异的不同类型的IOD,比如以西印度洋暖海温异常为主的IOD,以东南印度洋冷海温异常为主的IOD等,其形成的物理过程和对应气候影响的差异尚不清楚。

(2) 与IOD相关联的印度洋与太平洋相互作用问题。在IOD与太平洋最显著的年际变率ENSO的相互影响方面,不同类型的ENSO对IOD的影响有显著差异。那么,如前所述不同类型的IOD对ENSO的影响是否存在显著差异,以及在IOD与ENSO的相互作用过程中海洋桥和大气桥的相对贡献均有待进一步研究。伴随La Niña的正IOD事件的触发机制也缺乏理解,比如1967年的正IOD事件,亦须深入研究。

(3) 亚洲季风与IOD相互作用问题。印度夏季风对IOD发生发展有怎样的影响,其相互作用的物理过程如何,已有研究结果间存在争议,需进一步展开研究。

(4) IOD对东亚极端气候事件产生影响的物理过程尚需深入研究。2019年极端正IOD的发生对我国2019年夏末初秋长江中下游地区的干旱以及2020年初夏长江中下游地区的极端梅雨均有显著的影响,表明IOD对我国极端气候事件的产生有着显著影响。但IOD与中高纬环流系统或泛热带海洋之间的协同作用对我国极端气候事件的影响,还需开展相关研究。

(5) 热带海气系统的年代际变化对IOD的影响问题。热带海气系统的年代际变化对IOD年际变化的调制作用,ENSO与IOD关系的年代际变化,以及IOD的年代际变化对周边国家气候的影响值得进一步展开研究。

总之,不同类型IOD形成物理过程与气候影响的差异,IOD与季风的相互作用,热带海气系统的年代际变化对IOD的影响,以及IOD与中高纬环流系统或泛热带海洋之间的协同作用对我国极端气候事件的影响方面还亟需大量工作,以提高亚洲季风的气候预测水平,减少极端天气气候事件所带来的危害。

参考文献

SAJI N HGOSWAMI B NVINAYACHANDAN P Net al.

A dipole mode in the tropical Indian Ocean

[J]. Nature, 19994016 751):360-363.

[本文引用: 7]

WEBSTER P JMOORE A MLOSCHNIGG J Pet al.

Coupled ocean-atmosphere dynamics in the Indian Ocean during 1997-98

[J]. Nature, 19994016 751): 356-360.

[本文引用: 4]

REVERDIN GCADE D LGUTZLER D.

Interannual displacements of convection and surface circulation over the equatorial Indian Ocean

[J]. Quarterly Journal of the Royal Meteorological Society, 1986112471):43-67.

[本文引用: 1]

NICHOLLS N.

Sea surface temperatures and Australian winter rainfall

[J]. Journal of Climate, 198929):965-973.

[本文引用: 1]

TAN YankeZHANG RenheHE Jinhai.

Features of the interannual variation of Sea Surface Temperature anomalies and the air-sea interaction in Tropical Indian Ocean

[J]. Chinese Journal of Atmospheric Sciences, 2003271): 53-66.

[本文引用: 1]

谭言科张人禾何金海.

热带印度洋海温的年际异常及其海气耦合特征

[J]. 大气科学,2003271): 53-66.

[本文引用: 1]

BEHERA S KLUO J JMASSON Set al.

A CGCM study on the interaction between IOD and ENSO

[J]. Journal of Climate, 2006199):1 688-1 705.

[本文引用: 2]

ANNAMALAI HMURTUGUDDE RPOTEMRA Jet al.

Coupled dynamics over the Indian Ocean: spring initiation of the Zonal Mode

[J]. Deep Sea Research Part II: Topical Studies in Oceanography, 20035012/13): 2 305-2 330.

[本文引用: 2]

ZHANG W JWANG Y LJIN F Fet al.

Impact of different El Niño types on the El Niño/IOD relationship

[J]. Geophysical Research Letters, 2015428 570-8 576.

[本文引用: 2]

DONG DHE J HLI J P.

Linkage between Indian Ocean Dipole and two types of El Niño and its possible mechanisms

[J]. Journal of tropical meteorology, 201622172-181.

[本文引用: 1]

FAN LLIU Q YWANG C Zet al.

Indian Ocean Dipole modes associated with different types of ENSO development

[J]. Journal of Climate, 2017302 233-2 249.

[本文引用: 2]

STUECKER M FTIMMERMANN AJIN F Fet al.

Revisiting ENSO/Indian Ocean Dipole phase relationships

[J]. Geophysical Research Letters, 2017442 481-2 492.

