地球科学进展, 2021, 36(3): 276-287 DOI: 10.11867/j.issn.1001-8166.2021.030

综述与评述

中国多年冻土区天然气水合物地球化学勘探技术研究进展

张富贵,1,2,3, 周亚龙,2,3, 孙忠军2,3, 方慧3, 杨志斌3, 祝有海4

1.成都理工大学地球科学学院,四川 成都 610059

2.地球表层碳-汞地球化学循环重点实验室,河北 廊坊 065000

3.中国地质科学院地球物理地球化学勘查研究所,河北 廊坊 065000

4.中国地质调查局油气资源调查中心,北京 100083

Research Progress of Geochemical Exploration Technology for Natural Gas Hydrate in the Permafrost Area, China

ZHANG Fugui,1,2,3, ZHOU Yalong,2,3, SUN Zhongjun2,3, FANG Hui3, YANG Zhibin3, ZHU Youhai4

1.College of Earth Sciences,Chengdu University of Technology,Chengdu 610059,China

2.Key Laboratory of Geochemical Cycling of Carbon and Mercury in the Earth's Critical Zone,Chinese Academy of Geological Sciences,Langfang Hebei 065000,China

3.Institute of Geophysical & Geochemical Exploration,Chinese Academy of Geological Sciences,Langfang Hebei 065000,China

4.Oil and Gas Survey,China Geological Survey,Beijing 100083,China

通讯作者: 周亚龙(1984-),男,湖北武汉人,高级工程师,主要从事天然气水合物勘探研究. E-mail:zhouyalong@igge.cn

收稿日期: 2020-09-15   修回日期: 2021-02-21   网络出版日期: 2021-04-30

基金资助: 中央级公益性科研院所基本科研业务费专项“油气地球化学填图方法技术调研与集成”.  AS2016Y01

Corresponding authors: ZHOU Yalong (1984-), male, Wuhan City, Hubei Province, Senior engineer. Research areas include oil, gas and gas hydrate research. E-mail:zhouyalong@igge.cn

Received: 2020-09-15   Revised: 2021-02-21   Online: 2021-04-30

作者简介 About authors

张富贵(1980-),男,山东沂水人,高级工程师,主要从事天然气水合物勘探研究.E-mail:zhangfugui@igge.cn

ZHANGFugui(1980-),male,YishuiCounty,ShandongProvince,Seniorengineer.Researchareasincludeoil,gasandgashydrateresearch.E-mail:zhangfugui@igge.cn

摘要

我国多年冻土区多位于中纬度高原地区,与环北冰洋极地地区多年冻土的状态不完全相同,天然气水合物成因机理、赋存环境和基本特征更为复杂。近10年来,在自然资源部行业专项和中国地质调查局水合物试采专项的资助下,先后在青藏高原和东北多年冻土区开展了天然气水合物地球化学勘探技术攻关,总结了多年冻土区天然气水合物地球化学指标组合和识别标志,探讨了多年冻土区天然气水合物地球化学成藏机制,研发了多年冻土区天然气水合物地球化学勘查模型,初步建立了多年冻土区天然气水合物调查地球化学方法技术体系,在勘探实践中发挥了重要的作用,地球化学方法技术对天然气水合物的有效性得到了初步检验和应用,具有广阔的应用前景。

关键词: 勘探技术 ; 地球化学 ; 天然气水合物 ; 冻土区

Abstract

Most of the permafrost regions are located in mid-latitude plateau regions in China, which are different from the permafrost regions around the Arctic Ocean, and the genesis mechanism, occurrence environment and basic characteristics of Natural Gas Hydrate (NGH) are more sophisticated. Qilian Mountain is verified as the only permafrost area in which the samples of NGH can be obtained through scientific drillings. In the past 10 years, with the support of Special Research Project of the Ministry of Natural Resources and the National Special Project of Gas Hydrate of China Geological Survey, the key technologies of NGH geochemical exploration have been successively carried out in the Qinghai-Tibet Plateau and the Mohe basin. The effective index and identification marks of NGH geochemical exploration are optimized, and the accumulation mechanism of NGH in permafrost area is discussed. The geochemical exploration model of NGH was developed, and the geochemical exploration technology system for NGH was preliminarily established, which shows the validity of exploration practice. The effectiveness of geochemical exploration technology system for NGH has been preliminarily tested and applied, which has a broad application prospect.

Keywords: Research progress ; Exploration technology ; Geochemistry ; Natural gas hydrate ; Permafrost area

PDF (3890KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

张富贵, 周亚龙, 孙忠军, 方慧, 杨志斌, 祝有海. 中国多年冻土区天然气水合物地球化学勘探技术研究进展. 地球科学进展[J], 2021, 36(3): 276-287 DOI:10.11867/j.issn.1001-8166.2021.030

ZHANG Fugui, ZHOU Yalong, SUN Zhongjun, FANG Hui, YANG Zhibin, ZHU Youhai. Research Progress of Geochemical Exploration Technology for Natural Gas Hydrate in the Permafrost Area, China. Advances in Earth Science[J], 2021, 36(3): 276-287 DOI:10.11867/j.issn.1001-8166.2021.030

1 引 言

天然气水合物是由烃类分子和水分子在低温和高压等条件下形成的笼状结晶化合物,化学式为CH₄·nH₂O,具有极高的资源价值,主要分布在近海海域、多年冻土区以及一些深水内陆湖中1~9。海域天然气水合物研究进展迅速,在深海钻探计划(Deep Sea Drilling Program, DSDP)和大洋钻探计划(Ocean Drilling Program, ODP)的支持下,国内外学者对天然气水合物的赋存条件、形成机理、沉积环境、动力学机制和环境效应等问题进行了大量研究,取得了一系列重要成果10~27。海洋沉积物中天然气水合物调查实践表明,似海底反射层(Bottom Simulating Reflector, BSR)、空白反射带、极性反转、表层沉积物CH4气体异常、大气中烃类气体含量异常、沉积物中含水量异常、孔隙水离子浓度异常和同位素地球化学异常等地球化学标志都可作为天然气水合物勘查的有效识别标志28~34。多年冻土区天然气水合物成藏机制和赋存模式与海洋天然气水合物截然不同,地震波在冰胶结永冻层的传播速度与水合物层相近,BSR等海洋天然气水合物识别标志基本不适合多年冻土区天然气水合物勘查。我国多年冻土区主要分布在中低纬度地区,与环北冰洋极地地区多年冻土的状态不完全相同,天然气水合物赋存条件和基本特征也有明显差异35~39,缺乏适合于多年冻土区天然气水合物的勘查方法技术体系。2008年中国地质调查局在青海祁连山多年冻土区发现天然气水合物,实现我国冻土区天然气水合物的重大突破,在之后的10年,以祁连山多年冻土区为主战场,中国地质调查局组织实施了青藏高原多年冻土区天然气水合物地球化学方法技术试验,在方法技术、勘查模型和有效指标等方面取得了系列成果40~59,同时在形成条件、成藏背景和动力学机制等基础研究领域形成了新的认识60。本文将对近10年来祁连山多年冻土区天然气水合物地球化学勘查技术取得的主要进展进行论述。

