地球科学进展, 2020, 35(4): 363-377 DOI: 10.11867/j.issn.1001-8166.2020.035

综述与评述

多瑙河黄土与古环境研究进展

武雪超,1,2, 郝青振,1,2,3, Marković Slobodan B4, 付玉1,2, 娜米尔1,2, 宋扬5, 郭正堂1,2,3

1. 中国科学院地质与地球物理研究所,中国科学院新生代地质与环境重点实验室,北京 100029

2. 中国科学院大学地球与行星科学学院,北京 100049

3. 中国科学院生物演化与环境卓越创新中心,北京 100044

4. Chair of Physical Geography, University of Novi Sad, Trg Dositeja Obradovića 3, 21000 Novi Sad, Serbia

5. 北京城市系统工程研究中心,北京 100035

Progress in Danube Loess and Paleoenvironment Study

Wu Xuechao,1,2, Hao Qingzhen,1,2,3, Marković Slobodan B4, Fu Yu1,2, Namira 1,2, Song Yang5, Guo Zhengtang1,2,3

1. Key Laboratory of Cenozoic Geology and Environment, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China

2. College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China

3. CAS Center for Excellence in Life and Paleoenvironment, Beijing 100044, China

4. Chair of Physical Geography, University of Novi Sad, Trg Dositeja Obradovića 3, 21000 Novi Sad, Serbia

5. Beijing Research Center for Urban System Engineering, Beijing 100035, China

通讯作者: 郝青振(1971-),男,河北柏乡人,研究员,主要从事黄土地层与古气候研究. E-mail:haoqz@mail.iggcas.ac.cn

收稿日期: 2020-01-20   修回日期: 2020-03-02   网络出版日期: 2020-05-08

基金资助: 国家自然科学基金基础科学中心项目“大陆演化与季风系统演变”.  41888101
国家重点研发计划项目“东亚季风区和西风影响区的多时间尺度古气候变化对比研究”.  2017YFE0112800

Corresponding authors: Hao Qingzhen (1971-), male, Baixiang County, Hebei Province, Professor. Research areas include loess stratigraphy and paleoclimate. E-mail:haoqz@mail.iggcas.ac.cn

Received: 2020-01-20   Revised: 2020-03-02   Online: 2020-05-08

作者简介 About authors

武雪超(1993-),男,河北沙河人,硕士研究生,主要从事欧洲黄土与环境研究.E-mail:xchwu@mail.iggcas.ac.cn

WuXuechao(1993-),male,ShaheCounty,HebeiProvince,Masterstudent.ResearchareasincludeEuropeanloessandpaleoenvironment.E-mail:xchwu@mail.iggcas.ac.cn

摘要

多瑙河黄土位于欧亚黄土带的西端,是欧洲沉积和保存最完整的黄土地层,底界可达1 Ma以上。由于其独特的地理位置,多瑙河黄土对于理解欧亚大陆不同区域气候系统演化的联系、北半球中高纬地区的气候变化有着重要的价值。在系统梳理多瑙河黄土在物质组成、物源、年代学、地层学和古环境重建等方面的研究进展和不足的基础上,提出了未来研究在物源、年代学、地层和古环境重建等4个方面的主攻方向。在物源研究方面需要系统获得潜在物源区沉积物组成信息,并开展物源示踪指标的方法学和多指标相互印证研究;在年代学和地层学方面需要加强长石释光年代学、火山灰年代学等研究,建立有多个绝对年龄控制的、高精度的年代标尺及其年代约束下统一的地层命名和对比方案;在古环境重建方面需要将高分辨率、多指标古气候重建工作从末次间冰期以来的地层拓展至最近1 Ma以来的整个序列。上述研究的开展是未来欧亚黄土区古气候对比和气候动力学机制研究获得突破的关键。

关键词: 多瑙河黄土 ; 黄土—古土壤 ; 古环境 ; 古气候

Abstract

Danube loess, located at the westernmost part of the widespread Eurasian loess belt, is one of the most well-preserved aeolian dust deposits in Europe with the basal age dating back over 1 Ma. Owing to its unique location and formation processes, Danube loess plays an important role in understanding the linkage of climate changes in different climate regimes over Eurasian continent and paleoclimatic changes in middle-high northern latitudes. Major research advances of the Danube loess, including compositions, provenance, chronology, stratigraphy and paleoenvironment changes were systematically reviewed and the focuses of future research were suggested. To better understand loess provenance, the compositions of sediments in all the potential source areas should be investigated, and methodological study of provenance indicators and application of multi-proxies approaches need to be carried out. Chronologically and stratigraphically, feldspar luminescence dating and tephrochronology methods should be widely used, and the establishment of a uniform stratigraphic framework and correlation scheme should be constrained by precise chronology. In terms of the paleoenvironment, it is necessary to conduct high-resolution multi-proxies reconstruction of paleoenviroment for the entire loess-paleosol sequence, extending from the last interglacial period (130 ka to present) to interval of last 1 Ma. The future progress in Danube loess is crucial to improving the study of continental paleoclimate comparison and paleoclimate dynamics over the Eurasian loess region.

Keywords: Danube loess ; Loess-Paleosol ; Paleoenvironment ; Paleoclimate.

PDF (2843KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

武雪超, 郝青振, Marković Slobodan B, 付玉, 娜米尔, 宋扬, 郭正堂. 多瑙河黄土与古环境研究进展. 地球科学进展[J], 2020, 35(4): 363-377 DOI:10.11867/j.issn.1001-8166.2020.035

Wu Xuechao, Hao Qingzhen, Marković Slobodan B, Fu Yu, Namira , Song Yang, Guo Zhengtang. Progress in Danube Loess and Paleoenvironment Study. Advances in Earth Science[J], 2020, 35(4): 363-377 DOI:10.11867/j.issn.1001-8166.2020.035

1 引 言

多瑙河流域的黄土位于欧亚大陆黄土带的西端,是欧洲最具代表性的黄土之一[1]。特别是在多瑙河中下游地区,由于远离冰川作用的直接影响,加之地势平坦,黄土堆积连续且保存良好,底界年代可至1 Ma左右[2,3,4,5,6]。多瑙河黄土与中国黄土高原、中亚等地区的黄土一起构成了研究欧亚大陆不同气候系统冰期—间冰期气候演化及其动力学关联的罕见陆相沉积记录。

多瑙河黄土在理解区域古气候演化、高纬过程驱动等方面具有重要的价值。黄土的形成发育与所处气候区有着密切的联系。在现代气候分类中,中国黄土高原与多瑙河区域地处不同的气候区。根据柯本气候分类,黄土高原处于温带半干旱气候(Bsk)和温带大陆性气候(Dwa)控制区,而多瑙河黄土分布区受温带和暖温带大陆性气候(Dfa+Dfb)控制[7]。在形成模式上,多瑙河黄土曾被认为冷黄土,附近不存在明显的干旱区,而是与周缘阿尔卑斯山脉、喀尔巴阡山脉等高山冰川活动过程形成的松散物质有密切联系[1]。深入理解不同形成模式黄土的详细形成过程是黄土古气候学研究的重要内容。在古气候研究方面,多瑙河黄土更靠近冰盖地区,受高纬过程和西风带的影响更加明显,开展多瑙河黄土的古气候研究,有助于进一步厘定高纬驱动和西风带对东亚季风气候的影响[6,8,9]。基于以上考虑,本文对多瑙河黄土的研究进行了系统总结,梳理近年来在黄土分布、物质组成和物源、年代学与地层学、古气候古环境等方面的研究进展,分析当前多瑙河黄土研究的不足及未来的方向。

2 多瑙河黄土分布

多瑙河黄土主要分布在阿尔卑斯山脉北麓、摩拉维亚低地(Moravian depression)和多瑙河中下游地区(图1[10,11,12]。其中在多瑙河上游地区,黄土主要分布在小型山间盆地之中,间或受到冰川作用的影响,黄土连续性较差,底界年代也多集中于末次间冰期以来[1,29,30]。摩拉维亚低地中的黄土厚度可至数十米,但受坡积作用影响连续性较差[10,11,13,31,32]。多瑙河中下游地区黄土分布连续且广泛,是多瑙河黄土保存最为良好的地区,部分区域的黄土厚度可达50~100 m[4,6,12,17,23,28]。虽然部分地区保存了上新世[17]或中新世[33]的风尘沉积,但是地层连续性差,夹有河湖相沉积,不是典型的黄土—古土壤序列。典型黄土—古土壤序列磁性地层的结果指示底界在1 Ma左右[4,5,6,14,34]

图1

图1   多瑙河黄土的分布(据参考文献[10,11,12]改绘)

Fig.1   The distribution of Danube loessmodified after references[10~12])

1. Paks[13,14]; 2. Tamási[15]; 3. Dunaszekcső[16]; 4. Mende[17]; 5. Beremend[18]; 6. Zmajevac[19]; 7. Constinesti[20]; 8. Orlovat[21]; 9. Brno[22]; 10. Batajnica[23,24]; 11. Koriten[25]; 12. Viatovo[26]; 13. Mircea Voda[27]; 14. Zimnicea[27]; 15. Titel[6]; 16. Stari Slankamen[4,6]; 17. Crvenka[28]


3 多瑙河黄土物质组成及来源

黄土的物质组成与来源研究能够提供黄土沉积—成壤过程、古环境重建等相关的基础性信息。近年来在多瑙河黄土中开展了大量工作,本文从粒度组成、矿物组成、地球化学组成和物源等方面进行总结。

