地球科学进展, 2020, 35(12): 1306-1320 DOI: 10.11867/j.issn.1001-8166.2020.105

水生关键带有机碳循环过程:从分子水平到全球尺度

黄、东海陆架泥质区自生黄铁矿成因及其控制因素

常鑫,1, 张明宇1, 谷玉1, 王厚杰1,2, 刘喜停,1,2

1.中国海洋大学海洋地球科学学院,海底科学与探测技术教育部重点实验室,山东 青岛 266100

2.青岛海洋科学与技术试点国家实验室海洋地质过程与环境功能实验室,山东 青岛 266237

Formation Mechanism and Controlling Factors of Authigenic Pyrite in Mud Sediments on the Shelf of the Yellow Sea and the East China Sea

Chang Xin,1, Zhang Mingyu1, Gu Yu1, Wang Houjie1,2, Liu Xiting,1,2

1.College of Marine Geosciences,Key Laboratory of Submarine Geosciences and Prospecting Technology,Ocean University of China,Qingdao 266100,China

2.Laboratory for Marine Geology,Qingdao National Laboratory for Marine Science and Technology,Qingdao 266237,China

通讯作者: 刘喜停(1983-),男,山东临朐人,副教授,主要从事海洋沉积学研究. E-mail:liuxiting@ouc.edu.cn

收稿日期: 2020-10-16   修回日期: 2020-11-20   网络出版日期: 2021-02-09

基金资助: 国家自然科学基金项目“东海内陆架沉积物中自生黄铁矿的形成机制和对环境的响应”.  41976053
青岛海洋科学与技术试点国家实验室海洋地质过程与环境功能实验室创新团队建设项目“东海泥质区自生黄铁矿对末次冰消期以来沉积环境演化的响应机制”.  MGQNLM-TD201901

Corresponding authors: Liu Xiting (1983-), male, Linqu County, Shandong Province, Associate professor. Research areas include marine sedimentology. E-mail:liuxiting@ouc.edu.cn

Received: 2020-10-16   Revised: 2020-11-20   Online: 2021-02-09

作者简介 About authors

常鑫(1997-),男,山东青岛人,硕士研究生,主要从事海洋沉积学研究.E-mail:changxin@stu.ouc.edu.cn

ChangXin(1997-),male,QingdaoCity,ShandongProvince,Masterstudent.Researchareasincludemarinesedimentology.E-mail:changxin@stu.ouc.edu.cn

摘要

海洋自生黄铁矿的形成过程与有机质矿化过程密切相关,是构成全球C-S-Fe生物地球化学循环的重要一环。黄、东海陆架在全新世高水位期以来,广泛发育泥质沉积区,其中赋存大量自生黄铁矿,为研究其成因及其控制因素提供了契机。平面上,黄铁矿的分布与细粒泥质沉积伴生,因为细粒沉积物相对富集有机质且沉积环境稳定,有利于微生物硫酸盐还原的进行。黄、东海沉积动力、有机质来源和海洋生产力的区别导致黄铁矿生成与埋藏的差异,进而引起相关指标(例如C/S值)的不同。垂向上,黄铁矿的含量一般随着深度的增加而升高,说明随着埋深的增大,孔隙水中溶解氧耗尽后有利于硫酸盐还原的进行;黄铁矿硫同位素随着深度的增加而加重(富集34S),这可能与成岩系统的封闭性有关,也可能与甲烷厌氧氧化驱动的硫酸盐还原有关。另外,沉积速率通过影响有机质的埋藏、孔隙水和海水的联通效率以及硫酸盐—甲烷转换带的位置进而控制黄铁矿的含量及同位素组成。黄、东海陆架泥质区在沉积动力和沉积过程方面积累了大量优秀研究成果,可在此基础上,结合多硫同位素、原位微区测试等先进实验方法,发掘自生黄铁矿在探讨现代海洋C-S-Fe循环及深时海洋化学演化等重大科学问题的潜在价值。

关键词: 自生黄铁矿 ; 有机碳 ; 早期成岩 ; 沉积过程 ; 硫同位素

Abstract

The formation process of marine authigenic pyrite (FeS2) is closely related to the organic mineralization process, representing an important part of the global C-S-Fe biogeochemical cycle. Since the Holocene highstand of sea level, the shelves of the Yellow Sea and the East China Sea have developed mud deposits extensively, in which a large number of authigenic pyrites are present, which provides an opportunity to study their genesis and controlling factors. In terms of spatial distribution, the distribution of pyrite is accompanied by fine-grained mud sediments, because fine-grained sediments are relatively rich in organic matter, and the relatively stable depositional environment is conducive to the progress of microbial sulfate reduction. The differences in sedimentary dynamics, organic matter sources and marine productivity in the Yellow Sea and the East China Sea lead to differences in the formation and burial of pyrite, which in turn cause differences in related indicators (such as the C/S ratio). In the vertical direction, the content of pyrite generally increases with the increase of depth, indicating that as the depth of burial increases, the dissolved oxygen in the pore water is depleted, which is beneficial to the sulfate reduction; the sulfur isotope of pyrite becomes isotopically heavy with the depth (enrichment of 34S), which may be related to the openness of the diagenetic system, or the sulfate reduction driven by anaerobic oxidation of methane. In addition, the sedimentation rate controls the content and isotopic composition of pyrite via affecting the burial of organic matter, the efficiency of communication between pore water and seawater, and the location of the sulfate- methane transition zone. The mud areas of the shelves of the Yellow Sea and the East China Sea have accumulated a large number of excellent research results in sedimentary dynamics and sedimentary processes. On this basis, combined with advanced analyzing methods such as multi-sulfur isotopes, in-situ elemental on single pyrite crystal, the potential value of pyrite could be excavated to deal with major scientific issues such as the modern ocean C-S-Fe cycle and deep-time ocean chemical evolution.

Keywords: Authigenic pyrite ; Organic carbon ; Early diagenesis ; Sedimentary process ; Sulfur isotope

PDF (4414KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

常鑫, 张明宇, 谷玉, 王厚杰, 刘喜停. 黄、东海陆架泥质区自生黄铁矿成因及其控制因素. 地球科学进展[J], 2020, 35(12): 1306-1320 DOI:10.11867/j.issn.1001-8166.2020.105

Chang Xin, Zhang Mingyu, Gu Yu, Wang Houjie, Liu Xiting. Formation Mechanism and Controlling Factors of Authigenic Pyrite in Mud Sediments on the Shelf of the Yellow Sea and the East China Sea. Advances in Earth Science[J], 2020, 35(12): 1306-1320 DOI:10.11867/j.issn.1001-8166.2020.105

1 引 言

自生黄铁矿(FeS2)是海洋沉积物中主要且稳定存在的自生硫化矿物,是有机质矿化的产物之一,与海洋C-S-Fe循环和早期成岩过程密切相关1。现代海水中硫酸根含量为28 mmol/L,是海洋中最重要的氧化剂库,其氧化能力甚至高于大气氧,因此地质历史时期硫酸根浓度变化可以影响海洋和地球的氧化还原状态2。海水中丰富的硫酸根离子会在有机质的参与下发生异化还原,其中微生物硫酸盐还原(Microbial Sulfate Reduction,MSR)是有机质矿化的主要路径,消耗了大陆边缘50%以上的有机质3。微生物硫酸盐还原以及后续复杂生物化学反应会产生H2S以及其他种类硫化物,全球每年产生大约3×108 t的硫化物中,96%是通过微生物硫酸盐还原实现的4。生成的硫化物大部分会被重新氧化5,一部分硫化物则会与活性铁结合产生硫铁矿物,并最终转化为稳定的黄铁矿埋藏在海洋沉积物中。黄铁矿的形成过程是全球硫生物地球化学循环(硫酸盐还原、硫化物氧化歧化等)的重要一环(图1),它将初级生产力(光合作用)、有机质矿化过程以及沉积物的源—汇过程联系起来6,影响长时间尺度上表生地球化学过程。