2 烃类气体方法技术

2.1 酸解烃技术

酸解烃法是由Horvitz61于1939年提出的油气化探的经典方法之一,是以化学方式脱附沉积物中吸附烃的“酸萃取”技术6263。酸解烃检测土壤中吸附的垂向微渗漏地表的烃类气体含量,反映的是轻烃运移的“过去时”,可根据酸解烃含量变化及形态特征预测油气藏6465。近年来,众多学者先后在祁连山地区、羌塘地区和漠河盆地开展了天然气水合物酸解烃技术试验,对天然气水合物酸解烃组分特征进行了研究40~48。结果表明,祁连山地区酸解烃组分(C1~C5)均有检出,甲烷平均含量为55.50 μL/kg,重烃平均含量为7.52 μL/kg,变异系数高达268%,酸解烃异常与天然气水合物矿藏对应关系较好,土壤酸解烃指标间相关程度较高,具有同源特征。2013年按照酸解烃异常和地震方法优选的DK-9勘探井,成功获取了天然气水合物实物样品,同时土壤酸解烃指标还具有良好的稳定性和重现性,是多年冻土区天然气水合物勘查的有效技术方法之一。羌塘盆地受后期构造运动的影响,烃源岩破坏程度较高,酸解烃含量高,变化大,缺乏能够提供稳定气源的烃源岩是制约羌塘盆地天然气水合物突破的重要原因。漠河盆地土壤多为酸性,土壤颗粒表面不易吸附烃类气体,其酸解烃平均含量远低于祁连山地区,形成的大多为弱异常,重烃检出率较低,找矿意义不高59

2.2 顶空气技术

顶空气技术检测的是油气藏中烃类组分经过垂向运移,在近地表土壤颗粒表面形成的物理吸附轻烃,动态反映了轻烃运移的“现在时”,其所含信息能较准确地反映出下伏地层的含油气属性。根据顶空气含量变化特征可以准确判断天然气水合物赋存层位66~68,孙忠军等44和张富贵等5659先后在祁连山地区、羌塘地区和漠河盆地开展了天然气水合物顶空气技术试验。结果表明,羌塘盆地、祁连山地区和漠河盆地顶空气样品,除极少数样品外,均能检测出游离CH4、C2H6、C2H4、C3H8和C3H6组分,nC4H10iC4H10nC5H12iC5H12检出率较低,天然气水合物矿藏上方呈现顶部异常,是寻找水合物的一种非常有效的指标。研究还发现,顶空气异常具有较好的重复性,得到了水合物钻井和煤田钻井的验证,同时研究还发现顶空气受地貌景观影响明显,顶空气取样应至少采集1 m以下非活动层,这样才能避开有机质和微生物的干扰。

2.3 游离烃技术

游离烃技术是油气化探最为直接的油气勘查方法之一,通过检测正在进行微渗漏的烃类组分,确定油气化探异常,具有快速、直接且不受地表景观因素影响的特点6970。我国的游离气检测技术已较为成熟71,吴向华等72和索孝东等73研制出了游离烃现场采集、直接进样分析与解释技术,2010年,任春等74发明了一种地气采集螺旋钻(专利授权号:CN101236141B),在沙漠区和南方构造复杂区进行实地实验,取得了较好的应用效果,2020年,张富贵等根据多年冻土区特殊景观条件,研制开发了一种冻土区浅层土壤取气设备(专利授权号:CN108708717B),为多年冻土区天然气水合物游离气检测提供了技术支撑。周亚龙等51、张富贵等75和张舜尧等76~78在祁连山多年冻土区开展了土壤游离烃甲烷含量和通量试验。试验结果显示,多年冻土区天然气水合物矿藏上方存在游离烃甲烷地球化学异常,异常形态受控矿断裂和水合物矿藏的双重影响,甲烷排放通量具有明显的季节性规律,受地表噬烃菌的生物作用影响较大,整体表现出极大的碳汇潜力。同时研究指出受到地表微生物活动的影响,游离烃成因多源,冬季可以有效避免生物气的干扰,是检测游离气的最佳季节。游离烃技术能排除地表景观和人为活动的影响,是多年冻土区水合物地球化学调查的有效补充技术。

3 非烃气体方法技术

3.1 惰性气体方法技术

惰性气体主要来源于壳源和幔源物质的放射,具有化学活性弱、挥发性强和吸附性弱的特性,是判别油气来源和成因的重要示踪剂79~83,亦是油气藏勘查和天然气水合物痕量组分的重要指示剂84~86。张富贵等58和周亚龙等52在祁连山天然气水合物发现区开展惰性气体与天然气水合物空间耦合关系研究。试验结果表明,氦氖等惰性气体与水合物有良好的空间分布关系,中国地质调查局和神华集团在惰性气体含量异常区布置的10口勘探井均发现天然气水合物,预测成功率达90%以上。同时研究提出了惰性气体的迁移机理,在地球化学测井中也可判断水合物赋存位置,可以有效避免地表微生物等多种因素的干扰。惰性气体方法可作为多年冻土区天然气水合物勘查的有效补充技术,但需与烃类含量和地质条件进行综合解释。

3.2 卤族元素方法技术

卤族元素是深部油气聚集的重要辅助指标87~93。卤族元素异常是油气藏上部的油气渗漏造成的,在近地表处,土壤矿物质中的卤族元素可以与烃类气体在阳光的作用下形成无机化合物,由于其较大的分子质量,无法远距离迁移,多以化合物的形式保存在近地表土壤中。唐瑞玲等94在祁连山多年冻土区开展了I和Cl的地球化学勘查试验,研究了卤族元素(I、Cl和I/Cl)的异常模式。试验结果表明,Cl在天然气水合物形成过程中,由于分子量较大,不能进入水合物笼型结构中,天然气水合物矿层Cl元素贫化,异常模式为负异常,受高寒沼泽景观物理化学性质和地球化学障的影响,I元素呈现环状模式。卤族元素可以作为多年冻土区天然气水合物的探途元素。

3.3 热释汞方法技术

汞具有较强的挥发性和较为活泼的地球化学性质95,可以垂向微渗漏至地表96,同时汞还具备亲油气的性质97,在有机质向油气转化的漫长地质年代里,不同形式的汞随油气一同运移、聚集和成藏98。天然气水合物主要成分是甲烷,同样具备富集汞的特性,通常情况下烃类异常与热释汞异常具有良好的对应关系。张富贵等57在祁连山多年冻土区天然气水合物发现区开展了热释汞异常与水合物矿藏的关系,探索了天然气水合物热释汞异常形成机理。试验结果表明,在天然气水合物上方发育中等强度的热释汞异常,天然气水合物热释汞的地气迁移机理与天然气水合物中汞含量、汞元素的渗透运移和天然气水合物矿藏外围环境有关,提出了多年冻土区天然气水合物矿藏4个地球化学分带。热释汞异常是天然气水合物长期微渗漏的结果,信息比较稳定,可以作为天然气水合物地球化学勘查的一种辅助手段。

4 微量元素方法技术

微量元素被称为地质作用的示踪剂,主要用于判别沉积环境、追溯油源和判断油气成因99100。微量元素是油气的重要组分,油气的生、储、盖和演化都与之有密切的关系,国内外学者针对油气田伴生的微量元素开展了深入研究,微量元素是油气地球化学勘查的重要辅助指标已达成共识101102。邓义楠等103在南海天然气水合物勘查中开展了微量元素地球化学特征研究,发现表层沉积孔隙水中出现硫化带和Mo、U元素异常,可以作为天然气水合物的有效识别标志。孙忠军等46在祁连山多年天然气水合物发现区开展了微量元素探测水合物的有效性试验。试验结果表明,天然气水合物广泛存在Ba、V、Fe和Ca等微量元素,能够在地气和微渗漏的驱动下穿过多年冻土层迁移到近地表,在天然气水合物矿藏上方呈现顶部异常模式,异常范围与天然气水合物分布范围吻合较高,可以作为多年冻土区天然气水合物的辅助技术。