3.1 多瑙河黄土的粒度组成

多瑙河流域黄土的粒度研究主要集中在末次间冰期以来的层位,其组成与黄土高原典型黄土相似(图2[15,16,35,36,37,38,39,40,41,42]。以粉砂粒级为主,呈不对称的双峰式分布,主峰的峰值为粗粉砂[13,16,37,38]。中值粒径为15~30 μm,大于20 μm的组分的含量达到50%~70%,其粒度组成与黄土高原北部砂黄土带的黄土相似[16,39,40]。多瑙河流域不同地点、不同时期黄土的粒度组成受到区域古气候和局部地貌的影响[12,41],但末次间冰期以来的黄土粒度变化曲线在邻近区域内总体上可以进行较好地对比[21]。在黄土层和古土壤层之间的粒度对比上,多瑙河黄土和黄土高原黄土有所差异,黄土高原典型第四纪黄土和古土壤的粒度存在明显差异[35,43],而多瑙河部分地区某些层位黄土与古土壤之间粒度差异不明显,这可能与物源变化或局部地貌影响有关[15,16,41,44]

图2

图2   多瑙河流域与黄土高原典型黄土层样品粒度组成的对比(数据来自参考文献[15,16,35])

Fig.2   Comparison of grain size composition of typical loess samples from Danube region and the Chinese Loess Plateaudata from references[15, 16, 35])


3.2 多瑙河黄土的矿物组成

多瑙河黄土主要矿物和黏土矿物组成的分析主要是利用X射线衍射(X-Ray Diffraction,XRD)方法,结果显示矿物组成以石英为主(含量达40%~80%),其次为长石、云母和黏土矿物等,还有少量重矿物(一般小于5%)[45]。重矿物主要有角闪石、辉石、磁铁矿、黑云母、石榴子石和绿帘石等。虽然各区域黄土的重矿物种类相似,但不同矿物含量变化较大,可能与区域黄土物源的差异有关[46,47,48]

多瑙河黄土的黏土矿物以伊利石和蒙脱石为主,高岭石和绿泥石次之[13,14,18,49]。黄土高原黄土的黏土矿物则是以伊利石为主,含有一定量的绿泥石和高岭石,蒙脱石含量很低(图3[14,18,49,50,51,52,53]。这表明两个区域黄土的黏土矿物组成存在明显差异。在黏土矿物随岩性的变化上,黄土高原地区黄土与古土壤层之间差异较小,而多瑙河地区黄土与古土壤层之间差异较大。

图3

图3   多瑙河黄土与黄土高原黄土黏土矿物组成的对比(数据来自参考文献[14,18,49,50,51,52,53])

Fig. 3   Comparison of clay mineral composition of the Danube loess and the loess of Chinese Loess Plateaudata from references[14, 18, 49~53])


3.3 多瑙河黄土的主量元素地球化学组成

多瑙河流域不同地区黄土的主量元素组成相似,各黄土层之间的变化较小(图4[14,18,20,21,22,42,44,54,55]。代表性剖面的主量元素组成[XRF(X-Ray Fluorescence)测试结果]如表1所列:SiO2含量为55%~70%,Al2O3含量为11%~16%,Fe2O3含量为3.5%~6%,TiO2含量一般低于1%,MnO含量极少,一般在0.1%左右,MgO和CaO含量在不同剖面之间差异较大,分别在2%~5%和6%~17%范围变化,Na2O和K2O含量则都在1%~3%范围内变化。与黄土高原黄土相比,多瑙河黄土中TiO2含量略高,Na2O含量则偏低,其他主量元素组成与黄土高原黄土相似(图4)。与上地壳(Upper Continental Crust,UCC)平均值相比,多瑙河黄土中SiO2、Al2O3、Fe2O3、MnO、K2O的含量与UCC相近,TiO2、CaO以及部分剖面的MgO相对有一定富集,Na2O稍有亏损[14,18,54,56]

图4

图4   多瑙河与黄土高原L1黄土主量元素UCC标准化模式(数据来自参考文献[14,18,20,21,22,54,55])

Fig. 4   UCC-normalized for major elements of L1 loess in Danube region and the Chinese Loess Plateaudata from references[14, 18, 20~22, 54, 55])


表1   多瑙河和黄土高原L1黄土主量元素平均组成的质量百分含量单位:%)数据来自参考文献[14,18,20,21,22,54,55])

Table 1  The average mass percentage of major elements of L1 loess in Danube region and the Chinese Loess Plateau(unit:%(data from references[14, 18, 20~22, 54, 55])

剖面SiO2TiO2Al2O3Fe2O3MnOMgOCaONa2OK2O
Beremend65.780.9815.155.720.122.326.290.912.73
Majs63.520.9113.284.550.093.799.931.532.39
Orlovat55.441.0114.005.600.123.8416.631.162.20
Paks63.030.8311.183.890.094.6313.021.401.92
Brno68.550.7712.044.110.082.148.911.152.25
CLP-L165.430.6912.964.850.092.509.181.742.54

新窗口打开| 下载CSV


3.4 多瑙河黄土的物质来源

与中国黄土高原不同,多瑙河流域黄土分布区周缘没有干旱—半干旱区作为粉尘的物源区。阿尔卑斯和喀尔巴阡山脉的冰川作用、冻融风化形成大量松散沉积物,部分松散物质经河流搬运进入沉积体系,这些松散沉积物可能成为当地黄土的物源[57]。早期研究者根据黄土的分布与地貌之间的关系,提出了关于多瑙河黄土物源的概念模型,强调多瑙河等河流冲洪积物的贡献[1,58]。此模型认为周缘山脉风化剥蚀的物质经多瑙河及其支流搬运沉积于河漫滩之上,再由近地面风就近搬运堆积在附近的高地之上,形成黄土堆积[1]。另一种观点基于室内风洞试验强调下伏沉积岩的风化物质对多瑙河黄土的贡献[59]。需要指出的是,上述早期认识主要是根据地貌学观察或室内试验,缺乏真正具有指示意义的物源示踪证据。随着新的技术和指标在物源研究方面的应用,多瑙河黄土的物源研究也有了新的进展。近年来多瑙河黄土物源研究的手段主要包括元素地球化学[14,20,54,60]、Sr-Nd同位素[49,61]、碎屑锆石U-Pb年龄[48,49]和重矿物组合[46]等。除此之外,还有利用磁化率各向异性[62,63]、地貌证据和黄土堆积厚度[12,64]以及模拟[65]等重建古风向辅助判别黄土物源。根据上述手段得到多瑙河黄土物源的认识主要有3类:

(1) 盆地内河流的冲洪积物

河流的河漫滩往往沉积了大量松散的冲洪积物,这些物质暴露后可以成为附近黄土的物质来源[58,66]。Buggle等[60]利用地球化学组成、地貌背景和磁化率等证据发现多瑙河流域内塞尔维亚和罗马尼亚境内的2个黄土剖面与流域外乌克兰境内的黄土剖面物源有着明显的区别,其中多瑙河流域内的黄土与多瑙河冲洪积物的地球化学组成相似。Tugulan等[20]和Újvári等[14]对罗马尼亚和匈牙利黄土进行地球化学与矿物学研究,并与多瑙河冲洪积物样品地球化学组成对比,发现黄土和河流冲洪积物中不易受风化影响的Th/Ni、Zr/Ni、Th/V、Zr/V等指标高度吻合,据此认为该区的黄土物质主要源于多瑙河冲洪积物。然而除风化外,沉积分选等作用也会影响地球化学组成[67],上述物源判别指标的可靠性还需进一步的检验。

(2) 沉积岩

关于多瑙河黄土有当地沉积岩贡献的假说是根据风洞试验提出的,Smith等[59]发现潘诺尼亚时期(Pannonian时期,相当于晚中新世—上新世)的浅海相石英砂在风洞实验吹蚀下可以产生与黄土粒度相当的粉砂物质,因此推断下伏地层在构造或河流侵蚀作用暴露于地表之后,具有为区域黄土提供粉尘的潜力。随后的研究证实了这种可能性,主要证据来自碎屑锆石U-Pb年龄、矿物组成和Sr-Nd同位素组成等[18,46,49]。在矿物组成上,匈牙利南部的黄土富含绿泥石或黑云母,与北部黄土和多瑙河河流相物质的重矿物组成不同,该区域黄土可能源于下伏潘诺尼亚时期的沉积物[46]。在地貌上,匈牙利南部发育有大量的风蚀雅丹地貌,而雅丹的下风向有大面积的黄土堆积[64]。因此地球化学、矿物学、地貌学等综合证据表明多瑙河流域部分地区的黄土物质有当地沉积岩的贡献。

(3) 北非粉尘

北非地区是全球重要的粉尘源区,其粉尘可大范围长距离传输[68]。欧洲地区植被覆盖较好,当今欧洲大部分地区的尘暴源自北非干旱区,欧洲降尘的元素组成[69]、后向轨迹反演[70,71]、尘暴卫星图像[71]均指示北非沙漠的贡献。对于地质历史时期北非粉尘对多瑙河黄土的贡献研究较少且有争议。匈牙利黄土的Sr-Nd同位素组成、黏土矿物组合特征与细颗粒(小于5 μm)含量指示冰期时北非物质对该地区黄土的贡献有限,最多为5%~10%[49]。然而对现代沙尘天气过程中降尘样品的粒度组成和扫描电镜分析发现,降尘的粒径主要大于5 μm,因此之前根据粒度组成计算的北非贡献量或比实际偏低[15]。综合来看,北非粉尘对多瑙河黄土的贡献量和时空变化尚存争议。