图1

图1   沉积黄铁矿与全球C-S-Fe循环的关系(据参考文献[4]修改)

Fig.1   The relationship between sedimentary pyrite and global C-S-Fe cycle (modified after reference [4])


除了微生物和海水化学因素,局部沉积环境演化与黄铁矿的相互作用,也日益引起关注。自生黄铁矿的微观形态、硫同位素信号和分布特征等能够响应沉积环境的变化,这使得其在古环境和古气候的恢复中拥有巨大价值7;自生黄铁矿与全球气候和海洋环境有密切联系,在其形成过程中能够固定H2S并吸附和沉积海水中的Ba、Cd、Cu和Cr等有毒重金属元素,对海洋生态环境起到一定缓冲作用89;硫酸盐—甲烷转换带(Sulfate Methane Transition Zone,SMTZ)中的甲烷厌氧氧化过程(Anaerobic Oxidation of Methane,AOM)能够消耗向上泄漏的CH4,缓冲海洋向大气排放的甲烷量,降低其温室效应10;地质历史时期大陆架高水位下形成的黄铁矿会在冰期来临时,暴露在空气中氧化,释放大量CO2,一定程度上能够缓和冰期效应甚至促使冰期提前结束11;近些年硫同位素特别是高维度硫同位素方法在研究和示踪甲烷泄漏与深层硫循环、探索天然气水合物等方面也取得了一系列进展12~14。这意味着开展自生黄铁矿的研究,除了丰富和完善自生黄铁矿的沉积学与地球化学认识,还可以挖掘其在沉积演化方面的指示意义。

黄、东海内陆架普遍发育自生黄铁矿,早期的科研工作者对该海域内发育的自生黄铁矿的平面分布、形态标型、成因和控制因素等开展了开拓性的研究15~19。近期东海内陆架黄铁矿的研究表明,其形成过程及其特征与沉积动力过程密切相关2021,但这些初步的工作与中国东部边缘海丰富的沉积学研究内容相比还略显“单薄”。我国学者在中国东部陆架海沉积动力学、沉积物的源—汇过程及演化规律、河口陆架区沉积地球化学行为、陆架泥质体的形成等方面取得了大量的优秀研究成果22~28。上述沉积学系统和早期黄铁矿的研究成果为开展沉积物早期成岩过程和海洋自生矿物特别是自生黄铁矿的工作奠定了坚实的基础。为此,本文系统整理总结了黄、东海陆架泥质区黄铁矿的研究进展,并提出未来陆架区自生黄铁矿的研究方向,为进一步开展我国泥质区自生黄铁矿和C-S-Fe生物地球化学循环提供借鉴。

2 黄、东海地质背景

黄海是介于中国大陆和朝鲜半岛之间的半封闭陆架边缘海,水浅而开阔,平均水深44 m。黄河全长5 464 km,流域面积约75.2×104 km2,每年向海洋输送约1×109 t的陆源沉积物质29,是黄海主要的物质来源,此外长江与朝鲜半岛的沉积物供应也对黄海沉积物有所影响30。海域内环流主要受黄海暖流(Yellow Sea Warm Current,YSWC)和黄海沿岸流(Yellow Sea Coastal Current,YSCC)的控制,在其影响下形成了多个气旋式涡旋,也被称为冷涡19。黄海陆架在低能沉积环境和涡旋活动下发育形成北黄海西部、南黄海中部和济州岛西南等泥质区,其中南黄海中部泥质区最典型31图2)。南黄海中部水深达80 m,沿岸流携带黄河再悬浮沉积物与当地波浪、潮汐、上升流等相互作用发生沉积34,形成面积约50 000 km2的泥质区35,厚度3~5 m,最大可达16 m36,沉积环境稳定3738。该沉积区受到黄海暖流的影响39,海洋初级生产力相对较高,年平均初级生产力达315 mg/(m2·d)40

图2

图2   黄、东海泥质区(黄色部分)分布与洋流情况(据参考文献[32,33]修改)

YDW:长江冲淡水;ZMCC:浙闽沿岸流;YSWC:黄海暖流;YSCC:黄海沿岸流;YSMW:黄海混合水;TWC:对马暖流;TWWC:台湾暖流;KC:黑潮

Fig.2   Distribution of mud sediment (yellow) and ocean current system of the Yellow Sea and the East China Sea (modified after references [32,33])

YDW: Yangtze River Diluted Water; ZMCC: Zhe-Min Coastal Current; YSWC: Yellow Sea Warm Current;YSCC: Yellow Sea Coastal Current; YSMW: Yellow Sea Mixing Water; TWC: Tsushima Warm Current;TWWC: Taiwan Warm Current; KC: Kuroshio Current


东海北部与黄海相接,东南部通过冲绳海槽和琉球群岛与西太平洋相连,陆架宽度640 km,平均水深72 m,是世界上最发育的陆架海之一41。黑潮(Kuroshio Current,KC)、对马暖流(Tsushima Warm Current,TWC)、台湾暖流(Taiwan Warm Current,TWWC)、黄海混合水(Yellow Sea Mixing Water,YSMW)和浙闽沿岸流(Zhe-Min Coastal Current,ZMCC)等构成了东海复杂的洋流系统33图2)。年输沙量高达4.7×108 t42的长江为东海陆架沉积提供了主要的物源,此外,浙闽山地型局部河流和台湾河流对东海陆源沉积物也有不同程度的贡献25。东海内陆架沉积物在洋流系统与东亚季风的相互作用下,在长江口至台湾海峡之间、内陆架50 m等深线以浅的狭长区域内形成了长达800 km,平均宽约100 km的泥质沉积体(图2),最厚的堆积层可达40 m,由近岸向海逐渐尖灭2743~45。东海内陆架泥质区平均沉积速率高达1.97 cm/a46,沉积速率由长江口沿内陆架向南逐渐下降。内陆架沉积物受细粒组分的影响,其有机质含量通常远高于以粗粒组分为主的中、外陆架沉积物,影响关键元素的生物地球化学过程47

3 黄、东海自生黄铁矿的分布

3.1 平面分布特征

沉积自生黄铁矿是黄、东海地区的优势硫化物矿种48,也是中国东部边缘海的重要自生矿物1。以往的研究表明自生黄铁矿的产出与细粒泥质沉积物关系密切,在黄、东海泥质区中广泛分布,但含量变化大、分布不均匀49~51。南黄海北部海域对应的泥质沉积中,自生黄铁矿是主要的重矿物类型,此外成山角南部、南黄海中部和东部也有相应的分布5253;黄海自生黄铁矿全区平均含量4.21%,泥质体内平均含量7.31%,局部可达42.5%54图3);在东海海域自生黄铁矿集中分布于浙闽近海水深50 m以内的内陆架泥质区,含量均超过重矿物含量的9%以上,而包括东海中、外陆架,一直到冲绳海槽的其他大部分海域,含量较低,小于1%50;东海陆坡处也存在高含量的黄铁矿硫,是黄铁矿埋藏的有利场所56

图3

图3   黄海自生黄铁矿分布及同位素特征(据参考文献[31,54,55]修改)