[本文引用: 1]

FISCHER A STERRAY PGUILYARDI Eet al.

Two independent triggers for the Indian Ocean Dipole/zonal mode in a coupled GCM

[J]. Journal of Climate, 20051817): 3 428-3 449.

[本文引用: 2]

DRBOHLAV H K LGUALDI SNAVARRA A.

A diagnostic study of the Indian Ocean Dipole mode in El Niño and non-El Niño years

[J]. Journal of Climate, 20072013): 2 961-2 977.

[本文引用: 4]

TANIZAKI CTOZUKA TDOI Tet al.

Relative importance of the processes contributing to the development of SST anomalies in the eastern pole of the Indian Ocean Dipole and its implication for predictability

[J]. Climate Dynamics, 2017491 289-1 304.

[本文引用: 1]

YUAN C XLI W JGUAN Z Yet al.

Impacts of April snow cover extent over Tibetan Plateau and the central Eurasia on Indian Ocean Dipole

[J]. International Journal of Climatology, 2019391 756-1 767.

[本文引用: 1]

ZHANG L YDU YCAI W Jet al.

Triggering the Indian Ocean Dipole from the southern hemisphere

[J]. Geophysical Research Letters, 2020479.

[本文引用: 1]

LU BREN H L.

What caused the extreme Indian Ocean Dipole event in 2019?

[J]. Geophysical Research Letters, 2020478.

[本文引用: 1]

DU YZHANG YZHANG L Yet al.

Thermocline warming induced extreme Indian Ocean Dipole in 2019

[J]. Geophysical Research Letters, 20204718). DOI:10.1029/2020GL090079.

[本文引用: 1]

BEHERA S KKRISHNAN RYAMAGATA T.

Unusual ocean-atmosphere conditions in the tropical Indian Ocean during 1994

[J]. Geophysical Research Letters, 1999263 001-3 004.

[本文引用: 1]

LOSCHNIGG JMEEHL G AWEBSTER P Jet al.

The Asian monsoon, the tropospheric biennial oscillation, and the Indian Ocean zonal mode in the NCAR CSM

[J]. Journal of Climate, 2003161 617-1 642.

[本文引用: 1]

KRISHNAN RSWAPNA P.

Significant influence of the boreal summer monsoon flow on the Indian Ocean response during dipole events

[J]. Journal of Climate, 2009225 611-5 634.

[本文引用: 4]

SAJI N HYAMAGATA T.

Possible impacts of Indian Ocean Dipole mode events on global climate

[J]. Climate Research, 2003252): 151-169.

[本文引用: 2]

CHAN S CBEHERA S KYAMAGATA T.

Indian Ocean Dipole influence on South American rainfall

[J]. Geophysical Research Letters, 20083514):63-72.

[本文引用: 1]

NUNCIO MYUAN X.

The influence of the Indian Ocean Dipole on Antarctic Sea Ice

[J]. Journal of Climate, 2015287): 2 682-2 690.

[本文引用: 1]

NUR'UTAMI M NHIDAYAT R.

Influences of IOD and ENSO to indonesian rainfall variability: role of atmosphere-ocean interaction in the Indo-Pacific sector

[J]. Procedia Environmental Sciences, 201633196-203.

[本文引用: 1]

LESTARI D OSUTRIYONO ESABARUDDINet al.

Severe drought event in indonesia following 2015/16 El Niño/positive Indian Dipole Events

[J]. Journal of Physics Conference Series, 20181011. DOI:10.1088/1742-6596/1011/1/012040.

[本文引用: 2]

GUAN Z YYAMAGATA T.

The unusual summer of 1994 in East Asia: IOD teleconnections

[J]. Geophysical Research Letters, 20033010): 4.

[本文引用: 2]

WENG H YWU G XLIU Y Met al.

Anomalous summer climate in China influenced by the tropical Indo-Pacific Oceans

[J]. Climate Dynamics, 201136769-782.

[本文引用: 2]

XIAO YingZHANG ZuqiangHE Jinhai.

Summary of research progress on Indian Ocean Dipole

[J]. Journal of Tropical Meteorology, 2009255):621-627.

[本文引用: 2]

肖莺张祖强何金海.

印度洋偶极子研究进展综述

[J]. 热带气象学报, 2009255):621-627.

[本文引用: 2]

LIU HuafengZHANG XiangmingTANG Youminet al.

Research progress of Indian Ocean Dipole and its predictability

[J]. Advances in Marine Science, 2014323):405-414.

刘华锋章向明唐佑民.