4 多瑙河黄土年代学

多瑙河黄土的年代学工作主要包括相对年代学和绝对年代学两方面,前者主要包括磁性地层和古地磁场长期变化等,后者则包括14C定年、释光测年和火山灰定年等。

多瑙河黄土磁性地层的研究早期集中于多瑙河中上游地区,退磁方法多为交变退磁,且样品分辨率低,不同地区的结果有较大差异[2,17,72]。自20世纪末以来,多瑙河中下游地区的黄土古地磁研究取得了新进展[4,6,26]。由于这些地区地势起伏小,黄土地层保存良好,同时辅助有14C和动植物化石等年龄证据的支持,年代结果的可靠性更高[5]。多瑙河大部分黄土是最近1 Ma以来的沉积,因此最重要的磁性地层界线是B/M极性界线。Song等[6]最近利用热退磁结合交变退磁的方法对塞尔维亚Titel-Stari Slankamen综合剖面开展了高分辨率古地磁研究,表明B/M界线位于S8内,这是目前欧洲黄土最为详细的B/M界线记录。多瑙河黄土地层中更老的古地磁极性记录报道不多,仅在极少数剖面中发现了奥尔杜威(Olduvai)和哈拉米洛(Jaramillo)两个正极性亚时[2,5,9]

除磁极性带转换外,地磁场有一些极性漂移事件或长期变化,也能为黄土的年代学研究提供关键依据[31,73]。奥地利Wels-Aschet黄土剖面底界未至B/M界线,但剖面中记录的Big Lost和Blake极性事件为地层年代提供了依据[31]。罗马尼亚Poiana Cireşului黄土剖面的地磁场长期变化记录则为剖面提供了20~40 ka内较为精细的年代学约束[73]

放射性14C定年在多瑙河地区的黄土研究中应用较少,这主要是由于黄土层中适合14C定年的材料较少。匈牙利等地区为数不多的14C定年研究为近20~30 ka以来的黄土序列提供了可靠的年代标尺[5,74,75,76]。最近有学者利用加速器质谱开展了软体动物碳酸盐壳体的14C年代学研究,为末次冰期高分辨率的气候重建提供了年代学约束[77,78]。随着测年方法和手段的进步,多瑙河黄土中腐殖酸等物质的14C定年工作已开始尝试,但由于腐殖酸的影响因素较多,结果的可靠性尚在讨论之中[79,80]

释光年代学是近年来黄土测年工作中发展最为迅速的技术方法之一,主要原因之一是形成黄土的粉尘物质在搬运堆积过程中释光信号晒退比较彻底,使其成为释光测年的理想对象[81,82,83]。21世纪之前,多瑙河黄土释光年代学研究手段主要是热释光方法[82,84]。近年来光释光方法逐步取代热释光方法,并发现一些早期热释光结果的可靠性有一定的问题[85,86]。目前对于多瑙河地区黄土的光释光年代学研究已十分广泛,为末次间冰期以来黄土的年代提供了重要约束[87,88,89]。虽然石英光释光年代学的可靠区间多在50~70 ka[81,90],但是改进的长石红外释光(Infrared Stimulated Luminescence, IRSL)以及红外激发后红外释光(post-Infrared Infrared Stimulated Luminescence, post-IR IRSL)方法对长石释光矫正之后,将测年范围延伸至300~350 ka,并已在多瑙河黄土研究中尝试应用[91,92],但样品分辨率低,误差较大。

火山灰具有精确定年的潜力,既可以作为标志层进行区域地层对比,也可以为黄土地层提供绝对年龄的限制。多瑙河地区因为邻近多个火山区的影响,在黄土中保留有数层火山灰[4,5,6,23,62]。其中最明显的是Bag火山灰层,在匈牙利多个剖面均有出露,塞尔维亚黄土L4中的一层火山灰被认为与之同源,含火山灰黄土地层释光测年的初步研究结果显示,该层火山灰的时代大约在350 ka[91]。此外,罗马尼亚末次冰期黄土中普遍保存有一厚层火山灰,通过火山玻璃成分对比,确定为Campanian Ignimbrite Y5 的火山灰,喷发年龄为39~41 ka,黄土的释光定年结果与喷发年龄相符[93]。需要指出的是,目前多瑙河黄土中的火山灰都缺乏火山灰直接定年的结果,现有的少数研究主要依靠黄土释光年代学和火山灰成分对比获得年龄数据。

天文轨道调谐年代学是指将气候记录对比调谐到目标曲线上,获得地层的年代,在深海和黄土等沉积中都有成功的应用[94,95]。最近在多瑙河黄土中也有相关研究开展。Marković等[96]和Basarin等[97]分别利用6月65°N辐射量、ODP677站位δ18O和岁差指数曲线作为靶曲线,结合火山灰和B/M界线等年代控制点,建立了塞尔维亚黄土1 Ma以来磁化率记录的天文轨道调谐年代标尺。

5 多瑙河黄土地层及其对比

多瑙河上游地区黄土多为山麓黄土,基底起伏较大,且频繁受到流水和坡积作用的改造,保存较差,研究程度低。多瑙河中下游地区的黄土地层研究较为成熟。

5.1 多瑙河黄土地层

黄土地层最突出的特点是黄土与古土壤的交互出现,这种交互变化记录了过去冰期—间冰期气候交替出现的历史。多瑙河黄土沉积底界年龄一般小于1 Ma,其基底在多瑙河上游多为基座河流阶地[2,32],在中游盆地内为堆积河流阶地、红黏土和河湖相沉积[4,18],而在下游地区内则为红黏土或海相基岩[98,99,100]

中国黄土有着一套鲜明而简洁的地层单位,而多瑙河黄土地层的划分和命名则比较复杂。多瑙河黄土由于地跨多个国家,不同国家之间语言、研究程度的差异导致区域地层命名方案相对混乱[8,9]。如表2所列,各个国家之间黄土地层的命名差异很大,特别是在多瑙河中上游地区,甚至每个剖面都有单独的地层命名方案[2,8,13,31]。匈牙利境内黄土研究从早期以来有着一套完整的地层划分和命名方案,但是由于方案中古土壤单元多由其典型剖面地点来命名,这影响到区域地层的对比[14,17,18]。塞尔维亚[4,9,24]、罗马尼亚[98,99]、保加利亚[26]境内黄土地层的划分及命名则更简明,命名方法大致与中国黄土相似。考虑到不同地层命名方案引起的地层和古气候对比的困扰,最近Marković等[9]以中国黄土地层命名系统为蓝本,即以Li、Si为黄土、古土壤的命名单位,尝试建立多瑙河黄土地层的统一框架。

5.2 多瑙河黄土地层的对比

虽然地层划分与命名方案复杂,但是多瑙河黄土地层的对比已有许多尝试性工作[5,24,26,98,101],地层对比主要依据是磁化率等指标。如图5所示,尽管多瑙河黄土分布区地形比较复杂,但是不同地区黄土地层单元特别是古土壤层在轨道尺度上能够进行较好的对比[8,9,24,98]

图5

图5   多瑙河黄土—古土壤序列及其与黄土高原的对比(据参考文献[6,9,23]修改)

Fig.5   Loess-paleosol sequences in Danube region and its correlation with the Chinese Loess Plateaumodified after references[6,9,23])


深海氧同位素记录是全球尺度气候变化的标准曲线,黄土沉积则是陆地古气候变化的重要载体,对区域气候变化有着敏感的响应,两者的对比对理解区域气候和全球气候变化的关联有着重要意义[40,102]。在海陆古气候对比研究中,最早将黄土与深海氧同位素记录进行对比的尝试便是由多瑙河黄土研究开始的[72,102]。近年来将新黄土剖面的磁化率等指标与深海氧同位素对比的工作逐渐增多,并进一步讨论海陆气候演变的相似与差异[5,28,98,99]

由于中国黄土高原黄土在全球古气候记录中的代表性,一直以来也有工作尝试进行横跨欧亚黄土带上的多瑙河黄土与中国黄土的地层对比[5,6,13,101,103,104,105,106]。目前的工作显示从多瑙河到中亚,最后到黄土高原地区,黄土地层在轨道尺度上可以进行近似的对比[5,6,8,9,24,101,107,108]。在具体细节上,多瑙河与中国黄土高原的黄土地层存在显著的差异。在黄土高原,S2古土壤层分为2个亚层,中间夹有1层明显的黄土层,而在多瑙河流域的黄土地层中,S2分层不明显[6]。研究这些差异对理解区域气候动力学有着重要的价值。

6 多瑙河黄土记录的古环境变化

黄土作为古气候记录的重要载体,在最近半个世纪的研究中发展了一套有明确气候指示意义的古气候代用指标体系。与中国黄土研究类似,多瑙河黄土的研究中也使用了粒度[109,110]、磁学[98,111]、色度[112]、化学风化指数[14,18,113]、黏土矿物[14,18,49,114]、蜗牛化石[115,116]、孢粉[23]和生标[116,117,118,119]等一系列的代用指标。这些指标已广泛应用于区域古气候与古环境重建工作中,并已取得一定的认识,以下主要分3个方面进行总结。