5 微生物方法技术

微生物油气调查技术(Microbial Oil Survey Technique, MOST)的理论基础是油气藏中的轻烃气体在油气藏压力的驱动下以微泡上浮104105形式或连续气相流形式106沿复杂的微裂隙垂直向上运移,在近地表土壤和沉积物中部分成为土壤中专性烃氧化菌的食物(碳源)而使烃氧化菌异常发育,这些烃类氧化菌可以区分油气勘探区和非勘探区107~109。土壤吸附气技术(Sorbed Soil Gas, SSG)是一种改进的酸解烃技术,通过轻烃组分的化学指纹特征判别深部烃藏的属性。孙忠军等44和梅博文等110在祁连山天然气水合物发现区采用MOST与SSG综合联动技术开展微生物有效性试验。试验结果表明,多年冻土区天然气水合物存在土壤中专性烃氧化菌的碳源,微生物群落对天然气水合物的响应主要体现在微生物群落结构的改变, 尤其是烃氧化微生物丰度对水合物有一定的指示作用。多年冻土区天然气水合物勘查可以运用微生物技术发挥其经济、快速和灵敏的特点,但其有效性及可靠性还有待通过钻探进一步验证。

6 同位素方法技术

甲烷碳同位素常被用来判别天然气的来源、成因和成熟度情况111~114。张富贵等59通过分析研究DK-8井、DK11-13井和DK13-12井500件岩心样品发现,祁连山多年冻土区天然气水合物大多数为原油伴生气、凝析油伴生气和煤成气。同时,利用甲烷碳同位素分析仪(G2132-iAnalyzer,美国Picarro公司),提出了多年冻土区天然气水合物勘查中的甲烷碳同位素在线测量技术75图1是祁连山木里矿区夏季甲烷碳同位素地球化学图,从图1中可以看出,夏季水合物矿藏上方土壤中微生物非常活跃,较轻的甲烷碳同位素值与已知水合物矿藏吻合程度很高。水合物发现井DK-1,2,3,7,9井、DK13-11井和DK12-13井均位于甲烷碳同位素的低值区(δ13C1<-70‰),DK-4井也发现了水合物分解的地质证据,DK11-14水合物井位于负异常边界,水合物未发现井DK10-16位于甲烷碳同位素高值区。甲烷碳同位素低值区与土壤酸解烃异常吻合程度很高,表明微渗漏烃类是产甲烷古菌存活的有利条件,这说明甲烷碳同位素也是有效的水合物精细探测技术,可以在天然气水合物靶区圈定等方面发挥一定的作用,是多年冻土区天然气水合物调查的一项探索性新技术。

图1

图1   祁连山多年冻土区甲烷碳同位素地球化学图

Fig.1   Contour map of methane carbon isotopes in the Qilian Mountain permafrost


7 地球化学测井方法技术

地球化学测井技术能有效解决油气生、储、盖和垂向微渗漏等问题,可以快速检测到油气储集层位、烃源岩生烃潜力、有机质类型及沉积环境等地球化学信息6263115。2008年至今,在祁连山多年冻土区中国地质调查局先后实施天然气水合物科学钻探井12口,其中9口井发现天然气水合物实物样品。神华集团实施14口天然气水合物钻探井,其中4口井发现天然气水合物实物样品116。张富贵等5960先后采集DK-1、DK-8和SK-0井岩心样品749件,进行了顶空气、酸解烃和有机碳等分析,基本查明了天然气水合物层识别标志和迁移特征。DK-1、DK-8和SK-0井在水合物发现层均有较高的甲烷含量、较高的有机碳含量和较低的干燥系数(R值),气体组分特征测试和收集的数据显示,水合物气和游离气气体组分特征基本一致,甲烷相对含量高,除甲烷外,还含有较高的乙烷和丙烷等组分,各烃类气体含量平均值表现为:CH4>C2H6>C3H8>C3H6>C2H4>nC4H10>iC4H10,干燥系数普遍偏小,绝大多数小于10,显示出湿气的特征。即祁连山多年冻土区钻获的天然气水合物属于Ⅱ型水合物,烃类气体是由深部烃类气体沿断裂迁移和原地有机质转化混合形成的。与海域天然气水合物不同,在天然气水合物赋存层位R值较低(图2),这是由于水合物形成过程中烃类由气态变为固态,同时发生了组分分异和固化成藏等地球化学作用。祁连山天然气水合物钻探确定的天然气水合物稳定带深度为140~330 m,这与地球化学测井方法确定的多年冻土上界和下界结果吻合程度较高,地球化学测井可作为天然气水合物产层的有效识别标志。

图2

图2   祁连山多年冻土区DK-8钻孔甲烷含量变化及天然气水合物异常主要分布

1: 粗粒砂岩;2: 细粒砂岩;3: 泥质粉砂岩;4: 泥岩;5: 油页岩;6: 煤层;7: 天然气水合物;8: 疑似天然气水合物;9: 断层

Fig.2   Hydrocarbon concentrations and abnormal distribution of gas hydrate from the borehole DK-8 in the Qilian Mountain permafrost

1. Coarse sandstone; 2. Fine sandstone; 3. Clay siltstone; 4. Mudstone; 5. Oil shale; 6. Coal seam; 7. Gas hydrate; 8. Suspected gas hydrate; 9. Fault


8 地球化学勘查方法技术体系

多年冻土区天然气水合物的研究手段为地质背景调查、土壤调查、井中化探和烃源岩调查。冻土厚度和温压条件是天然气水合物形成的决定因素。值得注意的是,水源条件也是形成天然气水合物必不可少的,缺乏水源,即便是在低温高压的环境下,气源充足,仍为气态烃,不能形成天然气水合物。土壤调查能在短时间内缩小勘探范围,发挥“迅速掌握全局,快速缩小靶区”的战略性作用。烃源岩调查是判断气源是否充足的重要证据,亦是判别气体来源和气体成因的重要依据,是天然气水合物成藏的关键因素。井中化探能解决多年冻土区受多期地质构造影响,在储层识别、赋存状态、参数识别和地球化学动力学机制等方面的挑战,成藏模式制约天然气水合物理论创新,也影响对资源量科学判断,通过生烃史模拟、同位素测年等手段,建立冻土形成、烃类运移和天然气水合物形成的时间序列,结合井中化探和烃源岩评价,研究天然气水合物气形成、运移和富集的地球化学动力学机制,形成多年冻土区天然气水合物地球化学方法技术体系。在系统研究我国多年冻土区天然气水合物特征的基础上,提出了地质背景调查、土壤调查、井中化探和烃源岩调查4种工作手段以及天然气水合物的“四位一体”多年冻土区天然气水合物地球化学方法技术体系(图3)。

图3

图3   多年冻土区天然气水合物地球化学方法技术体系

Fig.3   Geochemistry technical system of gas hydrate in permafrost regions


9 总结与展望

2008年在祁连山多年冻土区首次取得天然气水合物实物样品以来,天然气水合物的研究范围从祁连山扩展到羌塘盆地、乌丽地区和东北漠河盆地,勘查方法从地质、钻探、地球物理和地球化学拓展到微生物、遥感、核磁共振和综合测井,但是多年冻土区天然气水合物一个显著的特点是冰胶结永冻层与水合物层的地震波传播速度相当,BSR等识别标志基本不适合冻土区勘查,因此目前仍未建立一种非常适合于多年冻土区天然气水合物的综合勘测技术。此外祁连山地区冻土层较薄,构造断裂发育,水合物主要赋存在砂岩、泥岩、或者页岩的孔隙和裂缝中,具有低孔隙度、低渗透率和高力学强度特征,导致青藏高原水合物成藏模式和成藏环境复杂,冻土区水合物的形成机理还存在争议,水合物形成的地球化学过程认知还不够深入,无法精细刻画其形成的地球化学时空区配特征。因此,需要建立适合于多年冻土区天然气水合物的勘探方法技术体系,验证已有的勘查技术和识别标志是否具备普适性。