(a)黄海黄铁矿含量等值线平面分布图;(b)H-106孔黄铁矿硫同位素δ34S值;YSWC:黄海暖流;YSCC:黄海沿岸流

Fig.3   Distribution and isotopic characteristics of authigenic pyrite in the Yellow Sea (modified after references [31,54,55])

(a) Distribution of pyrite content in mud sediment of the Yellow Sea; (b) Sulfur isotopic compositions of core H-106 derived from the Yellow Sea.YSWC:Yellow Sea Warm Current;YSCC:Yellow Sea Coastal Current


黄、东海泥质区的沉积环境差异影响了自生黄铁矿在区域内的产生和保存。长江口有更多陆源沉积输入,陆源碎屑中含有的铁氧化物提供了过量的活性铁,这促进了铁还原过程而在一定程度上抑制了硫酸盐还原,导致硫化物产量较低;东海内陆架泥质区具有较高的沉积速率,海源有机质占比较河口地区高,因此硫酸盐还原速率较高,有利于自生黄铁矿生成;南黄海中部泥质区沉积速率低,高的初级生产率使得海源有机质占比超过70%,但由于特殊的水动力条件,有机质中92.4%的组分在水柱中被分解,仅有5.4%的有机质能够在沉积物中发生矿化,并且低的底水温度会抑制硫酸盐还原微生物活性33。酸可溶挥发性硫(Acid Volatile Sulfide,AVS)主要成分包括四方硫铁矿、胶黄铁矿、硫铁矿和磁黄铁矿等,其含量会受到沉积物的氧化还原状态、有机质的含量和沉积类型等的影响,一定程度上能够反映生成自生黄铁矿的潜力和硫酸盐还原效率57。最近的研究表明酸可溶挥发性硫的高值区分布在长江口和浙闽沿岸以及东海陆坡的部分站位(最高值可达25 μmol/g4856),高于南黄海研究区域的酸可溶挥发性硫含量(0.02~11.14 µmol/g)58

这些证据似乎表明相对于东海内陆架泥质区,南黄海的沉积环境并不利于自生黄铁矿的生成。但研究显示48,南黄海表层沉积物中黄铁矿硫的含量范围是0.61~113.10 μmol/g,而东海内陆架泥质区只有0.61~54.82 μmol/g;另一方面,中国东部边缘海采集的样品中酸可溶挥发性硫与黄铁矿硫的比值基本小于0.3,表明酸可溶挥发性硫能够有效地转化为黄铁矿,但南黄海样品的这一数值要普遍略小于东海内陆架泥质区,反映南黄海泥质区更加适合自生黄铁矿的产生。这一论证分歧或许可以归因于黄、东海不同泥质区沉积环境对自生黄铁矿的限制:东海内陆架泥质区强水动力条件和频繁的底栖生物扰动造成沉积物再悬浮和硫化物再氧化,而南黄海低沉积速率和稳定还原环境有利于酸可溶挥发性硫向自生黄铁矿转化。这种分布的差异反映出局部沉积环境和水动力条件对自生黄铁矿产生和埋藏的影响,亟需进一步工作的验证。

3.2 垂向分布特征

在垂向上,自生黄铁矿的含量变化受沉积环境的控制较为明显49,主要发育于沉积物—水界面以下几厘米到几米的范围内。水体缺氧还原、良好的有机质和硫酸盐供给可以促进硫酸盐还原过程,进而有利于黄铁矿的生成。黄、东海自生黄铁矿大都呈现出由表面的低含量随深度逐渐增加的趋势48,并且伴随着黄铁矿硫同位素组成的改变(图3)。

自生黄铁矿含量受沉积因素影响而在垂向上发生明显变化。东海内陆架泥质沉积区内有浅层气产出,因此甲烷厌氧氧化作用会影响黄铁矿的垂向分布,以杭州湾YS6钻孔为例,该钻孔位于30°19'32.54"N、121°54'03.39"E的杭州湾内,水深约16 m,岩心柱总长60.6 m,有数套富有机质淤泥层与砂层沉积,淤泥层中有甲烷气产出。钻孔中硫酸盐—甲烷转换带的深度为6~8 m59,在该深度内,来源于沉积物更深部的甲烷向上泄漏,硫酸盐被快速消耗,产生的硫化物与活性铁结合,最终生成黄铁矿的富集带(图4)。沉积物中C/S=2.8通常被用来区分淡水和海洋环境60,因此岩心柱中随深度变化的C/S值或许可以用来反演地质历史时期的海陆变化和海平面升降情况。但在东海内陆架及台湾北部海域,有机质的低活性、强烈的沉积物物理改造以及Mn4+、Fe3+等还原作用造成硫化物再氧化导致了沉积物中C/S高于2.8476162,反映东海内陆架泥质区非稳态沉积环境的特点。东海温带非稳态沉积环境与热带泥质区(例如亚马孙泥质区)具有良好的类比性,因此开展相关的对比研究工作对深入认识非稳态沉积环境内黄铁矿和有机质的埋藏具有重要意义。

图4

图4   杭州湾YS6钻孔孔隙水剖面(据参考文献[59]修改)

阴影部分指示SMTZ、硫酸盐还原生成硫化带,钻孔位置见图6

Fig.4   Porewater profile of core YS6 from the Hangzhou Bay (modified after reference [59])

The shaded part indicates the SMTZ,where sulfide zone is formed by sulfate reduction. The core location is presented in Fig. 6


4 自生黄铁矿形貌及硫同位素特征

4.1 自生黄铁矿形貌特征

自生黄铁矿的微观形态可以分为自形晶、他形晶以及由上述规格组成的莓状黄铁矿和其他不同形态的聚集体。黄、东海沉积物中已报道的自生黄铁矿样品呈黄铜色、黄色、浅黄色和暗绿色等,形态多样,以生物介壳状、莓状自生黄铁矿为多,颗粒大小在几微米到几十微米之间(图5a),也观察到部分样品中黄铁矿呈不规则状产出(图5b)15556364。初凤友等6465发现南黄海自生黄铁矿集合体形态可以分为聚莓、单莓和细粒3种,根据成因—形态分类将黄铁矿集合体分为2种,即I型充填作用为主和II型充填和交代作用为主。段伟民等66根据黄、东海沉积物孔隙水中SO42-的含量,指出黄铁矿的生成过程是多阶段的,不同的沉积环境和硫来源可以产生不同结晶形态和硫同位素特征的黄铁矿。

图5

图5   EC2005钻孔中产出的自生黄铁矿集合体和自生石膏(据参考文献[5,20,21]修改)

(a)充填在有孔虫中的生物状自生黄铁矿;(b)管状和他形聚集体;(c)~(e)莓状黄铁矿及表面有溶解坑的八面体微晶;(f)硫化物氧化形成的自生石膏

Fig.5   Authigenic pyrite aggregates and authigenic gypsum of core EC2005 (modified after references [5,20,21])

(a) Authigenic pyrite growing in foraminifera; (b) Tubular and irregular authigenic pyrite aggregates; (c)~(e) Pyrite framboid and octahedral microcrystals with dissolution pits on the surface; (f) Authigenic gypsum caused by sulfide oxidation