6.1 长尺度(超轨道尺度)上的气候环境变化

在长时间尺度上,多瑙河黄土记录显示中下游地区气候有变干的趋势,尤其是间冰期气候变干趋势明显[14,113]。匈牙利、塞尔维亚和罗马尼亚等地黄土的黏土矿物组成以及CIA、Rb/Sr等化学风化指数的变化都指示中更新世以来古土壤层的风化有逐步减弱的趋势[14,18,23]。然而由于这些指标并不能区别物源区风化和沉积后风化,加之黏土矿物组成的变化也指示由老及新物理风化有所加剧,因此有研究认为构造隆升引起的新鲜碎屑物质比例的增加也会导致黄土的化学风化相对减弱,并非反映气候的变化[18]。虽然化学风化指数和黏土矿物组成等都可能会受到新鲜碎屑物质比例增加的影响,但是多瑙河中下游地区黄土中的古土壤类型从中更新世早期的森林土壤逐渐变为中更新世后期的草原土壤,指示气候类型由早期的近地中海型变为后期的大陆性气候[23,44,98,100],表明黏土矿物和地化风化指数反映的间冰期气候逐渐变干的变化趋势是客观存在的。目前关于该区大陆性气候影响逐渐增强的原因还没有一致性看法,有研究尝试将区域气候记录对比后发现这种气候变化仅限于多瑙河中下游盆地之中,认为是盆地周缘山脉中更新世以来的不断隆升导致进入盆地内部的水汽减少,气候逐渐变干[113]

表2   多瑙河黄土地层对比框架据参考文献[3,5,9,31]修改

Table 2  Correlations of Danube loess stratigraphy (modified after references[3,5,9,31]

多瑙河黄土岩性地层
奥地利捷克匈牙利塞尔维亚新方案罗马尼亚保加利亚

多瑙河黄土

统一地层

地层1地层2区域代表地层Udvari-2A钻孔理论区域地层
KR-1PKIU2-S0h1V-S0S0S0S0
h2
AS16L1U2-L1L1V-L1L1L1L1
AS15Ps1U2-S1MF1
AS14
AS13
AS12MF2
AS11L2
AS10KR-2PKIIPs2V-S1S1S1S1
KR-3PKIII
AS9L3U2-L2L2V-L2L2L2L2
AS8aU2-S2
AS8U2-L3
AS7aPKIVPs3/1U2-S3BD1V-S2S2S2S2
Ps3LL3
Ps3/2BD2
L4U2-L4L4V-L3L3L3L3
L5
AS7bPKVPs4U2-S4BAV-S3S3S3S3
AS7c
AS6L5L6V-L4L4L4L4
AS5PKVIPs5MBV-S4S4S4S4
AS4a-AS4dL6U2-L5L7V-L5L5L5L5
AS3
AS2PKVIIU2-S5PheV-S5S5S5S5
U2-L6L8
Ps6U2-S6Mtp
AS1L7U2-L7L9V-L6L6L6L6
PKIXPs7/1U2-S7PD1V-S6S6S6S6
Ps7LU2-L8L10V-L7L7L7
KR-4PKXPs7/2U2-S8PD2V-S7S7S7
L8U2-L9L11V-L8L8L7L8
Ps8/1U2-S9PDKV-S8S8S8
PsLL12V-L9L9
PKXIPs8/2

新窗口打开| 下载CSV


6.2 轨道尺度上的气候环境变化

多瑙河黄土沉积的轨道时间尺度气候重建主要依赖于高分辨率的磁化率和低分辨率的地球化学等指标序列。重建结果与东亚季风区相似,即总体上呈现冰期冷干、间冰期暖湿的变化[5,9,14,98,99,100]。虽然干冷和暖湿的旋回变化整体上是相似的,但是多瑙河黄土中古土壤反映的间冰期气候在不同地点有所差异。从磁化率来看,塞尔维亚与匈牙利境内黄土的差异明显(图5)。塞尔维亚北部不同剖面之间也存在一定差异,Batajnica剖面S3层古土壤的磁化率最高,而Stari Slankamen剖面则是S5层古土壤的磁化率最高[8,9]

多瑙河黄土的多指标古气候重建工作以末次间冰期以来的时段最为详尽,然而不同代用指标所反映的古环境变化历史却不尽相同[112,116,118,119,120]。在塞尔维亚北部,传统的粒度、磁化率等指示末次冰期为冷干的气候环境[111,121],蜗牛化石重建显示冰期夏季仍较为温暖[115]。支链GDGTs(branched Glycerol Dialkyl Glycerol Tetraethers)重建的末次冰盛期年均温甚至可达20 °C,远高于现代的11 °C[119]。关于末次冰期的湿度,最近基于生标以及δ13C和δ15N重建的结果显示冰期为湿润环境,间冰期为干旱环境,这与传统认识是完全相反的[118],与土壤发育程度指示的冰期和间冰期气候反差也完全不同。

末次间冰期以来植被变化的研究主要集中于塞尔维亚北部的黄土分布区,Crvenka剖面正构烷烃的重建结果揭示在冰期和冰阶森林植被有小幅增加,而间冰期和间冰阶则为草原植被[118]。但同时有研究利用同样的植被重建方法,结果显示末次冰期以来除了几次波动事件,该区一直为稳定的草原植被主导[116]。这与西欧地区不同,西欧地区植被随气候波动呈现森林—草原快速交替变化[122]

6.3 亚轨道尺度上的气候环境变化

在亚轨道时间尺度上,千年尺度的气候波动加剧是末次冰期气候变化的一大特征,在冰芯和海洋沉积物中都有反映[123,124]。横跨欧亚大陆两端的中国黄土和多瑙河黄土沉积中也都记录了千年尺度的气候波动[78,125,126,127]。多瑙河黄土记录的千年尺度气候波动主要体现在粒度和沉积速率变化中。末次冰期黄土粒度变化出现多次波动,与冰芯记录进行了尝试性的对比[78,128]。进一步分析可以发现,虽然部分气候快速波动事件在黄土与冰芯记录中都有体现,但单个事件在两种记录中的变幅并不完全相同。

7 讨论与展望

多瑙河流域作为全球黄土的重要分布区之一,其黄土记录着丰富的古气候信息。虽然当前对于多瑙河黄土的理解已经日趋成熟,但大量深入的研究工作仍亟待开展。下面重点从多瑙河黄土的物源、年代学、地层、古环境解译等方面进行讨论和展望。

7.1 多瑙河黄土的物质来源

黄土物源研究对于过去大气环流重建、源区环境演变具有重要的意义,也是理解黄土形成的基本过程和诸多古气候代用指标的基础。近年来虽然已经从多瑙河黄土中提取出丰富的古气候信息,但多瑙河的具体物源尚没有较为统一明确的认识。未来多瑙河黄土的物源研究应该侧重两个方向。首先是了解多瑙河黄土潜在物源区沉积物的组成。目前对多瑙河河流冲洪积物、暴露的沉积岩(包括尚未固结的沉积物)的地球化学、矿物学组成的认识还不充分。已有的研究主要集中于上游地区,在黄土广泛分布的中下游平原地区,潜在物源区沉积物信息严重匮乏,这是未来物源研究的重点。其次研究方法需要进一步完善。考虑到河流物质与黄土物质均经过充分的混合,加之分选和风化等过程的影响,多瑙河黄土物源研究中常用的Th/Ni、Zr/Ni等元素比值等指标[14,20,60]判别物源的有效性需要进一步验证。在物源研究中常用的Sr-Nd同位素以及单矿物如碎屑锆石U-Pb年龄等方法在多瑙河黄土物源的研究中应用还较少。因此未来需要有更多的物源判别方法相互验证,以获得对多瑙河黄土物源的客观认识。

7.2 多瑙河黄土的年代学

今后多瑙河黄土的年代学研究应重点加强多种年代学方法的综合应用。虽然14C测年材料和范围有所限制,但如腐殖酸、动物碳酸盐壳体等作为14C测年的新兴对象在多瑙河黄土研究中已有应用[77,79,129]。对于14C测年范围之外的地层,主要是依靠释光年代学,虽然改进的释光测年方法已尝试给出300~350 ka的年代,但是结果误差可达50 ka[91],未来还需要缩小年代误差。火山灰是理想的测年材料,但多瑙河黄土的火山灰目前尚无绝对年代的报道,未来需要开展绝对年龄(如Ar-Ar年龄)的研究,为多瑙河黄土研究提供更可靠的年代约束。多种方法的综合年代学研究有望为多瑙河黄土研究提供更为详尽的年代学框架。

7.3 多瑙河黄土的地层学

多瑙河黄土地层框架的完善及其与中国黄土和深海氧同位素的对比仍需进一步工作。前文提到已有研究试图建立区域统一的地层命名方案,但是目前工作仍然局限于中下游地区[5,9,24]。多瑙河上游地区黄土分布分散且部分剖面的连续性较差,未来研究要结合严格的年代学工作,建立可靠的多瑙河黄土地层对比方案。当前,即使在多瑙河中下游地区,黄土地层划分和对比方案仍然存在明显的分歧。以塞尔维亚Stari Slankamen剖面的S3~S5与深海氧同位素阶段(Marine Isotope Stages, MIS)的对比为例,目前存在2种观点,一种是传统认为的S3、S4、S5依次对应MIS9、MIS11和MIS13~MIS15[4,9],而Sümegi等[5]根据匈牙利黄土钻孔的综合年代学和土壤地层划分,认为Stari Slankamen剖面的S3和S4应是一层复合古土壤,整体对应MIS9,而S5对应MIS11。解决不同地层对比方案分歧的关键还是精确的年代学制约,因此未来精细化的地层对比方案建立仍依赖于年代学研究的进展。