印度洋偶极子及其可预报性研究进展

[J]. 海洋科学进展, 2014323):405-414.

SCHOTT F AXIE S PMCCREARY J P.

Indian Ocean circulation and climate variability

[J]. Reviews of Geophysics, 20094746.

XUE P FRIZZOLI P MWEI Jet al.

Coupled ocean-atmosphere modeling over the maritime continent: a review

[J]. Journal of Geophysical Research—Oceans, 20201256). DOI:10.1029/2019JC014978.

KUCHARSKI FBIASTOCH AASHOK Ket al.

Chapter5-Indian Ocean variability and interactions

[M]// Mechoso C R. Interacting climates of ocean basinsobservation, mechanisms, predictability, and impacts. New YorkCambridge University Press2020.

BEHERA S KDOI TRATNAM J V. Chapter5-air-sea interactions in tropical Indian Ocean: the Indian Ocean Dipole, editor(s): BEHERA S K, tropical and extratropical air-sea interactions: modes of climate variations [M]. Elsevier2021.

[本文引用: 1]

LUO J JZHANG R CBEHERA S Ket al.

Interaction between El Niño and extreme Indian Ocean Dipole

[J]. Journal of Climate, 201023726-742.

[本文引用: 4]

DU YCAI W JWU Y.

A new type of the Indian Ocean Dipole since the mid-1970s

[J]. Journal of Climate, 2013253): 959-972.

[本文引用: 4]

GUI FayinTAN YankeLI Chongyinet al.

Possible triggering of the Indian Ocean Dipole by early summer rainfall anomalies over the eastern bay of Bengal

[J]. Transactions of Atmospheric Sciences, 2016395): 589-599.

[本文引用: 2]

桂发银谭言科李崇银.

初夏孟加拉湾东部降水异常对印度洋海温偶极子的触发作用

[J].大气科学学报,2016395):589-599.

[本文引用: 2]

WANG Y HLI J PZHANG Y Zet al.

Atmospheric energetics over the tropical Indian Ocean during Indian Ocean Dipole events

[J]. Climate Dynamics, 2018526 243-6 256.

[本文引用: 2]

SUN S WFANG YTANAet al.

Dynamical mechanisms for asymmetric SSTA patterns associated with some Indian Ocean Dipoles

[J]. Journal of Geophysical Research—Oceans, 20141193 076-3 097.

[本文引用: 2]

ENDO STOZUKA T.

Two flavors of the Indian Ocean Dipole

[J]. Climate Dynamics, 2016463 371-3 385.

[本文引用: 2]

TOZUKA TENDO SYAMAGATA T.

Anomalous walker circulations associated with two flavors of the Indian Ocean Dipole

[J]. Geophysical Research Letters, 2016435 378-5 384.

[本文引用: 1]

LI TWANG BCHANG C Pet al.

A theory for the Indian Ocean Dipole-Zonal mode

[J]. Journal of the Atmospheric Sciences, 20036017): 2 119-2 135.

[本文引用: 4]

CAI W JZHENG X TWELLER Eet al.

Projected response of the Indian Ocean Dipole to greenhouse warming

[J]. Nature Geoscience, 20136999-1 007.

[本文引用: 6]

YUAN D LLIU H L.

Long-wave dynamics of sea level variations during Indian Ocean Dipole events

[J]. Journal of Physical Oceanography, 2009395): 1 115-1 132.

[本文引用: 3]

WANG JYUAN D L.

Roles of western and eastern boundary reflections in the interannual sea level variations during negative Indian Ocean Dipole events

[J]. Journal of Physical Oceanography, 2015457): 1 804-1 821.

[本文引用: 2]

HONG C CLI THO Let al.

Asymmetry of the Indian Ocean Dipole. part I: observational analysis

[J]. Journal of Climate, 2008214 834-4 848.

[本文引用: 1]

HONG C CLI TLUO J J.

Asymmetry of the Indian Ocean Dipole. part II: model diagnosis

[J]. Journal of Climate, 2008214 849-4 858.

[本文引用: 1]

OGATA TXIE S PLAN Jet al.

Importance of Ocean Dynamics for the Skewness of the Indian Ocean Dipole Mode

[J]. Journal of Climate, 2013262 145-2 159.

[本文引用: 1]

ZHANG L YDU YCAI W J.

Low-frequency variability and the unusual Indian Ocean Dipole events in 2015 and 2016

[J]. Geophysical Research Letters, 2018451 040-1 048.

[本文引用: 2]

WANG C Z.

Three-ocean interactions and climate variability: a review and perspective

[J]. Climate Dynamics, 2019535 119-5 136.