莓状黄铁矿作为自生黄铁矿的一种特殊类型,在沉积学中的研究相对广泛和深入67~69,其粒径形貌、数量、分布范围及微晶几何形态等可综合反映沉积时水体的氧化还原条件,在恢复古环境信息、研究生物地球化学循环等方面应用广泛70。莓状黄铁矿不能直接通过溶液沉淀析出,而需要从稳定性较差的中间态铁的硫化物转化而来71。每一个莓球都是由若干形态相似的细小微晶排列而成,常见的微晶形态包括四面体、立方体、八面体和五角十二面体等(图5c)。研究发现这些微晶的形态主要与反应溶液的过饱和度相关,随着溶液过饱和度的增加,微晶按照立方体—八面体—球体的趋势生长72,而微晶的自行程度、大小和形态系列方面的差异意味着控制结晶机制的微环境有所不同15。在非稳态沉积环境内,莓状黄铁矿会遭受强烈的物理扰动,进而遭受再氧化而在微晶表面出现溶蚀坑(图5d~e),造成局部硫酸根离子的富集,有利于硫酸盐矿物的形成,例如东海内陆架沉积物中发现的自生石膏(图5f)5

4.2 自生黄铁矿硫同位素特征

海水中硫酸盐δ34S的平均值为21.24‰73,但在微生物硫酸盐还原过程中微生物优先还原偏轻的硫同位素(32S),并有可能伴随微生物歧化反应,进一步加剧还原态硫化物和原始海洋硫酸盐硫同位素之间的分馏74。上述现象在黄、东海岩心数米以浅的沉积物范围中普遍存在,黄铁矿的硫同位素为显著亏损34S,例如南黄海H-106孔(35°30'N,123°00'E)中黄铁矿δ34S变化范围为-39.2‰~-28.9‰(图331;北黄海H88-7孔(37°50'N,122°14'E)2 mbsf层位黄铁矿δ34S可达-44.4‰66;东海内陆架DH5-1(28°26.4'N,122°10.8'E)和DH7-1(27°22.8'N,121°10.2'E)浅层(图6)柱状样品中δ34S值均小于-27‰47图6c)。这些数据反映了有机质参与的硫酸盐还原在黄、东海自生黄铁矿发育过程中发挥重要作用。东海黄铁矿硫同位素组成偏轻的特征与同为非稳态环境的亚马孙泥质区的黄铁矿硫同位素组成偏重的特征不同,可能是东海内陆架泥质区与亚马孙泥质区之间诸如有机质降解性、化学风化强度、扩散程度等方面的不同,导致了二者早期成岩过程差异47

图6

图6   东海内陆架自生黄铁矿硫同位素特征(据参考文献[20,47]修改)

(a)东海内陆架泥质区中部分钻孔分布图;(b) EC2005孔中黄铁矿硫同位素与沉积速率的关系;(c)DH5-1、DH7-1中黄铁矿的δ34S;δSCRS指铬还原法测量硫同位素,δSPyr指手工挑选黄铁矿测量硫同位素;YDW:长江冲淡水;ZMCC:浙闽沿岸流;TWC:对马暖流

Fig.6   Isotopic characteristics of authigenic pyrite in the inner shelf of the East China Sea (modified after references [20,47])

(a) Core sites from the inner shelf of the East China Sea mentioned in the text;(b) Correlation between pyrite sulfur isotope and sedimentation rate in core EC2005;(c) δ34S values of pyrite from cores DH5-1 and DH7-1,δSCRS refers to the measurement of sulfur isotope by chromium reduction method, δSPyr means sulfur isotope values of hand-picked macroscopic pyrites. YDW:Yangtze River Diluted Water;ZMCC:Zhe-Min Coastal Current;TWC:Tsushima Warm Current


但最近对东海内陆架泥质区沉积中心EC2005孔(27°25.0036′N,121°20.0036′E)的研究表明,黄铁矿硫同位素在12~25和29~31 mbsf等深度范围内出现偏重的现象(图6b),这可能与该区域较高的沉积速率有关21。另外在硫酸盐—甲烷转换带内,甲烷厌氧氧化活动造成微生物硫酸盐还原的迅速进行使硫化物与硫酸盐之间硫同位素的分馏程度保持在20‰~40‰75。鉴于浅层气在东海内陆架泥质区的存在,自生黄铁矿的富集及其硫同位素偏重也可能是甲烷厌氧氧化活动的结果20。以往的研究结果表明,黄、东海泥质区不同的沉积环境可能导致黄铁矿硫同位素的差异,说明黄铁矿硫同位素能够快速响应沉积环境的变化,是示踪沉积环境演化的潜在指标。

5 黄、东海黄铁矿形成及其硫同位素的控制因素

黄铁矿的最终形成决定于局部微环境65,其形成过程受到有机质的含量和活性、硫酸盐浓度、活性铁含量的限制7677。黄、东海自生黄铁矿的形成环境具有沉积物粒度细、有机质丰富和偏碱性的还原条件等特征3155637879,其中微生物在自生黄铁矿的形成过程中发挥着关键作用79。根据前人的研究成果,黄、东海陆架泥质区自生黄铁矿形成和同位素组成的控制因素包括:有机质含量与活性、成岩系统的开放性、甲烷厌氧氧化和沉积速率。

5.1 有机质的含量与活性

开放的海洋环境富含硫酸盐,而黄铁矿化度[DOP=Fepy/(Fepy+FeR),FeR指剩余活性铁,Fepy指黄铁矿铁]普遍小于0.6指示在黄、东海海域活性铁的含量并不会限制自生黄铁矿的生长4880。大陆边缘海是不同来源,不同性质有机碳沉积和埋藏的主要场所81,Lin等82通过研究东海陆架南部多个岩心发现硫酸盐还原速率和黄铁矿埋藏速率二者与有机碳埋藏速率呈明显的正相关,因此有机质的含量和活性成为黄、东海限制自生黄铁矿形成的主要因素(图7)。虽然黄河、长江等大中型河流向中国东部边缘海提供了大量的泥沙与有机质,但有机质含量(平均含量0.64%)仍低于亚马孙、密西西比陆架和三角洲甚至世界陆架的平均水平(平均含量0.75%)488283;东海内陆架泥质区中相对难分解的陆源有机质组分达33%,长江口处接近50%33,陆源有机质相对更难分解而不利于硫酸盐还原反应进行。低的有机质含量和活性造成了中国东部边缘海中黄铁矿硫含量相对低于世界其他沿海沉积区8084

图7

图7   东海陆架沉积物硫酸盐还原速率和黄铁矿硫埋藏速率与有机碳埋藏速率之间的关系82

Fig.7   The linear relationship between sulfate reduction rate,pyrite sulfur burial rate and organic carbon burial rate in the East China Sea continental shelf sediments[82]


5.2 成岩系统的开放性

从沉积物—水界面向下,随着深度的增加,成岩系统逐渐从开放环境向封闭系统过渡,孔隙水中硫酸盐含量逐渐消耗和受限,进而控制自生黄铁矿的形成和埋藏85。段伟民等66以黄、东海陆架泥质区5根岩心为研究对象,以孔隙水中硫酸盐含量、可溶性硫和黄铁矿硫同位素信号的垂向变化为依据,提出黄铁矿形成的4个阶段(图8):第一阶段(沉积物水界面到酸可溶挥发性硫峰值深度)硫酸盐快速还原、酸可溶挥发性硫产率高于黄铁矿,硫同位素分馏较小;第二阶段(向下至SO42-含量开始降低位置)硫酸盐还原速率和酸可溶挥发性硫产率开始降低,并出现明显的同位素分馏,黄铁矿缓慢形成;第三阶段(向下至SO42-含量趋零点)硫酸盐含量开始降低指示封闭环境形成,瑞利分馏使得δ34S回升;第四阶段(向下剩余区域)硫酸盐耗尽,若有机碳依旧剩余,会利用邻近层位SO42-继续生成富集34S的自生黄铁矿。此外,最新的研究表明东海内陆架泥质区内的快速沉积事件也有利于封闭成岩环境的形成,导致黄铁矿硫同位素富集34S21