7.4 多瑙河黄土记录的古环境变化

多瑙河黄土记录表明在长时间尺度(超轨道尺度)上气候有逐渐变干的趋势。已有的研究认为这种趋势仅限于多瑙河中下游盆地,从而归因于周围山系隆升导致进入盆地内部水汽减少[113]。然而这些研究关注的空间范围仍然存在一定的局限性,我们进一步整理盆地内外的古气候记录后发现这种气候逐渐变干的趋势并非仅限于多瑙河黄土之中,在黑海北岸至东欧平原的黄土—古土壤序列中也记录有气候变干的趋势[130,131,132]。因此我们认为这种气候逐渐变干的趋势是更大区域的气候变化特征,多瑙河周缘山地的隆升无法合理解释这一变化,其背后的机制需要进一步深入探讨。此外,关于多瑙河中下游盆地气候开始逐渐变干的时间也值得进一步研究。有观点认为在中更新世气候转型期,极锋的南移和阿尔卑斯冰川的发展导致气候变逐渐变干,黄土开始沉积[133]。然而多瑙河区域气候逐渐变干的开始时间并非从中更新世开始,该区下伏的红黏土中已经表现有这种趋势,且该趋势同样在东欧黄土区出现[114,134]。因此气候变干趋势的时限、阶段性及其动力学机制需进一步研究。

在轨道尺度上,虽然多瑙河黄土记录整体相似,但不同剖面之间还是存在一定差异,特别是古土壤层反映的间冰期气候特征。这种差异是反映气候环境的差异抑或物源变化的影响还需要再进行评估。未来可以采用相对独立于物源变化的气候指标,例如与成壤作用有关的环境磁学以及与生物地球化学相关的指标来研究这些差异。将多瑙河与黄土高原黄土对比可以发现,S5前后古土壤层的磁化率表现在两地是不同的。在黄土高原地区S6~S8的磁化率整体偏低于S5及其以上层位的古土壤,而多瑙河地区S5以下的古土壤层的磁化率与上部S1~S4相当,甚至要高于上部的古土壤。这一区域间的差异可能是认识两地古气候变化动力学差异的突破口之一。

在亚轨道尺度上,虽然已有多瑙河黄土记录的千年尺度的气候波动及其与高纬地区冰芯等记录对比的工作[78,109],然而目前多数多瑙河黄土的年代学以及部分古环境样品的分辨率并不足以获得可靠的结论。多瑙河黄土千年尺度上的气候变化研究,仍亟需提高记录的分辨率与年代框架的准确性。

8 结 语

多瑙河流域是欧洲黄土分布最广、研究程度最高的黄土区之一。该区黄土沉积较为连续,长期以来一直受到学术界的重视。多瑙河黄土的研究已经在黄土分布、物质组成、物源、年代学、地层学和古气候多时间尺度演变等方面取得了重要的进展。多瑙河流域黄土在多瑙河中下游地区保存较好,其底界可达1 Ma;获得了粒度分布、主量元素组成、矿物组成等基本信息,发现多瑙河黄土具有典型风成黄土的物质组成特征,而黏土矿物中蒙脱石的含量明显高于中国黄土;提出了流域内河流的冲洪积物、沉积岩风化、北非尘暴等对多瑙河黄土贡献的证据;建立了最近1 Ma以来多瑙河黄土—古土壤序列的区域地层对比方案及其与中国黄土、深海沉积记录的初步对比方案;在气候变化长期趋势、冰期—间冰期气候变化、千年尺度气候—环境变化等方面获得了一批关键性的证据。但是多瑙河黄土研究存在地层命名复杂且不统一、长序列高分辨率的古气候代用指标少等不足。今后应继续在物源、年代学、地层和古环境重建等4个方面开展深入的研究,在物源研究方面需要系统获得潜在物源区沉积物组成的信息,并开展物源示踪指标的方法学和多指标相互印证研究;在年代学和地层学方面需要加强长石释光年代学、火山灰年代学等研究,建立有多个绝对年龄控制的、高精度的年代标尺及其年代约束下的统一的地层命名和对比方案;在古环境重建方面需要将高分辨率、多指标古气候重建工作从末次间冰期以来的地层拓展至最近1 Ma以来的整个序列。通过上述新证据的获得,有望极大地推动欧洲南部区域古大气环流和古环境重建、欧亚黄土区古气候对比的研究进展,在欧亚大陆区域气候系统演化的关联及其动力学机制上获得关键证据和理论新认识。

参考文献

Smalley I J , Leach J A .

The origin and distribution of the loess in the Danube basin and associated regions of East-Central Europe—A review

[J]. Sedimentary Geology, 1978, 21(1): 1-26.

[本文引用: 5]

Fink J , Kukla G J .

Pleistocene climates in Central Europe: At least 17 interglacials after the Olduvai event

[J]. Quaternary Research, 1977, 7(3): 363-371.

[本文引用: 5]

Koloszar L .

The thickest and the most complete loess sequence in the Carpathian Basin: The borehole Udvari-2A

[J]. Central European Journal of Geosciences, 2010, 2(2): 165-174.

[本文引用: 3]

Marković S B , Hambach U , Stevens T , et al .

The last million years recorded at the Stari Slankamen (northern Serbia) loess-palaeosol sequence: Revised chronostratigraphy and long-term environmental trends

[J]. Quaternary Science Reviews, 2011, 30(9/10): 1 142-1 154.

[本文引用: 9]

Sümegi P , Gulyás S , Molnár D , et al .

New chronology of the best developed loess/paleosol sequence of Hunagry capturing the past 1.1 Ma: Implications for correlation and proposed pan-Eurasian stratigraphic schemes

[J]. Quaternary Science Reviews, 2018, 191: 144-166.

[本文引用: 15]

Song Y , Guo Z T , Marković S B , et al .

Magnetic stratigraphy of the Danube loess: A composite Titel-Stari Slankamen loess section over the last one million years in Vojvodina, Serbia

[J]. Journal of Asian Earth Sciences, 2018, 155: 68-80.

[本文引用: 13]

Peel M C , Finlayson B L , McMahon T A .

Updated world map of the Köppen-Geiger climate classification

[J]. Hydrology and Earth System Sciences, 2007, 11: 1 633-1 644.

[本文引用: 1]

Fitzsimmons K E , Marković S B , Hambach U .

Pleistocene environmental dynamics recorded in the loess of the middle and lower Danube basin

[J]. Quaternary Science Reviews, 2012, 41: 104-118.

[本文引用: 6]

Marković S B , Stevens T , Kukla G J , et al .

Danube loess stratigraphy—Towards a pan-European loess stratigraphic model

[J]. Earth-Science Reviews, 2015, 148: 228-258.

[本文引用: 14]

Haase D , Fink J , Haase G , et al .

Loess in Europe—Its spatial distribution based on a European loess map, scale 1∶2 500 000

[J]. Quaternary Science Reviews, 2007, 26(9/10): 1 301-1 312.

[本文引用: 3]

Lehmkuhl F , Bösken J , Hošek J , et al .

Loess distribution and related Quaternary sediments in the Carpathian Basin

[J]. Journal of Maps, 2018, 14(2): 661-670.

[本文引用: 3]

Jipa D C .

The conceptual sedimentary model of the lower Danube Loess Basin: Sedimentogenetic implications

[J]. Quaternary International, 2014, 351: 14-24.

[本文引用: 5]

Pesci M .

Loess is not just the accumulation of dust

[J]. Quaternary International, 1990, 7/8: 1-21.

[本文引用: 6]

Újvári G , Varga A , Raucsik B , et al .

The Paks loess-paleosol sequence: A record of chemical weathering and provenance for the last 800ka in the mid-Carpathian basin

[J]. Quaternary International, 2014, 319: 22-37.

[本文引用: 18]

Varga G , Cserháti C , Kovács J , et al .

Saharan dust deposition in the Carpathian basin and its possible effects on interglacial soil formation

[J]. Aeolian Research, 2016, 22: 1-12.

[本文引用: 5]

Varga G , Újvári G , Kovács J .

Interpretation of sedimentary (sub)populations extracted from grain size distributions of Central European loess-paleosol series

[J]. Quaternary International, 2019, 502: 60-70.

[本文引用: 6]

Pécsi M , Schweitzer F .

Long-term terrestrial records of the middle Danubian Basin

[J]. Quaternary International, 1993, 17: 5-14.

[本文引用: 5]

Varga A , Újvári G , Raucsik B .

Tectonic versus climatic control on the evolution of a loess-paleosol sequence at Beremend, Hunagry: An integrated approach based on paleoecological, clay mineralogical, and geochemical data

[J]. Quaternary International, 2011, 240(1/2): 71-86.

[本文引用: 15]

Banak A , Mandić O , Kovačić M , et al .

Late Pleistocene climate history of the Baranja Loess Plateau—Evidence from the Zmajevac loess-paleosol section (northeastern Croatia)

[J]. Geologia Croatica, 2012, 65(3): 411-422.

[本文引用: 1]

Tugulan L C , Duliu O G , A-V Bojar , et al .

On the geochemistry of the Late Quaternary loess deposits of Dobrogea (Romania)

[J]. Quaternary International, 2016, 399: 100-110.

[本文引用: 7]

Obreht I , Zeeden C , Schulte P , et al .

Aeolian dynamics at the Orlovat loess-paleosol sequence, northern Serbia, based on detailed textural and geochemical evidence

[J]. Aeolian Research, 2015, 18: 69-81.

[本文引用: 5]

Adamová M , Havliček P , Śibrava V .

Mineralogy and geochemistry of loesses in southern moravia

[J]. Bulletin of the Czech Geological Survey, 2002, 77(1): 29-41.