[本文引用: 3]

CAI W JWU L XLengaigne Met al.

Pantropical climate interactions

[J]. Science, 20193636 430): eaav4236.

[本文引用: 1]

HAMEED S NJIN DThilakan V.

A model for super El Niños

[J]. Nature communications, 201892 528.

[本文引用: 2]

RAYNER N APARKER D EHORTON E Bet al.

Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century

[J]. Journal of Geophysical Research—Atmospheres, 2003 108D14): 37.

[本文引用: 2]

KALNAY EKANAMITSU MKISTLER Ret al.

The NCEP/NCAR 40-year reanalysis project

[J]. Bulletin of the American Meteorological Society, 1996773): 437-471.

[本文引用: 2]

ZHANG Y ZLI J PXUE J Qet al.

The relative roles of the South China Sea summer monsoon and ENSO in the Indian Ocean Dipole development

[J]. Climate Dynamics, 2019536 665-6 680.

[本文引用: 5]

ABRAM N JHARGREAVES J AWRIGHT N Met al.

Palaeoclimate perspectives on the Indian Ocean Dipole

[J]. Quaternary Science Reviews, 202023720.

[本文引用: 1]

ZHANG R HTAN Y K.

El Niño and interannual variation of the sea surface temperature in the tropical Indian Ocean

[C]// Proceedings of the SPIE. 2003. DOI: 10.1117/12.466694.

[本文引用: 1]

TAN YankeZHANG RenheHE Jinhaiet al.

Relationship of the interannual variations of sea surface temperature in tropical Indian Ocean to ENSO

[J]. Acta Meteorologica Sinica, 2004626): 831-840.

谭言科张人禾何金海.

热带印度洋海温的年际变化与ENSO

[J]. 气象学报,2004626):831-840.

BEHERA S KYAMAGATA T.

Influence of the Indian Ocean Dipole on the southern oscillation

[J]. Journal of the Meteorological Society of Japan, 200381169-177.

[本文引用: 1]

ANNAMALAI HKIDA SHafner J.

Potential impact of the tropical Indian Ocean-Indonesian Seas on El Niño characteristics

[J]. Journal of Climate, 2010233 933-3 952.

[本文引用: 2]

IZUMO TVIALARD JLENGAIGNE Met al.

Influence of the state of the Indian Ocean Dipole on the following year's El Niño

[J]. Nature Geoscience, 201033): 168-172.

[本文引用: 2]

YUAN D LWANG JXU T Fet al.

Forcing of the Indian Ocean Dipole on the interannual variations of the tropical Pacific Ocean: roles of the Indonesian Throughflow

[J]. Journal of Climate, 20112414): 3 593-3 608.

[本文引用: 2]

YUAN D LZHOU HZHAO X.

Interannual climate variability over the Tropical Pacific Ocean induced by the Indian Ocean Dipole through the Indonesian Throughflow

[J]. Journal of Climate, 2013269): 2 845-2 861.

YUAN D LXU PXU T F.

Climate variability and predictability associated with the Indo-Pacific Oceanic Channel Dynamics in the CCSM4 Coupled System Model

[J]. Chinese Journal of Oceanology and Limnology, 2016351): 23-38.

ZHAO XYUAN D LYANG Get al.

Role of the oceanic channel in the relationships between the basin/dipole mode of SST anomalies in the tropical Indian Ocean and ENSO transition

[J]. Advances in Atmospheric Sciences, 20163312): 1 386-1 400.

YUAN D LHU X YXU Pet al.

The IOD-ENSO precursory teleconnection over the tropical Indo-Pacific Ocean: dynamics and long-term trends under global warming

[J]. Journal of Oceanology and Limnology, 2018361): 4-19.

[本文引用: 2]

ZHANG YZHOU WLI T.

Impact of the Indian Ocean Dipole on evolution of the subsequent ENSO: relative roles of dynamic and thermodynamic processes

[J]. Journal of Climate, 2021349): 1-51.

[本文引用: 1]

XU J JCHAN J C L.

The role of the Asian-Australian monsoon system in the onset time of El Niño events

[J]. Journal of Climate, 200114418-433.

[本文引用: 1]

HORII THANAWA K.

A relationship between timing of El Niño onset and subsequent evolution

[J]. Geophysical Research Letters, 2004316): L06304.

[本文引用: 1]

ZHONG A HHENDON H HALVES O.

Indian Ocean variability and its association with ENSO in a global coupled model

[J]. Journal of Climate, 2005183 634-3 649.

[本文引用: 2]

SOORAJ KKUG J SLI Tet al.