受新生代以来构造隆升的影响,青藏高原多年冻土区的烃源岩被抬升剥蚀,加之受全球增温的影响,冻土正在经历严重退缩,造成天然气水合物空间尺度分布不均,总量较小,围岩物性差异较小,岩性复杂,成因多元,在气层识别、有效储集层划分和参数识别等方面也面临着较大的挑战。因此,亟待开展天然气水合物保存条件识别与定量评价技术,摸清天然气水合物存在的相关证据和潜在资源量等关键问题。

更为重要的是,天然气水合物是地壳浅部一个不稳定的碳库,是全球碳循环链中一个重要的组成部分,在为人类带来丰富的可利用资源的同时,也存在着潜在的不可逆转的环境破坏,不同的地质历史时期几次重大缺氧事件可能都与天然气水合物释放的甲烷有关,往往伴随有生物灭绝与交替、全球变暖加剧、碳氧同位素周期性变化与偏移以及其他地球化学指标异常,在全球气候变化过程中扮演着重要角色。然而,令人遗憾的是,目前国际对于天然气水合物环境效应的研究绝大多数集中于海洋,少许研究来自北欧、西伯利亚和北美等环北极圈地区,我国南海天然气水合物也建立了全天候环境监测系统,但青藏高原天然气水合物环境效应的相关研究比较滞后,关于天然气水合物甲烷释放特征、同位素变化样式、持续时间、驱动机制和影响因素,以及由此引发的环境效应定量计算缺乏实质性的研究。因此,要开展冻土区天然气水合物释放甲烷地球化学过程及环境效应研究,不仅有助于天然气水合物的安全开发利用,而且对了解地史时期天然气水合物与重大缺氧事件耦合关系、天然气水合物与全球气候变化时间关系、认识多圈层相互作用的地球系统具有重要意义。

参考文献

KVENVOLDEN K A.

Gas hydrates-geological perspective and global change

[J]. Reviews of Geophysics, 1993312): 173-187.

[本文引用: 1]

COLLETT T S.

Permafrost-associated gas hydrate accumulations

[J]. Annals of the New York Academy of Sciences, 19947151): 247-269.

COLLETT T S.

Energy resource potential of natural gas hydrates

[J]. AAPG Bulletin, 20028611): 1 971-1 992.

COLLETT T SDALLIMORE S R.

Permafrost-associated gas hydrate

[M]//Max M D. Natural gas hydrate in oceanic and permafrost environments. NetherlandsKluwer Academic Publishers2000.

KVENVOLDEN K ALORENSON T D.

The global occurrence of natural gas hydrate

[J]. American Geophysical Union, 20011243-18.

MAKOGON Y FHOLDITCH S AMAKOGON T Y.

Natural gas-hydrates—A potential energy source for the 21st Century

[J]. Journal of Petroleum Science and Engineering, 2007561/3): 14-31.

COLLET T SJOHNSON AKNAPP Cet al.

Natural gas hydrates: Energy resource potential and associated geologic hazards

[J]. AAPG Memoir, 200989137.

COLLETT T SLEE M WAGENA W Fet al.

Permafrost-associated natural gas hydrate occurrences on the Alaska North Slope

[J]. Marine and Petroleum Geology, 2011282): 279-294.

ZHU Y HZHANG Y QWEN H Jet al.

Gas hydrates in the Qilian mountain permafrost, Qinghai, Northwest China

[J]. Acta Geologica Sinica, 2010841): 1-10.

[本文引用: 1]

LEE M WHUTCHINSO N D RDILLON W Pet al.

Use of seismic data in estimating the amount of in-situ gas hydrates in deep marine sediment

[J]. United States Geological Survey, Professional Paper, 19931 570563-582.

[本文引用: 1]

PAULL C KMATSUMOTO RWALLACE P J.

Proceedings of the Ocean Drilling Program, Initial Reports 164, Ocean Drilling Program

[Z]. College Station, TX1996.

LEE M WCOLLETT T S.

Elastic properties of gas hydrate-bearing sediments

[J]. Geophysics, 2001663): 763-771.

CHAND SMINSHULL T A.

Seismic constraints on the effects of gas hydrate on sediment physical properties and fluid flow: A review

[J]. Geofluids, 200334): 275-289.

DALLIMORE S RCOLLETT T S.

Scientific results from the Mallik 2002 gas hydrate production research well program, Mackenzie Delta, Northwest Territories, Canada

[J]. Bulletin of the Geological Survey of Canada, 2005585140.

XU W YGERMANOVICH L N.

Excess pore pressure resulting from methane hydrate dissociation in marine sediments: A theoretical approach

[J]. Journal of Geophysical Research, 2006111B01104.

ARCHER D.

Methane hydrate stability and anthropogenic climate change

[J]. Biogeosciences, 200744): 521-544.

CHEN FZHOU YSU Xet al.

Gas hydrate saturation and its relation with grain size of the hydrate-bearing sediments in the Shenhu Area of Northern South China Sea

[J]. Marine Geology & Quaternary Geology, 2011315): 95-100.

MORIDIS G JSILPNGARMLERT SREAGAN M Tet al.

Gas production from a cold, stratigraphically-bounded gas hydrate deposit at the Mount Elbert Gas Hydrate Stratigraphic Test Well, Alaska North Slope: Implications of uncertainties

[J]. Marine and Petroleum Geology, 2011282): 517-534.

LU Z QZHU Y HZHANG Y Qet al.

Gas hydrate occurrences in the Qilian Mountain permafrost, Qinghai Province, China

[J]. Cold Regions Science and Technology, 2011662/3): 93-104.

LU Z QZHU Y HLIU Het al.

Gas source for gas hydrate and its significance in the Qilian Mountain permafrost, Qinghai

[J]. Marine and Petroleum Geology, 201343341-348.

LU Z QLI Y HWANG W Cet al.

Study on the accumulation pattern for permafrost-associated gas hydrate in Sanlutian of Muli, Qinghai

[J]. Geoscience, 2015295): 1 014-1 023.

BOSWELL RCOLLETT T SFRYE Met al.

Subsurface gas hydrates in the northern Gulf of Mexico

[J]. Marine and Petroleum Geology, 2012341): 4-30.

WANG P KZHU Y HLU Z Qet al.

Gas hydrate stability zone migration occurred in the Qilian Mountain Permafrost, Qinghai, northwest China: Evidences from pyrite morphology and pyrite sulfur isotope

[J]. Cold Regions Science and Technology, 2014988-17.

WANG P KHUANG XPANG S Jet al.

Geochemical dynamics of the gas hydrate system in the Qilian Mountain Permafrost, Qinghai, Northwest China

[J]. Marine and Petroleum Geology, 20155972-90.

WU QingbaiCHENG Guodong.

Research summarization on natural gas hydrate in permafrost regions

[J]. Advances in Earth Science, 2008232): 111-119.

吴青柏程国栋.

多年冻土区天然气水合物研究综述

[J]. 地球科学进展, 2008232): 111-119.

WU QingbaiJIANG GuanliZHANG Penget al.

Evidence of natural gas hydrate in Kunlun Pass basin, Qinghai-Tibet Plateau, China

[J]. Chinese Science Bulletin, 2015601): 68-74.