[本文引用: 4]

Marković S B , Hambach U , Catto N , et al .

Middle and Late Pleistocene loess sequences at Batajnica, Vojvodina, Serbia

[J]. Quaternary International, 2009, 198(1/2): 255-266.

[本文引用: 7]

Buggle B , Hambach U , Glaser B , et al .

Stratigraphy, and spatial and temporal paleoclimatic trends in southeastern/eastern European loess-paleosol sequences

[J]. Quaternary International, 2009, 196(1): 86-106.

[本文引用: 6]

Jordanova D , Petersen N .

Palaeoclimatic record from a loess-soil profile in northeastern Bulgaria—II. Correlation with global climatic events during the Pleistocene

[J]. Geophysical Journal International, 1999, 138(2): 533-540.

[本文引用: 1]

Jordanova D , Hus J , Evlogiev J , et al .

Palaeomagnetism of the loess/palaeosol sequence in Viatovo (NE Bulgaria) in the Danube basin

[J]. Physics of the Earth and Planetary Interiors, 2008, 167(1/2): 71-83.

[本文引用: 4]

Rădan S C .

Towards a synopsis of dating the loess from the Romanian plain and Dobrogea: Authors and methods through time

[J]. Geoecomarina, 2010, 18: 153-172.

[本文引用: 2]

Marković S B , Hambach U , Stevens T , et al .

Loess in the Vojvodina region (northern Serbia): An essential link between European and Asian Pleistocene environments

[J]. Netherlands Journal of Geosciences, 2014, 91(1/2): 173-188.

[本文引用: 3]

Terhorst B , Sedov S , Sprafke T , et al .

Austrian MIS 3/2 loess-palaeosol records—Key sites along a west-east transect

[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2015, 418: 43-56.

[本文引用: 1]

Lehmkuhl F , Zens J , Krauß L , et al .

Loess-paleosol sequences at the northern European loess belt in Germany: Distribution, geomorphology and stratigraphy

[J]. Quaternary Science Reviews, 2016, 153: 11-30.

[本文引用: 1]

Scholger R , Birgit T .

Magnetic excursions recorded in the Middle to Upper Pleistocene loess/palaeosol sequence Wels-Aschet (Austria)

[J]. E&G Quaternary Science Journal, 2013, 62(1): 14-21.

[本文引用: 6]

Sprafke T , Thiel C , Terhorst B .

From micromorphology to palaeoenvironment: The MIS 10 to MIS 5 record in Paudorf (Lower Austria)

[J]. Catena, 2014, 117: 60-72.

[本文引用: 2]

Pavelić D , Kovačić M , Banak A , et al .

Early Miocene European loess: A new record of aridity in southern Europe

[J]. Geological Society of America Bulletin, 2016, 128(1/2): 110-121.

[本文引用: 1]

Sartori M , Heller F , Forster T , et al .

Magnetic properties of loess grain size fractions from the section at Paks (Hunagry)

[J]. Physics of the Earth and Planetary Interiors, 1999, 116(1/4): 53-64.

[本文引用: 1]

Hao Q Z , Wang L , Oldfield F , et al .

Delayed build-up of arctic ice sheets during 400 000-year minima in insolation variability

[J]. Nature, 2012, 490(7 420): 393-396.

[本文引用: 3]

Wang Zhaoduo , Huang Chunchang , Zhou Yali , et al .

Characteristics of Holocene loess-palaeosol particle size composition and paleoclimatic significance in east Guanzhong, Shaanxi Province

[J]. Advances in Earth Science, 2018, 33(3): 293-304.

[本文引用: 1]

王兆夺黄春长周亚利 .

关中东部全新世黄土—古土壤序列粒度组分变化特征及古气候意义

[J]. 地球科学进展, 2018, 33(3): 293-304.

[本文引用: 1]

Újvári G , Kovács J , Varga G , et al .

Dust flux estimates for the last glacial period in East Central Europe based on terrestrial records of loess deposits: A review

[J]. Quaternary Science Reviews, 2010, 29(23/24): 3 157-3 166.

[本文引用: 2]

Varga G .

Similarities among the Plio-Pleistocene terrestrial aeolian dust deposits in the world and in Hunagry

[J]. Quaternary International, 2011, 234(1/2): 98-108.

[本文引用: 2]

Sümegi P , Gulyás S , Molnár D , et al .

Periodicities of paleoclimate variations in the first high-resolution non-orbitally tuned grain size record of the past 1 Ma from SW Hunagry and regional, global correlations

[J]. Aeolian Research, 2019, 40: 74-90.

[本文引用: 2]

Liu Tungsheng . Loess and Environment[M]. Beijing: Science Press, 1985.

[本文引用: 3]

刘东生 . 黄土与环境[M]. 北京: 科学出版杜, 1985.

[本文引用: 3]

Vandenberghe J , Markovič S B , Jovanovič M , et al .

Site-specific variability of loess and palaeosols (Ruma, Vojvodina, northern Serbia)

[J]. Quaternary International, 2014, 334/335: 86-93.

[本文引用: 3]

Obreht I , Hambach U , Veres D , et al .

Shift of large-scale atmospheric systems over Europe during late MIS 3 and implications for modern human dispersal

[J]. Scientific Reports, 2017, 7(1): 1-10.

[本文引用: 2]

Ding Z L , Derbyshire E , Yang S L , et al .

Stacked 2.6-Ma grain size record from the Chinese loess based on five sections and correlation with the deep-sea δ 18O record

[J]. Paleoceanography, 2002, 17(3). DOI: 10.1029/2001PA000725 .

[本文引用: 1]

Obreht I , Zeeden C , Hambach U , et al .

Tracing the influence of Mediterranean climate on southeastern Europe during the past 350,000 years

[J]. Scientific Reports, 2016, 6. DOI: 10.1038/srep36334 .

[本文引用: 3]

Rousseau D D , Derbyshire E , Antoine P , et al .

Loess records|Europe

[M]// Encyclopedia of Quaternary Science. London: Elsevier, 2007: 1 440-1 456.

[本文引用: 1]

Thamó-Bozsó E , Ó Kovács L , Á Magyari , et al .

Tracing the origin of loess in Hunagry with the help of heavy mineral composition data

[J]. Quaternary International, 2014, 319: 11-21.

[本文引用: 4]

Lisá L , Buriánek D , Uher P .

New approach to garnet redistribution during aeolian transport

[J]. Geological Quarterly, 2009, 53(3): 333-340.

[本文引用: 1]

Újvári G , Klötzli U , Kiraly F , et al .

Towards identifying the origin of metamorphic components in Austrian loess: Insights from detrital rutile chemistry, thermometry and U-Pb geochronology

[J]. Quaternary Science Reviews, 2013, 75: 132-142.

[本文引用: 2]

Újvári G , Varga A , Ramos F C , et al .

Evaluating the use of clay mineralogy, Sr-Nd isotopes and zircon U-Pb ages in tracking dust provenance: An example from loess of the Carpathian basin

[J]. Chemical Geology, 2012, 304/305: 83-96.

[本文引用: 8]

Gylesjö S , Arnold E .

Clay mineralogy of a red clay-loess sequence from Lingtai, the Chinese Loess Plateau

[J]. Global and Planetary Change, 2006, 51(3/4): 181-194.

[本文引用: 2]

Jeong G Y , Hillier S , Kemp R A .

Quantitative bulk and single-particle mineralogy of a thick Chinese loess-paleosol section: Implications for loess provenance and weathering

[J]. Quaternary Science Reviews, 2008, 27(11/12): 1271-1287.

[本文引用: 2]

Peng S Z , Hao Q Z , Oldfield F , et al .

Release of iron from chlorite weathering and links to magnetic enhancement in Chinese loess deposits

[J]. Catena, 2014, 117: 43-49.

[本文引用: 2]

Ji J F , Chen J , Lu H Y .

Origin of illite in the loess from the Luochuan area, Loess Plateau, Central China

[J]. Clay Minerals, 1999, 34(4): 525-532.

[本文引用: 2]

Újvári G , Varga A , Balogh-Brunstad Z .

Origin, weathering, and geochemical composition of loess in southwestern Hunagry

[J]. Quaternary Research, 2008, 69(3): 421-437.

[本文引用: 5]

Jahn B M , Gallet S , Han J M .

Geochemistry of the Xining, Xifeng and Jixian sections, Loess Plateau of China: Eolian dust provenance and paleosol evolution during the last 140 ka

[J]. Chemical Geology, 2001, 178(1/4): 71-94.

[本文引用: 3]

Taylor S R , Mclennan S M , Mcculloch M T .

Geochemistry of loess, continental crustal composition and crustal model ages

[J]. Geochimica et Cosmochimica Acta, 1983, 47(11): 1 897-1 905.

[本文引用: 1]

Smalley I .

The properties of glacial loess and the formation of loess deposits

[J]. Journal of Sedimentary Research, 1966, 36(3): 669-676.

[本文引用: 1]

Smalley I , O’Hara-Dhand K , Wint J , et al .

Rivers and loess: The significance of long river transportation in the complex event-sequence approach to loess deposit formation

[J]. Quaternary International, 2009, 198(1/2): 7-18.

[本文引用: 2]

Smith B J , Wright J S , Whalley W B .

Simulated aeolian abrasion of Pannonian sands and its implications for the origins of Hungarian loess

[J]. Earth Surface Processes and Landforms, 1991, 16(8): 745-752.

[本文引用: 2]

Buggle B , Glaser B , Zöller L , et al .