Impact of El Niño onset timing on the Indian Ocean: Pacific coupling and subsequent El Niño evolution

[J]. Theoretical and Applied Climatology, 20099717-27.

[本文引用: 1]

ROXY MGUALDI SDRBOHLAV H K Let al.

Seasonality in the relationship between El Niño and Indian Ocean Dipole

[J]. Climate Dynamics, 201137221-236.

[本文引用: 2]

ASHOK KBEHERA S KRAO S Aet al.

El Niño Modoki and its possible teleconnection

[J]. Journal of Geophysical Research-Oceans, 200711227.

[本文引用: 1]

WENG H YASHOK KBEHERA S Ket al.

Impacts of recent El Niño Modoki on dry/wet conditions in the Pacific rim during boreal summer

[J]. Climate Dynamics, 200729113-129.

[本文引用: 1]

YU J YKAO H Y.

Decadal changes of ENSO persistence barrier in SST and ocean heat content indices: 1958-2001

[J]. Journal of Geophysical Researchs—Atmospheres, 2007112D13). DOI: 10.1029/2006JD007654.

[本文引用: 1]

KAO H YYU J Y.

Contrasting Eastern-Pacific and Central-Pacific types of ENSO

[J]. Journal of Climate, 200922615-632.

[本文引用: 1]

WANG C ZWANG X.

Classifying El Niño Modoki I and II by different impacts on rainfall in Southern China and typhoon tracks

[J]. Journal of Climate, 2013261 322-1 338.

[本文引用: 1]

WANG XWANG C Z.

Different impacts of various El Niño events on the Indian Ocean Dipole

[J]. Climate Dynamics, 201442991-1 005.

[本文引用: 2]

LIU LYANG GZHAO Xet al.

Why was the Indian Ocean Dipole Weak in the context of the extreme El Niño in 2015?

[J]. Journal of Climate, 2017304 755-4 761.

[本文引用: 3]

HUANG B HSHUKLA J.

Mechanisms for the interannual variability in the tropical Indian Ocean. part II: regional processes

[J]. Journal of Climate, 2007202 937-2 960.

[本文引用: 2]

KAJIKAWA YYASUNARI TKAWAMURA R.

The role of the local hadley circulation over the western Pacific on the zonally asymmetric anomalies over the Indian Ocean

[J]. Journal of the Meteorological Society of Japan, 200381259-276.

[本文引用: 1]

ZHANG Y ZLI J PXUE J Qet al.

Impact of the South China Sea summer monsoon on the Indian Ocean Dipole

[J]. Journal of Climate, 2018316 557-6 573.

[本文引用: 2]

SUN S WLAN JFANG Yet al.

A Triggering mechanism for the Indian Ocean Dipoles independent of ENSO

[J]. Journal of Climate, 2015285 063-5 076.

[本文引用: 2]

LI C YMU M Q.

The influence of the Indian Ocean Dipole on atmospheric circulation and climate

[J]. Advances in Atmospheric Sciences, 2001185): 831-843.

[本文引用: 2]

LI ChongyinMU Mingquan.

The dipole in the equatorial Indian Ocean and its impacts on climate

[J]. Chinese Journal of Atmospheric Sciences, 2001484): 433-443.

[本文引用: 1]

李崇银穆明权.

赤道印度洋海温偶极子型振荡及其气候影响

[J]. 大气科学, 2001484):433-443.

[本文引用: 1]

LAU N CNATH M J.

Atmosphere-ocean variations in the Indo-Pacific sector during ENSO episodes

[J]. Journal of Climate, 2003163-20.

[本文引用: 1]

KULKARNI ASABADE S SKRIPALANI R H.

Association between extreme monsoons and the dipole mode over the Indian subcontinent

[J]. Meteorology and Atmospheric Physics, 200695255-268.

[本文引用: 1]

ASHOK KGUAN Z YYAMAGATA T.

Impact of the Indian Ocean Dipole on the relationship between the Indian monsoon rainfall and ENSO

[J]. Geophysical Research Letters, 2001284 499-4 502.

[本文引用: 3]

GADGIL SFRANCIS P AVINAYACHANDRAN P N.

Summer monsoon of 2019: understanding the performance so far and speculating about the rest of the season

[J]. Current Science, 2019117783-793.

[本文引用: 2]

ASHOK KGUAN ZSAJI N Het al.

Individual and combined influences of ENSO and the Indian Ocean Dipole on the Indian summer monsoon

[J]. Journal of Climate, 20041716): 3 141-3 155.

[本文引用: 1]

ANIL NKUMAR M R RSAJEEV Ret al.