吴青柏蒋观利张鹏.

青藏高原昆仑山垭口盆地发现天然气水合物赋存的证据

[J]. 科学通报, 2015601): 68-74.

XIAO HongpingWU QingbaiLIN Changsonget al.

Preliminary discussion on the space-time coupling of natural gas hydrate accumulation elements: A case study from Kunlun Pass permafrost regions, Qinghai-Tibet Plateau

[J]. Natural Gas Geoscience, 20162710): 1 913-1 923.

[本文引用: 1]

肖红平吴青柏林畅松.

天然气水合物成藏要素及其时空耦合初探——以青藏高原昆仑山垭口多年冻土区为例

[J]. 天然气地球科学, 20162710): 1 913-1 923.

[本文引用: 1]

TUCHOLKE B TBRYAN G MEWING J.

Gas-hydrate horizons detected in seismic-profiler data from the western North Atlantic

[J]. AAPG Bulletin, 197761698-707.

[本文引用: 1]

SHIPLEY T HHOUSTON M HBUFFLER R Tet al.

Seismic evidence for widespread possible gas hydrate horizons on continental slopes and rises

[J]. AAPG Bulletin, 1979632 204-2 213.

LU ZhenquanWU Bihao.

Experimental research on geochemical methods for prospecting gas hydrates in marine sediments

[J]. Geoscience, 2002163): 299-304.

卢振权吴必豪.

海底水合物地球化学探测方法的试验研究

[J]. 现代地质, 2002163): 299-304.

YANG TaoJIANG ShaoyongYANG Jinghonget al.

Anomaly of ammonia and phosphate concentration in pore waters: A potential geochemical indicator for prospecting marine gas hydrate

[J]. Geoscience, 2005191): 55-60.

杨涛蒋少涌杨竞红.

孔隙水中NH4+和HPO42-浓度异常: 一种潜在的天然气水合物地球化学勘查新指标

[J]. 现代地质, 2005191): 55-60.

LIU XiaopingYANG Xiaolan.

Progress of geochemical prospecting methods of marine gas hydrate

[J]. Natural Gas Geoscience, 2007182): 312-316.

刘小平杨晓兰.

海底天然气水合物地球化学方法勘探进展

[J]. 天然气地球科学, 2007182): 312-316.

RYU B JRIEDEL MKIM J Het al.

Gas hydrates in the western deep-water Ulleung Basin, East Sea of Korea

[J]. Marine and Petroleum Geology, 2009268):1 483-1 498.

LI BSUN Y HGUO Wet al.

The mechanism and verification analysis of permafrost-associated gas hydrate formation in the Qilian Mountain, Northwest China

[J]. Marine and Petroleum Geology, 201786787-797.

[本文引用: 1]

XING XuewenLIU SongZHOU Hongyinget al.

Geochemical behaviors of shallow soil in Muli permafrost and their significance as gas hydrate indicators

[J]. Oil and Geology, 2014351): 159-166.

[本文引用: 1]

邢学文刘松周红英.

木里冻土带天然气水合物赋存区浅层土壤地球化学特征及指示意义

[J]. 石油与天然气地质, 2014351): 159-166.

[本文引用: 1]

FANG HXU M CLIN Z Zet al.

Geophysical characteristics of gas hydrate in the Muli area, Qinghai Province

[J]. Journal of Natural Gas Science and Engineering, 201737539-550.

FANG HuiSUN ZhongjunXU Mingcaiet al.

Main achievements of gas hydrate exploration technology in permafrost regions of China

[J]. Geophysical and Geochemical Exploration, 2017416): 991-997.

方慧孙忠军徐明才.

冻土区天然气水合物勘查技术研究主要进展与成果

[J]. 物探与化探, 2017416): 991-997.

LIN Z ZPAN H PFANG Het al.

High-altitude well log evaluation of a permafrost gas hydrate reservoir in the Muli area of Qinghai, China

[J]. Scientific Reports, 201881): 12 596.

WANG PingkangZHU YouhaiLU Zhenquanet al.

Research progress of gas hydrates in the Qilian Mountain permafrost, Qinghai, Northwest China: Review

[J]. Scientia Sinica(Physica,Mechanica and Astronomica), 2019493): 76-95.

[本文引用: 1]

王平康祝有海卢振权.

青海祁连山冻土区天然气水合物研究进展综述

[J].中国科学: 物理学 力学 天文学, 2019493): 76-95.

[本文引用: 1]

YANG ZhibinSUN ZhongjunLI Guangzhiet al.

Near-surface soil geochemistry of Muli natural gas hydrate area, Tianjun County, Qinghai Province

[J]. Geological Bulletin of China, 20113012): 1 883-1 890.

[本文引用: 2]

杨志斌孙忠军李广之.

青海省天峻县木里地区天然气水合物发现区浅表地球化学特征

[J]. 地质通报, 20113012): 1 883-1 890.

[本文引用: 2]

YANG ZhibinZHOU YalongSUN Zhongjunet al.

Geochemical exploration of natural gas hydrate in mud volcano area of the Qiangtang Basin

[J]. Geophysical and Geochemical Exploration, 2017413): 452-458.

杨志斌周亚龙孙忠军.

羌塘盆地泥火山发育区天然气水合物地球化学勘查

[J]. 物探与化探, 2017413): 452-458.

JIANG GuanliWU QingbaiZHAN Jinget al.

The effects of cooling rate and particle size of medium to the formation of methane hydrate in sands

[J]. Natural Gas Geoscience, 2011225): 920-925.

蒋观利吴青柏展静.

降温速率和粒径对砂土中甲烷水合物形成过程影响研究

[J]. 天然气地球科学, 2011225): 920-925.

JIANG GuanliWU QingbaiYANG Yuzhonget al.

Formation and dissociation of methane hydrate in different occurrences in sand

[J]. Natural Gas Geoscience, 2013246): 1 305-1 310.

蒋观利吴青柏杨玉忠.

砂土中不同产状甲烷水合物形成和分解过程研究

[J]. 天然气地球科学, 2013246): 1 305-1 310.

SUN Z JYANG Z BMEI Het al.

Geochemical characteristics of the shallow soil above the Muli gas hydrate reservoir in the permafrost region of the Qilian mountains, China

[J]. Journal of Geochemical Exploration, 2014139160-169.

[本文引用: 2]

SUN ZhongjunYANG ZhibinQIN Aihuaet al.

Geochemical exploration technology of natural gas hydrate in middle-latitudes permafrost zone

[J]. Journal of Jilin University (Earth Science Edition), 2014444): 1 063-1 070.

孙忠军杨志斌秦爱华.

中纬度带天然气水合物地球化学勘查技术

[J]. 吉林大学学报:地球科学版, 2014444): 1 063-1 070.

SUN ZhongjunYANG ZhibinLU Zhenquanet al.

Geochemical characteristics of trace elements in soil above Sanlutian natural gas hydrates in the Qilian Mountains

[J]. Geoscience, 2015295): 1 164-1 172.

[本文引用: 1]

孙忠军杨志斌卢振权.

青海木里三露天天然气水合物矿藏土壤微量元素地球化学特征

[J]. 现代地质, 2015295): 1 164-1 172.

[本文引用: 1]

SUN ZhongjunFANG HuiLIU Jianxunet al.

An exploration model of gas hydrate in Sanlutian permafrost region, Qilian Mountain

[J]. Geophysical and Geochemical Exploration, 2017416): 998-1 004.

孙忠军方慧刘建勋.

祁连山冻土区三露天天然气水合物矿藏勘查模型

[J]. 物探与化探, 2017416): 998-1 004.