图8

图8   成岩系统的开放程度与黄铁矿相关地球化学参数之间的关系[66]

Fig.8   Openness of the diagenetic system and its control on the geochemical parameters related to pyrite[66]


5.3 硫酸盐甲烷厌氧氧化

理想的氧化还原序列中,靠近下方的是硫酸盐—甲烷转换带和产甲烷带,难以分解的有机碳发生埋藏并被产甲烷菌利用生成CH4,向上扩散引发强烈的甲烷厌氧氧化和微生物硫酸盐还原活动(CH4+ SO42-→HCO3-+HS-+H2O)。该反应主要发生在硫酸盐—甲烷转换带,通常会引起黄铁矿的富集和δ34S值的正偏,伴随着天然气水合物的分解8687。因此,从东海陆架外侧冲绳海槽甲烷泄漏区中采集的自生黄铁矿样品基本表现为δ34S的正偏,最大值可达8.92‰88,在此种环境下观察到由莓球组成的管状黄铁矿集合体,其中部分莓状黄铁矿受甲烷厌氧氧化作用影响发生后期过度生长,而管状外观代表了沉积物中流体运移的微通道89。长江河口、东海内陆架泥质区以及南黄海泥质区沉积了细粒和富有机碳的沉积物,以甲烷为主的浅层气较为发育90。Chen等91通过高分辨率地震声学资料对东海内陆架的浅层气分布进行了观测,发现浅层气主要分布在受长江控制的内陆架全新世沉积中,埋藏深度较浅。此外,浅层甲烷气的活动还可以控制硫酸盐—甲烷转换带的深度,进而控制黄铁矿的形成路径(有机质硫酸盐还原或甲烷厌氧氧化),影响其地层分布和同位素组成20

5.4 沉积速率

沉积速率对自生黄铁矿的限制主要通过间接改变其他限制因素来实现。高的沉积速率意味着有机质含量的提高,这对硫酸盐还原起到了控制作用56,通过解除有机质对黄铁矿的限制来促进其生长发育。但当沉积速率超过某一阈值,则会造成对沉积物中有机质的稀释92;过高的沉积速率会极大地减少硫化物在氧化还原界面逗留的时间,导致酸可溶挥发性硫向黄铁矿的不完全转化93。因此沉积速率对自生黄铁矿发育的影响不能一概而论。

边缘海的沉积速率往往与海平面和河流输入的变化有关,因此沉积速率改变引起的黄铁矿硫同位素信号的波动可用来恢复古环境演化,例如冰期和间冰期的旋回94~96。Liu等21以东海内陆架泥质区EC2005孔为研究对象,发现样品中的自生黄铁矿硫同位素信号与沉积速率曲线有良好的对应关系,指出高沉积速率有利于使原本开放的孔隙水环境迅速转变为封闭系统,从而引起瑞利分馏,导致黄铁矿硫同位素变重(图6b)。有学者认为硫酸盐还原速率与自生黄铁矿硫同位素分馏程度成反比,高的硫酸盐还原速率会减弱微生物硫酸盐还原导致的硫同位素分馏,而较高的沉积速率往往会导致高的硫酸盐还原速率97。此外,沉积速率的改变还会引起硫酸盐—甲烷转换带位置的变动,以MD06-3042孔(27°5.4′N,121°24.1′E)为例98图9),当12.8 mm/a的高沉积速率突然降低到0.4 mm/a时,氧气有更多的时间向更深的地层扩散,原始的硫酸盐—甲烷转换带向下发生移动,这导致了氧化还原层位T4会变得更厚(I,II);当沉积速率剧增则会造成相反的状况,硫酸盐—甲烷转换带会向上迁移到新的T2位置(II,III)。硫酸盐—甲烷转换带的迁移会造成带内磁性矿物溶解,这一事实能够通过体积磁化率曲线反映出来。当硫酸盐—甲烷转换带随沉积速率波动发生迁移而造成甲烷厌氧氧化成为控制硫酸盐还原过程的主要机制时,黄铁矿硫同位素会快速响应,富集34S20

图9

图9   体积磁化率反映的SMTZ受沉积速率影响迁移模式图[98]

Fig.9   Migration of the SMTZ responding to changes in sedimentation rates indicated by magnetic susceptibility[98]


6 总结与展望

黄、东海的泥质区中广泛分布着自生黄铁矿,并受到有机质含量、系统开放性、甲烷厌氧氧化活动和沉积速率等不同因素的控制。近些年来,局部环境对黄铁矿及其同位素的影响受到越来越多的重视,并提出利用黄铁矿硫同位素示踪海平面变化和沉积速率等沉积环境演化过程的观点,特别是在浅海沉积环境中。黄、东海海域多样的沉积环境和地质历史能够被记录在自生黄铁矿的含量、形态及其硫同位素信号中,这为我们研究自生黄铁矿对沉积环境的响应机制提供了良好的材料,可在以下几个方面开展进一步工作:

(1)黄、东海沉积环境与地中海、黑海、亚马孙河口等相比具有独特的一面,这也意味着其沉积物内自生黄铁矿发育模式或许具有特殊性,可提出新的模式和观点;此外,依据目前所整理的样品资料来看,黄海和东海泥质区内自生黄铁矿的平面分布情况还不详实,不同的水动力条件和沉积环境对自生黄铁矿造成的差异尚不明确,需要进一步查明。

(2)全岩样品中硫化物的地球化学特征能够反映沉积物的整体情况,但也容易造成不同时期、环境、成因的黄铁矿地球化学特征的混淆。研究表明手工挑选黄铁矿颗粒样品能够对沉积物记录中的硫循环演化起到良好的限制作用,而对自生黄铁矿进行微区定量分析(主微量元素和同位素)可以更好地限制黄铁矿的成岩路径。

(3)硫酸盐—甲烷转换带中既存在有机质参与的硫酸盐还原,也存在甲烷厌氧氧化驱动的硫酸盐还原,两者在自生黄铁矿形成过程中的贡献比例对预测海洋甲烷释放具有重要意义。黄、东海泥质区是浅层甲烷气有效的储集场所,通过多硫同位素等方法开展黄、东海泥质区中硫酸盐—甲烷转换带内自生黄铁矿的研究或许能够对上述问题提供相应的思路。

(4)铁驱动的硫化物氧化和甲烷厌氧氧化过程或许在硫酸盐—甲烷转换带之下的C-S-Fe循环中起到关键作用,但我们对硫酸盐—甲烷转换带及之下区域中相关的C-S-Fe循环仍知之甚少,黄、东海内陆架末次盛冰期以来经历了海陆环境的演化,可以提供相应的研究材料,但需要更加深入的工作。

参考文献

Liu XitingLi AnchunMa Zhixinet al.

Constraint of sedimentary processes on the sulfur isotope of authigenic pyrite

[J]. Acta Sedimentologica Sinica,2020381): 124-137.

[本文引用: 2]

刘喜停李安春马志鑫.

沉积过程对自生黄铁矿硫同位素的约束

[J]. 沉积学报,2020381): 124-137.

[本文引用: 2]

Fike D ABradley A SRose C V.

Rethinking the ancient sulfur cycle

[J]. Annual Review of Earth and Planetary Sciences,2015431): 593-622.

[本文引用: 1]

Jørgensen B B.

Mineralization of organic matter in the sea bed—The role of sulphate reduction

[J]. Nature,1982296643-645.

[本文引用: 1]

Rickard DMussmann MSteadman J A.

Sedimentary sulfides

[J]. Elements,201713117-122.