Role of distinct flavours of IOD events on Indian summer monsoon

[J]. Natural Hazards, 2016821 317-1 326.

[本文引用: 1]

BEHERA S KRATNAM J V.

Quasi-asymmetric response of the Indian summer monsoon rainfall to opposite phases of the IOD

[J]. Scientific Reports, 201881): 123.

[本文引用: 1]

HRUDYA PVARIKODEN HVISHNU R N.

Changes in the relationship between Indian Ocean dipole and Indian summer monsoon rainfall in early and recent multidecadal epochs during different phases of monsoon

[J]. International Journal of Climatology, 2021, 41(suppl.1): E305-E318.

[本文引用: 1]

HRUDYA PVARIKODEN HVISHNU R.

A review on the Indian summer monsoon rainfall, variability and its association with ENSO and IOD

[J]. Meteorology and Atmospheric Physics, 20211331-14.

[本文引用: 1]

LIU Q YFENG MWANG D Xet al.

Interannual variability of the Indonesian Throughflow transport: a revisit based on 30 year expendable bathythermograph data

[J]. Journal of Geophysical Research: Oceans, 201512012): 8 270-8 282.

[本文引用: 1]

CHEN G XHAN W QLI Y Let al.

Seasonal-to-interannual time-scale dynamics of the Equatorial Undercurrent in the Indian Ocean

[J]. Journal of Physical Oceanography, 2015456): 1 532-1 553.

[本文引用: 1]

CHEN G XHAN W QLI Y Let al.

Interannual variability of Equatorial Eastern Indian Ocean upwelling: local versus remote forcing

[J]. Journal of Physical Oceanography, 2016463): 789-807.

[本文引用: 1]

CHEN G XHAN W QSHU Y Qet al.

The role of equatorial undercurrent in sustaining the Eastern Indian Ocean upwelling

[J]. Geophysical Research Letters, 20164312): 6 444-6 451.

[本文引用: 1]

DU YanZHANG LianyiZHANG Yuhong.

Review of the tropical gyre in the Indian Ocean with its impact on heat and salt transport and regional climate modes

[J]. Advances in Earth Science,2019343):243-254.

[本文引用: 1]

杜岩张涟漪张玉红.

印度洋热带环流圈热盐输运及其对区域气候模态的影响

[J]. 地球科学进展,2019343):243-254.

[本文引用: 1]

LATIF MDOMMENGET DDIMA Met al.

The role of Indian Ocean sea surface temperature in forcing east African rainfall anomalies during December-January 1997/98

[J]. Journal of Climate, 1999123 497-3 504.

[本文引用: 1]

BIRKETT CMURTUGUDDE RALLAN T.

Indian Ocean climate event brings floods to East Africa's lakes and the Sudd marsh

[J]. Geophysical Research Letters, 1999261 031-1 034.

YAN Hongming. YANG HuiLI Chongyin.

Numerical simulations on the climate impacts of temperature dipole in the equatorial Indian Ocean

[J]. Acta Oceanologica Sinica, 2007295): 31-39.

晏红明杨辉李崇银.

赤道印度洋海温偶极子的气候影响及数值模拟研究

[J]. 海洋学报, 2007295): 31-39.

CAI W JRENSCH P VCOWAN Tet al.

Teleconnection pathways of ENSO and the IOD and the mechanisms for impacts on Australian rainfall

[J]. Journal of Climate, 20112415): 3 910-3 923.

NG BCAI W JCOWAN Tet al.

Influence of internal climate variability on Indian Ocean Dipole properties

[J]. Scientific Reports, 2018813500.

[本文引用: 1]

YUAN JunpengCAO Jie.

North Indian Ocean tropical cyclone activities influenced by the Indian Ocean Dipole mode

[J]. Science China: Earth Sciences, 201356855-865.

[本文引用: 1]

袁俊鹏曹杰. 印度洋偶极子对北印度洋热带气旋活动的影响研究. 中国科学地球科学201343570-581.

[本文引用: 1]

XIAO F AWANG D XLEUNG Y T M.

Early and extreme warming in the South China Sea during 2015/16: role of an unusual Indian Ocean Dipole event

[J]. Geophysical Research Letters, 20204717). DOI: 10.1029/2020GL089936.

[本文引用: 1]

WANG G JCAI W J.

Two-year consecutive concurrences of positive Indian Ocean Dipole and Central Pacific El Niño preconditioned the 2019/2020 Australian "black summer" bushfires

[J]. Geoscience Letters, 202071). DOI: 10.1186/s40562-020-00168-2.