Geochemical characterization and origin of southeastern and eastern European loesses (Serbia, Romania, Ukraine)

[J]. Quaternary Science Reviews, 2008, 27(9/10): 1 058-1 075.

[本文引用: 3]

A-K Schatz , Qi Y , Siebel W , et al .

Tracking potential source areas of Central European loess: Examples from Tokaj (HU), Nussloch (D) and Grub (AT)

[J]. Open Geosciences, 2015, 7(1): 678-720.

[本文引用: 1]

Bradák B .

Application of Anisotropy of Magnetic Susceptibility (AMS) for the determination of paleo-wind directions and paleo-environment during the accumulation period of Bag Tephra, Hunagry

[J]. Quaternary International, 2009, 198(1/2): 77-84.

[本文引用: 2]

Bradák B , Újvári G , Seto Y , et al .

A conceptual magnetic fabric development model for the Paks loess in Hunagry

[J]. Aeolian Research, 2018, 30: 20-31.

[本文引用: 1]

Sebe K , Csillag G , Ruszkiczay-Rüdiger Z , et al .

Wind erosion under cold climate: A Pleistocene periglacial mega-yardang system in Central Europe (western Pannonian basin, Hunagry)

[J]. Geomorphology, 2011, 134(3/4): 470-482.

[本文引用: 2]

Gavrilov M B , Marković S B , Schaetzl R J , et al .

Prevailing surface winds in northern Serbia in the recent and past time periods; modern- and past dust deposition

[J]. Aeolian Research, 2018, 31: 117-129.

[本文引用: 1]

Muhs D R .

The geologic records of dust in the Quaternary

[J]. Aeolian Research, 2013, 9: 3-48.

[本文引用: 1]

Yang S L , Ding F , Ding Z L .

Pleistocene chemical weathering history of Asian arid and semi-arid regions recorded in loess deposits of China and Tajikistan

[J]. Geochimica et Cosmochimica Acta, 2006, 70(7): 1 695-1 709.

[本文引用: 1]

Prospero J M , Ginoux P , Torres O , et al .

Environmental characterization of global sources of atmospheric soil dust identified with the Nimbus 7 Total Ozone Mapping Spectrometer (TOMS) absorbing aerosol product

[J]. Reviews of Geophysics, 2002, 40(1). DOI: 10.1029/2000RG000095 .

[本文引用: 1]

Szoboszlai Z , Kertész Z , Szikszai Z , et al .

Ion beam microanalysis of individual aerosol particles originating from Saharan dust episodes observed in Debrecen, Hunagry

[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2009, 267(12/13): 2 241-2 244.

[本文引用: 1]

Varga G , Kovács J , Újvári G .

Analysis of Saharan dust intrusions into the Carpathian Basin (Central Europe) over the period of 1979-2011

[J]. Global and Planetary Change, 2013, 100: 333-342.

[本文引用: 1]

Varga G , Újvári G , Kovács J .

Spatiotemporal patterns of Saharan dust outbreaks in the Mediterranean Basin

[J]. Aeolian Research, 2014, 15: 151-160.

[本文引用: 2]

Kukla G J .

Correlations between loesses and deep-sea sediments

[J]. Geologiska Föreningen i Stockholm Förhandlingar, 1970, 92(2): 148-180.

[本文引用: 2]

Zeeden C , Hambach U , Steguweit L , et al .

Loess stratigraphy using palaeomagnetism: Application to the Poiana Cireşului archaeological site (Romania)

[J]. Quaternary International, 2011, 240(1/2): 100-107.

[本文引用: 2]

Haesaerts P , Borziac I , Chekha V P , et al .

Climatic signature and radiocarbon chronology of Middle and Late Pleniglacial loess from Eurasia: Comparison with the marine and Greenland records

[J]. Radiocarbon, 2009, 51(1): 301-318.

[本文引用: 1]

Haesaerts P , Borziac I , Chekha V P , et al .

Charcoal and wood remains for radiocarbon dating Upper Pleistocene loess sequences in Eastern Europe and Central Siberia

[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2010, 291(1/2): 106-127.

[本文引用: 1]

Sumegi P , Molnar M , Svingor E , et al .

Results of radiocarbon analysis of Upper Weichselian loess sequences from Hunagry

[J]. Radiocarbon, 2007, 49(2): 1 023-1 030.

[本文引用: 1]

Újvári G , Molnár M , Páll-Gergely B .

Charcoal and mollusc shell 14C-dating of the Dunaszekcső loess record, Hunagry

[J]. Quaternary Geochronology, 2016, 35: 43-53.

[本文引用: 2]

Ujvari G , Stevens T , Molnar M , et al .

Coupled European and Greenland last glacial dust activity driven by north Atlantic climate

[J]. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114(50): E10632-E10638.

[本文引用: 4]

Újvári G , Molnár M , Á Novothny , et al .

AMS 14C and OSL/IRSL dating of the Dunaszekcső loess sequence (Hunagry): Chronology for 20 to 150 ka and implications for establishing reliable age-depth models for the last 40 ka

[J]. Quaternary Science Reviews, 2014, 106: 140-154.

[本文引用: 2]

Pigati J S , Mcgeehin J P , Muhs D R , et al .

Radiocarbon dating late Quaternary loess deposits using small terrestrial gastropod shells

[J]. Quaternary Science Reviews, 2013, 76: 114-128.

[本文引用: 1]

Roberts H M .

The development and application of luminescence dating to loess deposits: A perspective on the past, present and future

[J]. Boreas, 2010, 37(4): 483-507.

[本文引用: 2]

Wintle A G , Packman S C .

Thermoluminescence ages for three sections in Hunagry

[J]. Quaternary Science Reviews, 1988, 7(3/4): 315-320.

[本文引用: 2]

Wang Leibin , Wei Haitao , Jia Jia , et al .

Advances and issues in luminescence dating of loess deposits in arid Central Asia

[J]. Advances in Earth Science, 2018, 33(1): 93-102.

[本文引用: 1]

王蕾彬魏海涛贾佳 .

亚洲中部干旱区黄土释光测年研究进展及其问题

[J]. 地球科学进展, 2018, 33(1): 93-102.

[本文引用: 1]

Singhvi A K , Bronger A , Sauer W , et al .

Thermoluminescence dating of loess-paleosol sequences in the Carpathian Basin (East-Central Europe): A suggestion for a revised chronology

[J]. Chemical Geology: Isotope Geoscience, 1989, 73(4): 307-317.

[本文引用: 1]

Wintle A G , Murray A S .

A review of quartz optically stimulated luminescence characteristics and their relevance in single-aliquot regeneration dating protocols

[J]. Radiation Measurements, 2006, 41(4): 369-391.

[本文引用: 1]

Frechen M , Horváth E , Gábris G .

Geochronology of Middle and Upper Pleistocene loess sections in Hunagry

[J]. Quaternary Research, 1997, 48(3): 291-312.

[本文引用: 1]

Á Novothny , Frechen M , Horváth E , et al .

Luminescence and amino acid racemization chronology of the loess-paleosol sequence at Süttő, Hunagry

[J]. Quaternary International, 2009, 198(1/2): 62-76.

[本文引用: 1]

Schmidt E D , Machalett B , Marković S B , et al .

Luminescence chronology of the upper part of the Stari Slankamen loess sequence (Vojvodina, Serbia)

[J]. Quaternary Geochronology, 2010, 5(2/3): 137-142.

[本文引用: 1]

Balescu S , Jordanova D , Brisson L F , et al .

Luminescence chronology of the northeastern Bulgarian loess-paleosol sequences (Viatovo and Kaolinovo)

[J]. Quaternary International, 2019. DOI: 10.1016/j.quaint.2019.04.020 .

[本文引用: 1]

Stevens T , Marković S B , Zech M , et al .

Dust deposition and climate in the Carpathian basin over an independently dated last glacial-interglacial cycle

[J]. Quaternary Science Reviews, 2011, 30(5/6): 662-681.

[本文引用: 1]

Thiel C , Horváth E , Frechen M .

Revisiting the loess/palaeosol sequence in Paks, Hunagry: A post-IR IRSL based chronology for the ‘Young Loess Series’

[J]. Quaternary International, 2014, 319: 88-98.

[本文引用: 3]

Á Novothny , Horváth E , Frechen M .

The loess profile at Albertirsa, Hungary—Improvements in loess stratigraphy by luminescence dating

[J]. Quaternary International, 2002, 95: 155-163.

[本文引用: 1]

Veres D , Lane C S , Timar-Gabor A , et al .

The Campanian Ignimbrite/Y5 tephra layer—A regional stratigraphic marker for Isotope Stage 3 deposits in the lower Danube region, Romania

[J]. Quaternary International, 2013, 293: 22-33.

[本文引用: 1]

Ding Z L , Yu Z W , Rutter N W , et al .

Towards an orbital time scale for Chinese loess deposits

[J]. Quaternary Science Reviews, 1994, 13(1): 39-70.

[本文引用: 1]

Hays J D , Imbrie J , Shackleton N J .

Variations in the earth’s orbit: Pacemaker of the Ice Ages

[J]. Science, 1976, 194(4 270): 1 121-1 132.

[本文引用: 1]

Marković S B , Hambach U , Stevens T , et al. Relating the astronomical timescale to the loess-paleosol sequences in Vojvodina ,

northern Serbia

[M]// Climate Change Vienna: Springer, 2012: 5-78.

[本文引用: 1]

[本文引用: 1]

Basarin B , Buggle B , Hambach U , et al .