[本文引用: 3]

Liu X TLi A CDong Jet al.

Nonevaporative origin for gypsum in mud sediments from the East China Sea shelf

[J]. Marine Chemistry,201820590-97.

[本文引用: 3]

Jørgensen B BFindlay A JPellerin A.

The biogeochemical sulfur cycle of marine sediments

[J]. Frontiers in Microbiology,201910849). DOI:10.3389/fmicb.2019.00849.

DOI      [本文引用: 1]

Wang KunshanShi XuefaLi Zhenet al.

Records of heavy mineral and authigenous pyrite in core DGKS9617 from the East China Sea

[J]. Marine Geology & Quaternary Geology,2005254): 41-45.

[本文引用: 1]

王昆山石学法李珍.

东海DGKS9617岩心重矿物及自生黄铁矿记录

[J]. 海洋地质与第四纪地质,2005254): 41-45.

[本文引用: 1]

Liu JZhu M XYang G Pet al.

Quick sulfide buffering in inner shelf sediments of the East China Sea impacted by eutrophication

[J]. Environmental Earth Sciences,2013711): 465-473.

[本文引用: 1]

Allen H EFu G MDeng B L.

Analysis of Acid‐Volatile Sulfide (AVS) and Simultaneously Extracted Metals (SEM) for the estimation of potential toxicity in aquatic sediments

[J]. Environmental Toxicology & Chemistry,1993121 441-1 453.

[本文引用: 1]

Reeburgh W S.

Oceanic methane biogeochemistry

[J]. Chemical Reviews,20071072): 486-513.

[本文引用: 1]

Kölling MBouimetarhan IBowles M Wet al.

Consistent CO2 release by pyrite oxidation on continental shelves prior to glacial terminations

[J]. Nature Geoscience,20191211): 929-934.

[本文引用: 1]

Feng DongGong Shanggui.

Progress on the biogeochemical process of sulfur and its geological record at submarine cold seeps

[J]. Bulletin of Mineralogy,Petrology and Geochemistry,2019386): 1 047-1 056.

[本文引用: 1]

冯东宫尚桂.

海底冷泉系统硫的生物地球化学过程及其沉积记录研究进展

[J]. 矿物岩石地球化学通报,2019386): 1 047-1 056.

[本文引用: 1]

Gong S GPeng Y BBao H Met al.

Triple sulfur isotope relationships during sulfate-driven anaerobic oxidation of methane

[J]. Earth and Planetary Science Letters,201850413-20.

Liu J RPellerin AIzon Get al.

The multiple sulphur isotope fingerprint of a sub-seafloor oxidative sulphur cycle driven by iron

[J]. Earth and Planetary Science Letters,2020536116165.

[本文引用: 1]

Wang QiYang Zuosheng.

Authigenic pyrite in the surface sediments of the southern Huanghai Sea

[J]. Oceanologia et Limnologia Sinica,1981121): 25-32.

[本文引用: 3]

王琦杨作升.

黄海南部表层沉积中的自生黄铁矿

[J]. 海洋与湖沼,1981121): 25-32.

[本文引用: 3]

Wang XianlanMa KejianChen Jianlinet al.

Detrital minerals in the surface sediments of East China Sea shelf and their geological significance

[J]. Marine Geology & Quaternary Geology,198443): 43-55.

王先兰马克俭陈建林.

东海海底表层沉积物中的碎屑矿物及其地质意义

[J]. 海洋地质与第四纪地质,198443): 43-55.

Wang XianlanMa KejianChen Jianlinet al.

Study on the characteristics of clastic minerals in the East China Sea

[J]. Science in China (Series B),19855): 474-482.

王先兰马克俭陈建林.

东海碎屑矿物特征的研究

[J]. 中国科学:B辑,19855): 474-482.

Li AnchunChen LirongShen Shunxi. Study on sulfur isotopes of authigenic pyrite of core H-106

from South Yellow Sea

[J]. Chinese Science Bulletin,19913612): 928-930.

李安春陈丽蓉申顺喜.

南黄海H-106岩柱中自生黄铁矿的硫同位素研究

[J]. 科学通报,19913612): 928-930.

Shen Shunxi.

Extend progress in study of sedimentology in the South Yellow Sea continental shelf

[J]. Marine Sciences,19935): 24-28.

[本文引用: 2]

申顺喜.

南黄海陆架沉积学研究

[J]. 海洋科学,19935): 24-28.

[本文引用: 2]

Liu X TLi A CFike D Aet al.

Environmental evolution of the East China Sea inner shelf and its constraints on pyrite sulfur contents and isotopes since the last deglaciation

[J]. Marine Geology,2020429106307.

[本文引用: 6]

Liu X TFike DLi A Cet al.

Pyrite sulfur isotopes constrained by sedimentation rates: Evidence from sediments on the East China Sea inner shelf since the late Pleistocene

[J]. Chemical Geology,201950566-75.

[本文引用: 5]

Li G XLi PLiu Yet al.

Sedimentary system response to the global sea level change in the East China Seas since the last glacial maximum

[J]. Earth-Science Reviews,2014139390-405.

[本文引用: 1]

Liu J XMei XShi X Fet al.

Formation and preservation of greigite (Fe3S4) in a thick sediment layer from the central South Yellow Sea

[J]. Geophysical Journal International,2018213135-146.

Liu JSaito YKong X Het al.

Sedimentary record of environmental evolution off the Yangtze River estuary,East China Sea,during the last ∼13,000 years,with special reference to the influence of the Yellow River on the Yangtze River Delta during the last 600 years

[J]. Quaternary Science Reviews,2010292 424-2 438.

Liu X TLi A CDong Jet al.

Provenance discrimination of sediments in the Zhejiang-Fujian mud belt,East China Sea: Implications for the development of the mud depocenter

[J]. Journal of Asian Earth Sciences,20181511-15.

[本文引用: 1]

Gao Shu. Holocene sedimentary systems over the BohaiYellow and East China Sea region

Recent progress in the study of process-product relationships

[J]. Acta Sedimentologica Sinica,2013315): 845-855.

高抒.

中国东部陆架全新世沉积体系:过程—产物关系研究进展评述

[J]. 沉积学报,2013315): 845-855.

Li AnchunZhang Kaidi.

Research progress of mud wedge in the inner continental shelf of the East China Sea

[J]. Oceanologia et Limnologia Sinica,2020514): 705-727.

[本文引用: 1]

李安春张凯棣.

东海内陆架泥质沉积体研究进展

[J]. 海洋与湖沼,2020514): 705-727.

[本文引用: 1]

Yang ShouyeWei GangjianShi Xuefa.

Geochemical approaches of tracing sourceto-sink sediment processes and environmental changes at the East Asian continental margin

[J]. Bulletin of Mineralogy,Petrology and Geochemistry,2015345): 902-910884.

[本文引用: 1]

杨守业韦刚健石学法.

地球化学方法示踪东亚大陆边缘源汇沉积过程与环境演变

[J]. 矿物岩石地球化学通报,2015345): 902-910884.

[本文引用: 1]

Saito YYang Z S.

Historical change of the Huanghe (Yellow River) and its impact on the sediment budget of the East China Sea

[C]//Proceedings of International Symposium on Global Fluxs of Carbon and its Related Substances in the Coastal Sea-Ocean Atmosphere System.SapporoHokkaido University19947-12.

[本文引用: 1]

Lan XianhongZhang XunhuaZhang Zhixun.

Material sources and transportation of sediments in the southern Yellow Sea

[J]. Transactions of Oceanology and Limnology,20054): 53-60.

[本文引用: 1]

蓝先洪张训华张志珣.