[本文引用: 1]

ZHANG W JMAO WJIANG Fet al.

Tropical Indo‐Pacific compounding thermal conditions drive the 2019 Australian extreme drought

[J]. Geophysical Research Letters,2021482). DOI: 10.1029/2020GL090323.

[本文引用: 1]

WOOD K MKLOTZBACH P JCOLLINS J Met al.

Factors affecting the 2019 Atlantic hurricane season and the role of the Indian Ocean Dipole

[J]. Geophysical Research Letters, 20204713). DOI: 10.1029/2020GL087781.

[本文引用: 1]

DOI TBEHERA S KYAMAGATA T.

Wintertime impacts of the 2019 super IOD on East Asia

[J]. Geophysical Research Letters, 20204718). DOI:10.1029/2020GL089456.

[本文引用: 1]

TAKAYA YISHIKAWA IKOBAYASHI Cet al.

Enhanced Meiyu-Baiu rainfall in early summer 2020:aftermath of the 2019 super IOD event

[J]. Geophysical Research Letters, 20204722). DOI: 10.1029/2020GL090671.

[本文引用: 1]

ZHOU Z QXIE S PZHANG R H.

Historic Yangtze flooding of 2020 tied to extreme Indian Ocean conditions

[J]. Proceedings of the National Academy of Sciences, 202111812): e2022255118.

[本文引用: 1]

LI JianpingWU GuoxiongHU Dunxin. Ocean-atmosphere interaction over the joining area of Asia and Indian-Pacific ocean and its impact on the short-term climate variation in China (Volume I) [M]. BeijingChina Meteorological2011.

[本文引用: 1]

李建平吴国雄胡敦欣. 亚印太交汇区海气相互作用及其对我国短期气候的影响(上卷) [M]. 北京气象出版社2011.

[本文引用: 1]

LI JianpingWU GuoxiongHU Dunxin. Ocean-atmosphere interaction over the joining area of Asia and Indian-Pacific ocean and its impact on the short-term climate variation in China (Volume II) [M]. BeijingChina Meteorological2011.

[本文引用: 1]

李建平吴国雄胡敦欣. 亚印太交汇区海气相互作用及其对我国短期气候的影响(下卷) [M]. 北京气象出版社2011.

[本文引用: 1]

LIU XuanfeiYUAN Huizhen.

The relationship between Indian Ocean Dipole and autumn rainfall in China

[J]. Journal of Nanjing Institute of Meteorology, 200629644-649.

[本文引用: 1]

刘宣飞袁慧珍.

印度洋偶极子与中国秋季降水的关系

[J]. 南京气象学院学报, 200629644-649.

[本文引用: 1]

QIU YCAI W JGUO X Get al.

The asymmetric influence of the positive and negative IOD events on China's rainfall

[J]. Scientific Reports, 201446.

[本文引用: 1]

LIU JiaMA ZhenfengYANG Shuqun.

The relationship between Indian Ocean Dipole and Huaxi Qiuyu

[J]. Plateau Meteorology, 2015344): 950-962.

[本文引用: 1]

刘佳马振峰杨淑群.

印度洋偶极子和华西秋雨的关系

[J]. 高原气象, 2015344): 950-962.

[本文引用: 1]

ZHANG YZHOU WCHOW E C Het al.

Delayed impacts of the IOD: cross-seasonal relationships between the IOD, Tibetan Plateau snow, and summer precipitation over the Yangtze-Huaihe River region

[J]. Climate Dynamics, 2019534 077-4 093.

[本文引用: 1]

XU KZHU C WWANG W Q.

The cooperative impacts of the El Niño-Southern Oscillation and the Indian Ocean Dipole on the interannual variability of autumn rainfall in China

[J]. International Journal of Climatology, 2016361 987-1 999

[本文引用: 1]

XU KMIAO H YLIU B Qet al.

Aggravation of record‐breaking drought over the mid‐to‐lower reaches of the Yangtze river in the post‐monsoon season of 2019 by anomalous Indo‐Pacific oceanic conditions

[J]. Geophysical Research Letters, 20204724). DOI:10.1029/2020GL090847.

[本文引用: 1]

LI C XZHAO T B.

Seasonal responses of precipitation in China to El Niño and positive Indian Ocean Dipole Modes

[J]. Atmosphere, 2019107): 372.

[本文引用: 1]

HENG CYOON S KKIM J Set al.

Inter-seasonal precipitation variability over Southern China associated with commingling effect of Indian Ocean Dipole and El Niño

[J]. Water, 20191110): 2 023.