SUN ZhongjunWANG HuiyanZHANG Shunyaoet al.

Geochemical exploration of natural gas hydrate in Halahu depression of Qilian Mountain

[J]. Geophysical and Geochemical exploration, 2017416): 1 152-1 159.

[本文引用: 1]

孙忠军王惠艳张舜尧.

祁连山哈拉湖坳陷天然气水合物地球化学勘查

[J]. 物探与化探, 2017416): 1 152-1 159.

[本文引用: 1]

ZHOU YalongSUN ZhongjunZHANG Fuguiet al.

Application of the pyrolysis-desorbed hydrocarbon technology to the geochemical exploration of gas hydrate in the Sanlutian area in Muli permafrost, Qinghai

[J]. Geoscience, 2015295): 1 173-1 179.

周亚龙孙忠军张富贵.

青海木里三露天天然气水合物土壤热释烃技术应用研究

[J]. 现代地质, 2015295): 1 173-1 179.

ZHOU YalongSUN ZhongjunYANG Zhibinet al.

Application of soil free hydrocarbon to distinguish properties and preservation conditions of oil and gas

[J]. Geoscience, 2016306): 1 370-1 375.

周亚龙孙忠军杨志斌.

利用土壤游离烃技术判别油气藏性质及保存条件

[J]. 现代地质, 2016306): 1 370-1 375.

ZHOU YalongZHANG FuguiYANG Zhibinet al.

Test of natural hydrate free-gas measuring technique in permafrost region of Qilian Mountain

[J]. Geophysical and Geochemical Exploration, 2017416): 1 075-1 080.

[本文引用: 1]

周亚龙张富贵杨志斌.

祁连山冻土区天然气水合物游离气测量技术试验

[J]. 物探与化探, 2017416): 1 075-1 080.

[本文引用: 1]

ZHOU YalongSUN ZhongjunYANG Zhibinet al.

Geochemical characteristics and implications of Helium and Neon in natural gas hydrates deposits in the Muli permafrost, Qilian Mountains

[J]. Geoscience, 2018325): 995-1 002.

[本文引用: 1]

周亚龙孙忠军杨志斌.

祁连山木里冻土区天然气水合物矿区稀有气体氦、氖地球化学特征及其指示意义

[J]. 现代地质, 2018325): 995-1 002.

[本文引用: 1]

ZHOU YalongYANG ZhibinZHANG Fuguiet al.

Stability and abnormal reproducibility analysis of gas hydrate geochemical exploration methods in Qilian Mountains

[J]. Geoscience, 2019336): 1 314-1 324.

周亚龙杨志斌张富贵.

祁连山天然气水合物地球化学勘查方法稳定性和异常重现性分析

[J].现代地质, 2019336): 1 314-1 324.

ZHANG FuguiYANG ZhibinTANG Ruilinget al.

Application of hydrocarbon acidolysis technique to gas hydrate exploration in the Qilian Mountain permafrost, Qinghai, China

[J]. China Mining Magazine, 201625(): 227-233.

张富贵杨志斌唐瑞玲.

酸解烃技术在青海祁连山天然气水合物勘探中的应用

[J]. 中国矿业, 201625(): 227-233.

ZHANG FuguiWANG ChengwenZHANG Shunyaoet al.

Hermoluminescence: An new tool for natural gas hydrate exploration

[J]. Geoscience, 2018325): 1 080-1 088.

张富贵王成文张舜尧.

热释光: 一种冻土区天然气水合物地球化学勘查新技术

[J]. 现代地质, 2018325): 1 080-1 088.

ZHANG FuguiTANG RuilingYANG Zhibinet al.

Geochemical investigation and prospective evaluation of natural gas hydrates in the permafrost of Mohe Basin

[J]. Geoscience, 2018325): 1 003-1 011.

[本文引用: 1]

张富贵唐瑞玲杨志斌.

漠河盆地多年冻土区天然气水合物地球化学调查及远景评价

[J]. 现代地质, 2018325): 1 003-1 011.

[本文引用: 1]

ZHANG FuguiZHOU YalongZHANG Shunyaoet al.

Thermal-release mercury—An new tool for natural gas hydrate exploration

[J]. Geophysical and Geochemical Exploration, 2019432): 329-337.

[本文引用: 1]

张富贵周亚龙张舜尧.

热释汞: 一种冻土区天然气水合物地球化学勘查新技术

[J]. 物探与化探, 2019432): 329-337.

[本文引用: 1]

ZHANG FuguiTANG RuilingZHOU Yalonget al.

A new tool for natural gas hydrate exploration in permafrost regions: Analysis of inert gas helium neon

[J]. Acta Geologica Sinica, 2019933): 751-761.

[本文引用: 1]

张富贵唐瑞玲周亚龙.

一种冻土区天然气水合物地球化学勘查新技术——惰性气体氦氖分析

[J]. 地质学报, 2019933): 751-761.

[本文引用: 1]

ZHANG FuguiSUN ZhongjunYANG Zhibinet al.

Geochemical investigation of gas hydrate in the permafrost area, China

[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2019386): 1 215-1 225.

[本文引用: 5]

张富贵孙忠军杨志斌.

中国冻土区天然气水合物的地球化学调查

[J]. 矿物岩石地球化学通报, 2019386): 1 215-1 225.

[本文引用: 5]

ZHANG FuguiQIN AihuaZHU Youhaiet al.

A discussion on geochemical migration mechanism of natural gas hydrate in Qilian Mountain permafrost

[J]. Mineral Deposits, 2020392): 326-336.

[本文引用: 2]

张富贵秦爱华祝有海.

祁连山冻土区天然气水合物地球化学迁移机理探讨

[J]. 矿床地质, 2020392): 326-336.

[本文引用: 2]

HORVITZ L.

On geochemical prospecting—I

[J]. Geophysics, 19394210-228.

[本文引用: 1]

BELARDI R PPAWLISZYN J B.

Application of chemically modified fused silica fibers in the extraction of organics from water matrix samples and their rapid transfer to capillary columns

[J]. Water Quality Research Journal of Canada, 1989241): 179-191.

[本文引用: 2]

HARRIS S AWHITICAR M JEEK M K.

Molecular and isotopic analysis of oils by solid phase microextraction of gasoline range hydrocarbons

[J]. Organic Geochemistry, 1999308): 721-737.

[本文引用: 2]

RUAN TianjianFEI Qi. Petroleum and natural gas geochemical prospecting [M]. WuhanChina University of Geosciences Press1992.

[本文引用: 1]

阮天健费琪. 石油天然气地球化学勘[M]. 武汉中国地质大学出版社1992.

[本文引用: 1]

WEI WeiZHANG JinhuaSUN Aiet al.

Exploratory identification of and modeling experiments on natural gas hydrate

[J]. Natural Gas Industry, 2009299): 123-125.

[本文引用: 1]

魏伟张金华孙爱.

天然气水合物勘查识别与实验技术

[J]. 天然气工业, 2009299): 123-125.

[本文引用: 1]

LI GuangzhiYUAN ZiyanHU Binet al.

Identify the attribute of the condensable gas or oil beds by using the analysis technology of headspace gas

[J]. Natural Gas Geoscience, 2006173): 309-312.

[本文引用: 1]

李广之袁子艳胡斌.

利用顶空气技术判别凝析气(油)储层

[J]. 天然气地球科学, 2006173): 309-312.

[本文引用: 1]

LI GuangzhiCHENG TongjinTANG Yupinget al.

The petroleum geological significance of phsically-absobed gas

[J]. Petroleum Geology and Experiment, 2006285): 484-488.