Time-scale and astronomical forcing of Serbian loess-paleosol sequences

[J]. Global and Planetary Change, 2014, 122: 89-106.

[本文引用: 1]

Necula C , Dimofte D , Panaiotu C .

Rock magnetism of a loess-palaeosol sequence from the western Black Sea shore (Romania)

[J]. Geophysical Journal International, 2015, 202(3): 1 733-1 748.

[本文引用: 8]

Panaiotu C G , Panaiotu E C , Grama A , et al .

Paleoclimatic record from a loess-paleosol profile in southeastern Romania

[J]. Physics and Chemistry of the Earth, Part A: Solid Earth and Geodesy, 2001, 26(11/12): 893-898.

[本文引用: 4]

Jordanova D , Petersen N .

Palaeoclimatic record from a loess-soil profile in northeastern Bulgaria—I. Rock magnetic properties

[J]. Geophysical Journal International, 1999, 138(2): 520-532.

[本文引用: 3]

Bronger A .

Correlation of loess-paleosol sequences in East and Central Asia with SE Central Europe: Towards a continental quaternary pedostratigraphy and paleoclimatic history

[J]. Quaternary International, 2003, 106/107: 11-31.

[本文引用: 3]

Kukla G J .

Pleistocene land-sea correlations I. Europe

[J]. Earth-Science Reviews, 1977, 13(4): 307-374.

[本文引用: 2]

Marković S B , Stevens T , Mason J , et al .

Loess correlations—Between myth and reality

[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2018, 509: 4-23.

[本文引用: 1]

Marković S B , Yang S L , Mason J .

Eurasian loess records

[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2018, 509: 1-3.

[本文引用: 1]

Zeeden C , Hambach U , Obreht I , et al .

Patterns and timing of loess-paleosol transitions in Eurasia: Constraints for paleoclimate studies

[J]. Global and Planetary Change, 2018, 162: 1-7.

[本文引用: 1]

Liu X M , Liu Z , B , et al .

The magnetic properties of Serbian loess and its environmental significance

[J]. Chinese Science Bulletin, 2013, 58(3): 353-363.

[本文引用: 1]

Ding Z L , Ranov V , Yang S L , et al .

The loess record in southern Tajikistan and correlation with Chinese loess

[J]. Earth and Planetary Science Letters, 2002, 200(3/4): 387-400.

[本文引用: 1]

Wang Xin , Zhang Jinhui , Jia Jia , et al .

Pleistocene loess-paleosol sequences in arid Central Asia: State of art

[J]. Advances in Earth Science, 2019, 34(1): 34-47.

[本文引用: 1]

王鑫张金辉贾佳 .

中亚干旱区第四系黄土和干旱环境研究进展

[J]. 地球科学进展, 2019, 34(1): 34-47.

[本文引用: 1]

Zeeden C , Hambach U , Veres D , et al .

Millennial scale climate oscillations recorded in the lower Danube loess over the last glacial period

[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2018, 509: 164-181.

[本文引用: 2]

Á Novothny , Frechen M , Horváth E , et al .

Investigating the penultimate and last glacial cycles of the Süttő loess section (Hunagry) using luminescence dating, high-resolution grain size, and magnetic susceptibility data

[J]. Quaternary International, 2011, 234(1/2): 75-85.

[本文引用: 1]

Zeeden C , Kels H , Hambach U , et al .

Three climatic cycles recorded in a loess-palaeosol sequence at Semlac(Romania)—Implications for dust accumulation in south-eastern Europe

[J]. Quaternary Science Reviews, 2016, 154: 130-142.

[本文引用: 2]

Lukić T , Basarin B , Buggle B , et al .

A joined rock magnetic and colorimetric perspective on the Late Pleistocene climate of Orlovat loess site (northern Serbia)

[J]. Quaternary International, 2014, 334/335: 179-188.

[本文引用: 2]

Buggle B , Hambach U , Kehl M , et al .

The progressive evolution of a continental climate in Southeast-Central European lowlands during the Middle Pleistocene recorded in loess paleosol sequences

[J]. Geology, 2013, 41(7): 771-774.

[本文引用: 4]

Kovács J , Á Fábián S , Varga G , et al .

Plio-Pleistocene red clay deposits in the Pannonian basin: A review

[J]. Quaternary International, 2011, 240(1/2): 35-43.

[本文引用: 2]

Marković S B , Oches E A , McCoy W D , et al .

Malacological and sedimentological evidence for “warm” glacial climate from the Irig loess sequence, Vojvodina, Serbia

[J]. Geochemistry, Geophysics, Geosystems, 2007, 8(9). DOI: 10.1029/2006GC001565 .

[本文引用: 2]

Marković S B , Sümegi P , Stevens T , et al .

The Crvenka loess-paleosol sequence: A record of continuous grassland domination in the southern Carpathian Basin during the Late Pleistocene

[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2018, 509: 33-46.

[本文引用: 4]

Kovács J , Moravcová M , Újvári G , et al .

Reconstructing the paleoenvironment of East Central Europe in the Late Pleistocene using the oxygen and carbon isotopic signal of tooth in large mammal remains

[J]. Quaternary International, 2012, 276/277: 145-154.

[本文引用: 1]

Zech R , Zech M , Marković S , et al .

Humid glacials, arid interglacials? Critical thoughts on pedogenesis and paleoclimate based on multi-proxy analyses of the loess-paleosol sequence Crvenka, northern Serbia

[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2013, 387: 165-175.

[本文引用: 4]

Schreuder L T , Beets C J , Prins M A , et al .

Late Pleistocene climate evolution in southeastern Europe recorded by soil bacterial membrane lipids in Serbian loess

[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2016, 449: 141-148.

[本文引用: 3]

Újvári G , Kele S , Bernasconi S M , et al .

Clumped isotope paleotemperatures from MIS 5 soil carbonates in southern Hunagry

[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2019, 518: 72-81.

[本文引用: 1]

Marković S B , Bokhorst M P , Vandenberghe J , et al .

Late Pleistocene loess-palaeosol sequences in the Vojvodina region, north Serbia

[J]. Journal of Quaternary Science, 2008, 23(1): 73-84.

[本文引用: 1]

Wohlfarth B , Veres D , Ampel L , et al .

Rapid ecosystem response to abrupt climate changes during the last glacial period in western Europe, 40-16 ka

[J]. Geology, 2008, 36(5): 407-410.

[本文引用: 1]

Dansgaard W , Johnsen S J , Clausen H B , et al .

Evidence for general instability of past climate from a 250-kyr ice-core record

[J]. Nature, 1993, 364(6 434): 218-220.

[本文引用: 1]

Bond G , Broecker W , Johnsen S , et al .

Correlations between climate records from north Atlantic sediments and Greenland ice

[J]. Nature, 1993, 365(6 442): 143-147.

[本文引用: 1]

Sun Y B , Clemens S C , Morrill C , et al .

Influence of Atlantic meridional overturning circulation on the East Asian winter monsoon

[J]. Nature Geoscience, 2012, 5(1): 46-49.

[本文引用: 1]

Antoine P , Rousseau D D , Zoller L , et al .

High-resolution record of the last interglacial-glacial cycle in the Nussloch loess-palaeosol sequences, Upper Rhine area, Germany

[J]. Quaternary International, 2001, 76/7: 211-229.

[本文引用: 1]

Rousseau D D , Antoine P , Hatte C , et al .

Abrupt millennial climatic changes from Nussloch (Germany) Upper Weichselian eolian records during the Last Glaciation

[J]. Quaternary Science Reviews, 2002, 21(14/15): 1 577-1 582.

[本文引用: 1]

Antoine P , Lagroix F , Jordanova D , et al .

A remarkable Late Saalian (MIS 6) loess (dust) accumulation in the lower Danube at Harletz (Bulgaria)

[J]. Quaternary Science Reviews, 2019, 207: 80-100.

[本文引用: 1]

Zong Xiulan , Song Yougui , Li Yue .

Earthworm calcite granule—A new proxy for paleoenvironmental reconstruction

[J]. Advances in Earth Science, 2018, 33(9): 983-993.

[本文引用: 1]

宗秀兰宋友桂李越 .

蚯蚓方解石颗粒——一种新的古气候信息记录载体

[J]. 地球科学进展, 2018, 33(9): 983-993.

[本文引用: 1]

Velichko A , Morozova T D , Borisova O K , et al .

Development of the steppe zone in southern Russia based on the reconstruction from the loess-soil formation in the Don-Azov region

[J]. Doklady Earth Sciences, 2012, 445(2): 999-1 002.

[本文引用: 1]

Velichko A A , Catto N , Tesakov A S , et al .

Structural specificity of Pleistocene loess and soil formation of the southern Russian plain according to materials of eastern Priazovie

[J]. Doklady Earth Sciences, 2009, 429(1): 1 364-1 368.

[本文引用: 1]

Panin P G , Timireva S N , Morozova T D , et al .

Morphology and micromorphology of the loess-paleosol sequences in the south of the east European plain (MIS1-MIS17)

[J]. Catena, 2018, 168: 79-101.

[本文引用: 1]

Obreht I , Zeeden C , Hambach U , et al .

A critical reevaluation of palaeoclimate proxy records from loess in the Carpathian basin

[J]. Earth-Science Reviews, 2019, 190: 498-520.

[本文引用: 1]

Panin P G , Timireva S N , Konstantinov E A , et al .

Plio-Pleistocene paleosols: Loess-paleosol sequence studied in the Beregovoye section, the Crimean Peninsula

[J]. Catena, 2019, 172: 590-618.

[本文引用: 1]

/