[本文引用: 1]

XU C XAN W LWANG S Y Set al.

Increased drought events in southwest China revealed by tree ring oxygen isotopes and potential role of Indian Ocean Dipole

[J]. Science of the Total Environment, 2019661645-653.

[本文引用: 1]

LUO YLU JLIU Fet al.

The positive Indian Ocean Dipole-like response in the tropical Indian Ocean to global warming

[J]. Advances in Atmospheric Sciences, 201633476-488.

[本文引用: 1]

ZHENG X TXIE S PVECCHI G Aet al.

Indian Ocean Dipole response to global warming: analysis of ocean-atmospheric feedbacks in a coupled model

[J]. Journal of Climate, 2010231 240-1 253.

[本文引用: 2]

ZHENG X TXIE S PDU Y.

Indian Ocean Dipole response to global warming in the CMIP5 multimodel ensemble

[J]. Journal of Climate, 2013266 067-6 080.

[本文引用: 2]

HUI CZHENG X T.

Uncertainty in Indian Ocean Dipole response to global warming: the role of internal variability

[J]. Climate Dynamics, 2018519/10): 3 597-3 611.

[本文引用: 1]

CAI WCOWAN TSULLIVAN A.

Recent unprecedented skewness towards positive Indian Ocean Dipole occurrences and its impact on Australian rainfall

[J]. Geophysical Research Letters, 20093611). DOI: 10.1029/2009GL037604.

[本文引用: 1]

CAI W JSANTOSO AWANG G Jet al.

Increased frequency of extreme Indian Ocean Dipole events due to greenhouse warming

[J]. Nature, 20145107 504): 254-258.

[本文引用: 1]

CAI W JWANG G JGAN Bet al.

Stabilised frequency of extreme positive Indian Ocean Dipole under 1.5 ℃ warming

[J]. Nature Communications, 201891 419.

[本文引用: 1]

KRISHNAN RSANJAY JGNANASEELAN Cet al.

Assessment of climate change over the Indian Region: a report of the Ministry of Earth Sciences (MoES)

[M]. Springer Nature, 2020. DOI:10.1007/978-981-15-4327-2.

WANG G JCAI W JYANG Ket al.

A unique feature of the 2019 extreme positive Indian Ocean Dipole event

[J]. Geophysical Research Letters, 20204718).DOI: 10.1029/2020GL088615.

[本文引用: 1]

CAI W JYANG KWU L Xet al.

Opposite response of strong and moderate positive Indian Ocean Dipole to global warming

[J]. Nature Climate Change, 20211127-32.

[本文引用: 1]

CAI W JCOWAN T.

Why is the amplitude of the Indian Ocean Dipole overly large in CMIP3 and CMIP5 climate models?

[J]. Geophysical Research Letters, 2013406): 1 200-1 205.

[本文引用: 2]

WANG G JCAI W JSANTOSO A.

Assessing the impact of Model Biases on the projected increase in frequency of extreme positive Indian Ocean Dipole events

[J]. Journal of Climate, 2017308): 2 757-2 767.

[本文引用: 1]

MCKENNA SSANTOSO AGUPTA A Set al.

Indian Ocean Dipole in CMIP5 and CMIP6: characteristics, biases, and links to ENSO

[J]. Scientific Reports, 2020101): 13.

[本文引用: 1]

LI GXIE S PDU Y.

Monsoon-induced biases of climate models over the Tropical Indian Ocean

[J]. Journal of Climate, 2015288): 3 058-3 072.

[本文引用: 1]

WANG G JCAI W JSANTOSO A.

Simulated thermocline tilt over the tropical Indian Ocean and its influence on future sea surface temperature variability

[J]. Geophysical Research Letters, 2021486): 9.

[本文引用: 1]

WELLER ECAI W J.

Realism of the Indian Ocean Dipole in CMIP5 Models: the implications for climate projections

[J]. Journal of Climate, 20132617): 6 649-6 659.

[本文引用: 1]

SUN YZHANG X BZWIERS F Wet al.

Rapid increase in the risk of extreme summer heat in Eastern China

[J]. Nature Climate Change, 2014412): 1 082-1 085.

[本文引用: 1]

ZHOU T JZHANG W X.

Anthropogenic warming of Tibetan Plateau and constrained future projection

[J]. Environmental Research Letters, 2021164): 10.

[本文引用: 1]

EFFY J BFRANCIS P ARAMAKRISHNA S Vet al.

Anomalous warming of the western equatorial Indian Ocean in 2007: role of ocean dynamics

[J]. Ocean Modelling, 2020147101542.

[本文引用: 1]

/