李广之程同锦汤玉平.

物理吸附气的油气指示意义

[J]. 石油实验地质, 2006285): 484-488.

LI GuangzhiYUAN ZiyanHU Bin.

Application of headspace gas technology to geochemical exploration

[J]. China Petroleum Exploration, 2007126): 47-50.

[本文引用: 1]

李广之袁子艳胡斌.

顶空气技术在天然气化探中的应用

[J]. 中国石油勘探, 2007126): 47-50.

[本文引用: 1]

PRICE L C.

A critical overview and proposed working model of surface geochemical exploration

[M]// Davidson M J. Unconventional methods in exploration for petroleum and natural gas IV. Dallas. TexasSouthern Methodist University1986.

[本文引用: 1]

PRICE L C.

A critical overview of and proposed working model for hydrocarbon microseepage

[J]. Center for Integrated Data Analytics Wisconsin Science Center, 1985. DOI: 10.3133/ofr85271.

[本文引用: 1]

ZHANG ZongyuanWANG Guojian.

Petroleum geochemical exploration significance of soil free hydrocarbon technique

[J]. Natural Gas Industry, 2004246): 30-32.

[本文引用: 1]

张宗元王国建.

土壤中游离烃技术的油气化探意义

[J]. 天然气工业, 2004246): 30-32.

[本文引用: 1]

WU XianghuaCHENG TongjinDENG Tianlong.

Progresses on measuremental techniques for the samples of gas-oil chemical reconnaissance

[J]. Natural Gas Geoscience, 2005161): 78-81.

[本文引用: 1]

吴向华程同锦邓天龙.

油气化探分析检测技术现状及发展趋势

[J]. 天然气地球科学, 2005161): 78-81.

[本文引用: 1]

SUO XiaodongLI DechunSONG Xilin.

Shallow oil and gas reservoir exploration in using on-site analysis and interpretation technology of free hydrocarbons in soil

[J]. Geological Bulletin of China, 20092811): 1 638-1 642.

[本文引用: 1]

索孝东李德春宋喜林.

用壤中游离烃现场分析解释技术直接寻找浅层油气藏

[J]. 地质通报, 20092811): 1 638-1 642.

[本文引用: 1]

REN ChunSUN ChangqingTANG Yupinget al.

The collection and application of soil gas hydrocarbon in oil and gas exploration

[J]. Geophysical and Geochemical Exploration, 2010341): 63-65.

[本文引用: 1]

任春孙长青汤玉平.

油气勘探中壤气烃的采集与应用

[J]. 物探与化探, 2010341): 63-65.

[本文引用: 1]

ZHANG FuguiZHANG ShunyaoTANG Ruilinget al.

Methane emission characteristics of active layer in wetland permafrost area of the Tibetan Plateau

[J]. Geophysical and Geochemical Exploration, 2017416): 1 027-1 036.

[本文引用: 2]

张富贵张舜尧唐瑞玲.

青藏高原湿地冻土区活动层甲烷排放特征

[J]. 物探与化探, 2017416): 1 027-1 036.

[本文引用: 2]

ZHANG ShunyaoYANG FanZHANG Fuguiet al.

Research on the methane emission and carbon isotope of permafrost wetland in Qinghai-Tibet Plateau

[J]. Geoscience, 2018325): 1 089-1 096.

[本文引用: 1]

张舜尧杨帆张富贵.

青藏高原冻土区湿地甲烷排放及同位素特征研究

[J]. 现代地质, 2018325): 1 089-1 096.

[本文引用: 1]

ZHANG ShunyaoZHANG FuguiYANG Zhibinet al.

The research on the effect of gas hydrate exploration on wetland carbon cycle in the Tibetan Plateau

[J]. Geophysical and Geochemical Exploration, 2017416): 1 044-1 049.

张舜尧张富贵杨志斌.

青藏高原天然气水合物勘探对湿地碳循环系统的影响

[J]. 物探与化探, 2017416): 1 044-1 049.

ZHANG S YZHANG F GSHI Z Met al.

Sources of seasonal wetland methane emissions in permafrost regions of the Qinghai-Tibet Plateau

[J]. Scientific Reports, 2020107 520.

[本文引用: 1]

FANG Zhong.

A new direction of isotope geology in China: Progress in the isotope geochemistry of inert gas in mineral rocks

[J]. Geological Review, 1996424): 329-333.

[本文引用: 1]

方中.

开拓我国同位素地质研究新方向: 评矿物岩石惰性气体同位素地球化学进展

[J]. 地质论评, 1996424): 329-333.

[本文引用: 1]

XU YongchangLIU WenhuiSHEN Pinget al.

An important branch of gas geochemistry noble gas geochemistry

[J]. Natural Gas Geoscience, 2003146): 157-165.

徐永昌刘文汇沈平.

天然气地球化学的重要分支——稀有气体地球化学

[J]. 天然气地球科学, 2003146): 157-165.

XU Yongchang.

The mantle noble gas natural gases

[J]. Earth Science Frontiers, 199633/4): 63-71.

徐永昌.

天然气中的幔源稀有气体

[J]. 地学前缘, 199633/4): 63-71.

WANG DenghongYU JinjieYANG Jianminet al.

Inert gas isotopic studies and dynamic background of cenozoic ore-forming process in China

[J]. Mineral Deposits, 2002212): 179-186.

王登红余金杰杨建民.

中国新生代成矿作用的惰性气体同位素研究与动力学背景

[J]. 矿床地质, 2002212): 179-186.

LI XiaofengMAO JingwenWANG Yitianet al.

Evidence of noble gas isotopes and halogen for the origin of ore-forming fluids

[J]. Geological Review, 2003495): 513-521.

[本文引用: 1]

李晓峰毛景文王义天.

惰性气体同位素和卤素示踪成矿流体来源

[J]. 地质论评, 2003495): 513-521.

[本文引用: 1]

ROBERTS A A.

Helium emanometry in exploring for hydrocarbons: Part II

[M]//Unconventional methods in exploration for petroleum and natural gas II. Texas,USA Southern Methodist University Press, 1981135-149.

[本文引用: 1]

PINTI D LMARTY B.

Noble gases in crude oils from the Paris Basin,France:Implication of the origin of fluids and constraints on oil-water-gas interactions

[J]. Geochimica et Cosmochimica Acta, 19955916): 3 389-3 404.

PRASOLOV E MTOKAREV I VGINSBURG G Det al.

Helium and other noble gases in gas-hydrate sediments of the Hakon Mosby Mud Volcano

[J]. Geo-Marine Letter, 1999191/2):84-88.

[本文引用: 1]

KUDEL' SKY A V.

Prediction of oil and gas properties on a basis of iodine content of sub-surface waters

[J]. Petroleum Geology: A digest of Russian literature on Petroleum Geology, 1978154): 147-149.

[本文引用: 1]

GALLAGHER A V.

Iodine: A pathfinder for petroleum deposits

[J]. AAPG Bulletin, 198367466.

ALLEXAN S JFAUSNAUGH CTEDESCO S.

The use of iodine in geochemical exploration for hydrocarbons

[J]. Association of Petroleum Geochemical Exploration Bulletin, 1986271-79.

GORDON T LIKRAMUDDIN M.

The use of iodine and selected trace metals in petroleum and gas exploration

[J]. Geologic Society of America Abstracts with Programs, 198820228.

TEDESCO S A. Surface geochemistry in petroleum exploration [M]. New YorkChapman & Hall1995.

SUN Z JXIE X J.

Nationwide oil and gas geochemical exploration program in China

[J]. Journal of Geochemical Exploration, 2014139201-206.