南黄海沉积物的物质来源及运移研究

[J]. 海洋湖沼通报,20054): 53-60.

[本文引用: 1]

Li AnchunChen LirongShen Shunxiet al.

Study on the authigenic pyrite in the core H-106 from the central South Yellow Sea

[J]. Studia Marina Sinica,19933479-86236.

[本文引用: 4]

李安春陈丽蓉申顺喜.

南黄海中部H-106柱状沉积物中自生黄铁矿的研究

[J]. 海洋科学集刊,19933479-86236.

[本文引用: 4]

Yang S YWang Z BDou Y Get al.

A review of sedimentation since the last glacial maximum on the continental shelf of eastern China

[J]. Geological Society,LondonMemoirs,2014411): 293-303.

[本文引用: 1]

Zhao BYao PBianchid T Set al.

The remineralization of sedimentary organic carbon in different sedimentary regimes of the Yellow and East China Seas

[J]. Chemical Geology,2018495104-117.

[本文引用: 4]

Yang Z SLiu J P.

A unique Yellow River-derived distal subaqueous delta in the Yellow Sea

[J]. Marine Geology,2007240169-176.

[本文引用: 1]

Wang LiboYang ZuoshengZhao Xiaohuiet al.

Sedimentary characteristics of core YE-2 from the central mud area in the South Yellow Sea during last 8 400 years and its interspace coarse layers

[J]. Marine Geology & Quaternary Geology,2009295): 1-11.

[本文引用: 1]

王利波杨作升赵晓辉.

南黄海中部泥质区YE-2孔8.4kaBP来的沉积特征

[J]. 海洋地质与第四纪地质,2009295): 1-11.

[本文引用: 1]

Zhao YiyangYongahn ParkQin Yunshanet al.

Recent development in the southern Yellow Sea sedimentology—The China-Korea Joint Investigation

[J]. Marine Sciences,1998221): 34-37.

[本文引用: 1]

赵一阳朴龙安秦蕴珊.

南黄海沉积学研究新进展——中韩联合调查

[J]. 海洋科学,1998221): 34-37.

[本文引用: 1]

Shi XuefaShen ShunxiYi Hi-ilet al.

Modern sedimentary environment and dynamic sedimentary system of the South Yellow Sea

[J]. Chinese Science Bulletin,200146(): 1-6.

[本文引用: 1]

石学法申顺喜Yi Hi-il.

南黄海现代沉积环境及动力沉积体系

[J]. 科学通报,200146(): 1-6.

[本文引用: 1]

Shen ShunxiChen LirongGao Lianget al.

Discovery of Holocene cyclonic eddy sediment and pathway sediment in the southern Yellow Sea

[J]. Oceanologia et Limnologia Sinica,1993246): 563-570.

[本文引用: 1]

申顺喜陈丽蓉高良.

南黄海冷涡沉积和通道沉积的发现

[J]. 海洋与湖沼,1993246): 563-570.

[本文引用: 1]

Li W JWang Z YHuang H J.

Indication of size distribution of suspended particulate matter for sediment transport in the South Yellow Sea

[J]. Estuarine,Coastal and Shelf Science,2020235106619.

[本文引用: 1]

Ji X LLiu G MGao Set al.

Comparison of air-sea CO2 flux and biological productivity in the South China Sea,East China Sea,and Yellow Sea: A three-dimensional physical-biogeochemical modeling study

[J]. Acta Oceanologica Sinica,20173612): 1-10.

[本文引用: 1]

Dong L XGuan W BChen Qet al.

Sediment transport in the Yellow Sea and East China Sea

[J]. Estuarine,Coastal and Shelf Science,201193248-258.

[本文引用: 1]

Milliman J DFarnsworth K L. River Discharge to the Coastal Acean: A Global Synthesis [M]. CambridgeCambridge University Press2011.

[本文引用: 1]

Lin SHsieh I JHuang K Met al.

Influence of the Yangtze River and grain size on the spatial variations of heavy metals and organic carbon in the East China Sea continental shelf sediments

[J]. Chemical Geology,2002182377-394.

[本文引用: 1]

Liu J PLi A CXu K Het al.

Sedimentary features of the Yangtze River-derived along-shelf clinoform deposit in the East China Sea

[J]. Continental Shelf Research,2006262 141-2 156.

Liu J PXu K HLi A Cet al.

Flux and fate of Yangtze River sediment delivered to the East China Sea

[J]. Geomorphology,200785208-224.

[本文引用: 1]

Liu ShengfaShi XuefaLiu Yanguanget al.

Sedimentation rate of mud area in the East China Sea inner continental shelf

[J]. Marine Geology & Quaternary Geology,2009296): 1-7.

[本文引用: 1]

刘升发石学法刘焱光.

东海内陆架泥质区沉积速率

[J]. 海洋地质与第四纪地质,2009296): 1-7.

[本文引用: 1]

Zhu M XChen K KYang G Pet al.

Sulfur and iron diagenesis in temperate unsteady sediments of the East China Sea inner shelf and a comparison with tropical Mobile Mud Belts (MMBs)

[J]. Journal of Geophysical Research Biogeoences,20161212 811-2 828.

[本文引用: 5]

Kang X MLiu S MZhang G L.

Reduced inorganic sulfur in the sediments of the Yellow Sea and East China Sea

[J]. Acta Oceanologica Sinica,2014339): 100-108.

[本文引用: 6]

Chen Qing.

Study on authigenic pyrites in sediments of the South Huanghai Sea

[J]. Acta Geologica Sinica,19813): 232-246.

[本文引用: 2]

陈庆.

南黄海沉积物中自生黄铁矿的研究

[J]. 地质学报,19813): 232-246.

[本文引用: 2]

Lu KaiQin YachaoWang Zhongboet al.

Heavy mineral provinces of the surface sediments in central-southern East China Sea and implications for provenance

[J]. Marine Geology Frontiers,2019358): 20-26.

[本文引用: 1]

陆凯秦亚超王中波.

东海中南部海域表层沉积物碎屑重矿物组合分区及其物源分析

[J]. 海洋地质前沿,2019358): 20-26.

[本文引用: 1]

Zhang KaidiLi AnchunDong Jianget al.

Detrital mineral distributions in surface sediments of the East China Sea: Implications for sediment provenance and sedimentary environment

[J]. Acta Sedimentologica Sinica,2016345): 902-911.

[本文引用: 1]

张凯棣李安春董江.

东海表层沉积物碎屑矿物组合分布特征及其物源环境指示

[J]. 沉积学报,2016345): 902-911.

[本文引用: 1]

Shen ShunxiChen LirongXu Wenqiang.

Mineral composition and their distribution patterns in the sediments of the Huanghai Sea

[J]. Oceanologia et Limnologia Sinica,1984153): 240-250.

[本文引用: 1]

申顺喜陈丽蓉徐文强.

黄海沉积物中的矿物组合及其分布规律的研究

[J]. 海洋与湖沼,1984153): 240-250.

[本文引用: 1]

Wang KunshanShi XuefaLin Zhenhong. Assemblages

provinces and provenances of heavy minerals on the shelf of the southern Yellow Sea and northern East China Sea

[J]. Advances in Marine Science,2003211): 31-40.

[本文引用: 1]

王昆山石学法林振宏.

南黄海和东海北部陆架重矿物组合分区及来源

[J]. 海洋科学进展,2003211): 31-40.

[本文引用: 1]

Zhang YaoHan ZongzhuAi Linaet al.

Characteristics and significance of heavy minerals in the surface sediments of the Holocene mud of the Yellow Sea

[J]. Periodical of Ocean University of China,20184811): 108-118.