QIN AihuaCUI YujunZHOU Yalonget al.

Soil iodine for strategic oil and gas prospecting in the central part of Songliao Basin

[J]. Geoscience, 2015291): 14-19.

[本文引用: 1]

秦爱华崔玉军周亚龙.

松辽盆地中部土壤碘的战略性油气勘查

[J]. 现代地质, 2015291): 14-19.

[本文引用: 1]

TANG RuilingSUN ZhongjunZHANG Shunyaoet al.

Halogen elements I and Cl: The exploratory elements of gas hydrate in permafrost area

[J]. Computing Techniques for Geophysical and Geochemical Exploration, 2016384): 553-559.

[本文引用: 1]

唐瑞玲孙忠军张舜尧.

冻土区天然气水合物的探途元素——卤族元素I和Cl

[J]. 物探化探计算技术, 2016384): 553-559.

[本文引用: 1]

LI GuangzhiYUAN ZiyanZHUANG Yuanet al.

Geological significance of mercury element for petroleum exploration

[J]. Geophysical and Geochemical Exploration, 2008322): 143-146.

[本文引用: 1]

李广之袁子艳庄原.

汞元素的石油地质意义

[J]. 物探与化探, 2008322): 143-146.

[本文引用: 1]

XIE X J.

Local and regional surface geochemical exploration for oil and gas

[J]. Journal of Geochemical Exploration, 19924225-42.

[本文引用: 1]

YANG XiangZHAO YoufangYAO Jinqi.

Analysis on Hg anomaly forming mechanism above oil and gas reservoir

[J]. Mineral Resources and Geology, 2000146): 397-400.

[本文引用: 1]

阳翔赵友方姚锦琪.

油气藏上方汞异常成因机理浅析

[J]. 矿产与地质, 2000146): 397-400.

[本文引用: 1]

YANG YubinZHANG JinlaiWU Xueminget al. Petroleum geochemical exploration [M].WuhanChina University of Geosciences Press1995.

[本文引用: 1]

杨育斌张金来吴学明. 油气地球化学勘查[M]. 武汉中国地质大学出版社1995.

[本文引用: 1]

ZHAO MengjunHUANG DifanLIAO Zhiqin.

Geochemistry of trace elements in crude oils

[J]. Petroleum Exploration and Development, 1996233): 19-23.

[本文引用: 1]

赵孟军黄第藩廖志勤.

原油中微量元素地球化学特征

[J]. 石油勘探与开发, 1996233): 19-23.

[本文引用: 1]

LIU GangZHOU Dongsheng.

Application of microelements analysis in identifying sedimentary environment—Taking Qianjiang formation in the Jianghan Basin as an example

[J]. Petroleum Geology and Experiment, 2007293): 307-314.

[本文引用: 1]

刘刚周东升.

微量元素分析在判别沉积环境中的应用——以江汉盆地潜江组为例

[J].石油试验地质, 2007293): 307-314.

[本文引用: 1]

WANG GuojianCHENG TongjinWANG Duoyi.

Experimental study on trace element method in surface geochemical prospecting for oil and gas

[J]. Petroleum Geology and Experiment, 2005275): 544-549.

[本文引用: 1]

王国建程同锦王多义.

微量元素方法在地表油气化探中的试验研究——以川西新场气田为例

[J]. 石油实验地质, 2005275): 544-549.

[本文引用: 1]

TANG YupingLI DingminCHEN Yinjieet al.

The application of trace elements to geochemical exploration for oil and gas

[J]. Geophysical and Geochemical Exploration, 2008324): 350-353.

[本文引用: 1]

汤玉平李鼎民陈银节.

微量元素在油气化探中的应用

[J]. 物探与化探, 2008324): 350-353.

[本文引用: 1]

DENG YinanFANG YunxinZHANG Xinet al.

Trace element geochemistry of sediments in Qiongdongnan area, the South China Sea,and its implications for gas hydrates

[J]. Marine Geology and Quaternary Geology, 2017375): 70-81.

[本文引用: 1]

邓义楠方允鑫张欣.

南海琼东南海域沉积物的微量元素地球化学特征及其对天然气水合物的指示意义

[J]. 海洋地质与第四纪地质, 2017375): 70-81.

[本文引用: 1]

KLUSMAN R WSAAED M A.

Comparison of light hydrocarbon microseepage mechanisms

[J]. Hydrocarbon Migration and Its Near Surface Expression, 1996662): 157-168.

[本文引用: 1]

SAUNDERS D FBURAON K RTHOMPSON C K.

Model for hydrocarbon microseepage and related near surface alterations

[J]. AAPG Bulletin, 1999831): 170-185.

[本文引用: 1]

BROWN A.

Evaluation of possible gas microseepage mechanisms

[J]. AAPG Bulletin, 20008411): 1 775-1 789.

[本文引用: 1]

LOPEZ J PHITZMAN DTUCKER J.

Combined microbial, seismic surveys predict oil and gas occurrences in Bolivia

[J]. Oil and Gas Journal, 19942468-70.

[本文引用: 1]

ARHUR W R.

Soil gas and related methods for natural resource exploration

[J]. Journal of Geochemical Exploration, 1995523): 383-384.

OLLIVIER BMAGOT M. Petroleum microbiology[M]. Washington DCAmerican Society for Microbiology2005.

[本文引用: 1]

MEI BowenWU MengSUN Zhongjunet al.

Microbial Geochemical (MGCE) detection test of natural gas hydrate in permafrost of Muli area, Tianjun County, Qinghai Province

[J]. Geological Bulletin of China, 20113012): 1 891-1 895.

[本文引用: 1]

梅博文吴萌孙忠军.

青海省天峻县木里地区天然气水合物微生物地球化学检测法(MGCE)试验

[J]. 地质通报, 20113012): 1 891-1 895.

[本文引用: 1]

JAMES A T.

Correlation of natural gas by use of carbon isotopic distribution between hydrocarbon components

[J]. AAPG Bulletin, 1983747):1 176-1 191.

[本文引用: 1]

CHUNG H MGORMLY J RSQUIRES R M.

Origin of gaseous hydrocarbons in subsurface environments: Theoretical considerations of carbon isotope distribution

[J]. Chemical Geology, 1988711/3): 97-104.

ROONEY M ACLAYPOOL G ECHUNG H M.

Modeling thermogenic gas generation using carbon isotope ratios of natural gas hydrocarbons

[J]. Chemical Geology, 19951263): 219-232.

CRAMER BFABER EGERLING Pet al.

Reaction kinetics of stable carbon isotopes in natural gas—Insights from dry, open system pyrolysis experiments

[J]. Fuel and Energy Abstracts, 2002432): 130.

[本文引用: 1]

FAN DongwenLU ZhenquanLI Guangzhiet al.

Organic geochemical characteristics of the Carboniferous-Jurassic potential source rocks for natural gas hydrates in the Muli depression, Southern Qilian Basin

[J]. Oil and Gas Geology, 2020412): 348-358.

[本文引用: 1]

范东稳卢振权李广之.

南祁连盆地木里坳陷石炭系—侏罗系天然气水合物气源岩有机地球化学特征

[J]. 石油与天然气地质, 2020412): 348-358.

[本文引用: 1]

WEN HuaijunLU ZhenquanLI Yonghonget al.

New advance on gas hydrate survey and research in Sanlutian of Muli, Qilian

[J]. Geoscience, 2015295): 983-994.

[本文引用: 1]

文怀军卢振权李永红.

青海木里三露天井田天然气水合物调查研究新进展

[J]. 现代地质, 2015395): 983-994.

[本文引用: 1]

/