[本文引用: 2]

张尧韩宗珠艾丽娜.

黄海全新世泥质体表层沉积物重矿物特征及其指示意义

[J]. 中国海洋大学学报,20184811): 108-118.

[本文引用: 2]

Peng Hanchang.

Discussion on the sedimentary environment of the western North Yellow Sea based on the distribution law and the related factors of authigenic pyrites

[J]. Geological Review,1979252): 53-57.

[本文引用: 3]

彭汉昌.

从自生黄铁矿的分布规律和相关因素探讨北黄海西部海域的沉积环境

[J]. 地质论评,1979252): 53-57.

[本文引用: 3]

Lin SHuang K MChen S K.

Sulfate reduction and iron sulfide mineral formation in the southern East China Sea continental slope sediment

[J]. Deep-Sea Research Part I: Oceanographic Research Papers,2002491 837-1 852.

[本文引用: 3]

Kang XumingGu LiLiu Sumei.

Distributions and influence factors of Acid Volatile Sulfide and pyrite in the Bohai Sea and Yellow Sea in spring

[J]. Marine Environmental Science,2014331): 1-7.

[本文引用: 1]

康绪明古丽刘素美.

春季黄渤海沉积物中酸可挥发性硫与黄铁矿的分布特征及影响因素

[J]. 海洋环境科学,2014331): 1-7.

[本文引用: 1]

Pu X QLi F CZhong S Jet al.

Acid volatile sulfides in sediments of South Yellow Sea

[C]//2008 2nd International Conference on Bioinformatics and Biomedical Engineering. ShanghaiIEEE2008. DOI: 10.1109/ICBBE.2008.259.

DOI      [本文引用: 1]

He XingliangTan LijuDuan Xiaoyonget al.

Carbon cycle within the sulfate-methane transition zone in the marine sediments of Hangzhou Bay

[J]. Marine Geology & Quaternary Geology,2020403): 51-60.

[本文引用: 3]

贺行良谭丽菊段晓勇.

杭州湾沉积物中硫酸盐—甲烷转换带内的碳循环

[J]. 海洋地质与第四纪地质,2020403): 51-60.

[本文引用: 3]

Berner R A.

Burial of organic carbon and pyrite sulfur in the modern ocean: Its geochemical and environmental significance

[J]. American Journal of Science,1982282451-473.

[本文引用: 1]

Kao S JHsu S CHorng C Set al.

Carbon-Sulfur-Iron relationships in the rapidly accumulating marine sediments off southwestern Taiwan

[J]. The Geochemical Society Special Publications,20049441-457.

[本文引用: 1]

Ge CZhang W GDong C Yet al.

Magnetic mineral diagenesis in the river-dominated inner shelf of the East China Sea,China

[J]. Journal of Geophysical Research: Solid Earth,20151204 720-4 733.

[本文引用: 1]

Zhao Kuihuan.

Primary study of authigenic pyrite in the sediment of the Huanghai Sea

[J]. Journal of Oceanography of Huanghai & Bohai Seas,198751): 21-30.

[本文引用: 2]

赵奎寰.

黄海自生黄铁矿的初步研究

[J]. 黄渤海海洋,198751): 21-30.

[本文引用: 2]

Chu FengyouChen Lirong.

Morphological features of authigenic pyrite from South Yellow Sea sediments

[J]. Oceanologia et Limnologia Sinica,1994255): 461-467573-574.

[本文引用: 2]

初凤友陈丽蓉.

南黄海沉积物中自生黄铁矿的形态标型研究

[J]. 海洋与湖沼,1994255): 461-467573-574.

[本文引用: 2]

Chu FengyouChen LirongShen Shunxiet al.

Origin and environmental significance of authigenic pyrite from the South Yellow (Huanghai) Sea sediments

[J]. Oceanologia et Limnologia Sinica,1995263): 227-233.

[本文引用: 2]

初凤友陈丽蓉申顺喜.

南黄海自生黄铁矿成因及其环境指示意义

[J]. 海洋与湖沼,1995263): 227-233.

[本文引用: 2]

Duan WeiminChen Lirong.

Formation history of pyrite in the early diagenesis in the Yellow Sea and East China Sea

[J]. Science in China (Series B),1993235): 545-552.

[本文引用: 5]

段伟民陈丽蓉.

黄、东海早期成岩过程中黄铁矿的形成史

[J]. 中国科学:B辑,1993235): 545-552.

[本文引用: 5]

Rickard D.

Sedimentary pyrite framboid size-frequency distributions: A meta-analysis

[J]. Palaeogeography,Palaeoclimatology,Palaeoecology,201952262-75.

[本文引用: 1]

Wilkin R TBarnes H LBrantley S L.

The size distribution of framboidal pyrite in modern sediments: An indicator of redox conditions

[J]. Geochimica et Cosmochimica Acta,19966020): 3 897-3 912.

Hu YongliangWang Wei

Zhou Chuanming. Morphologic and isotopic characteristics of sedimentary pyrite: A case study from deepwater facies,Ediacaran lantian formation in South China

[J]. Acta Sedimentologica Sinica,2020381): 138-149.

[本文引用: 1]

胡永亮王伟周传明.

沉积地层中的黄铁矿形态及同位素特征初探——以华南埃迪卡拉纪深水相地层为例

[J]. 沉积学报,2020381): 138-149.

[本文引用: 1]

Chang XiaolinHuang YuangengChen Zhongqianget al.

The microscopic analysis of pyrite framboids and application in Paleo⁃oceanography

[J]. Acta Sedimentologica Sinica,2020381): 150-165.

[本文引用: 1]

常晓琳黄元耕陈中强.

沉积地层中草莓状黄铁矿分析方法及其在古海洋学上的应用

[J]. 沉积学报,2020381):150-165.

[本文引用: 1]

Yang Xueying

Gong Yiming. Pyrite framboid: Indicator of environments and life

[J]. Earth Science—Journal of China University of Geosciences,2011364): 643-658.

[本文引用: 1]

杨雪英龚一鸣.

莓状黄铁矿:环境与生命的示踪计

[J]. 地球科学:中国地质大学学报,2011364): 643-658.

[本文引用: 1]

Wang Q WMorse J W.

Pyrite formation under conditions approximating those in anoxic sediments I. Pathway and morphology

[J]. Marine Chemistry,19965299-121.

[本文引用: 1]

Tostevin RTurchyn A VFarquhar Jet al.

Multiple sulfur isotope constraints on the modern sulfur cycle

[J]. Earth and Planetary Science Letters,201439614-21.

[本文引用: 1]

Canfield D E.

Biogeochemistry of sulfur isotopes

[J]. Reviews in Mineralogy and Geochemistry,200143607-636.

[本文引用: 1]

Deusner CHoller TArnold G Let al.

Sulfur and oxygen isotope fractionation during sulfate reduction coupled to anaerobic oxidation of methane is dependent on methane concentration

[J]. Earth and Planetary Science Letters,201439961-73.

[本文引用: 1]

Berner R A.

Sedimentary pyrite formation

[J]. American Journal of Science,19702681-23.

[本文引用: 1]

Berner R A.

Sedimentary pyrite formation: An update

[J]. Geochimica et Cosmochimica Acta,1984484): 605-615.

[本文引用: 1]

Yuan YingruChen Guanqiu.

Mineral assembly characteristics of the sediments and its distribution pattern in the northwestern part of South Huanghai Sea

[J]. Oceanologia et Limnologia Sinica,1981126): 512-521.

[本文引用: 1]

袁迎如陈冠球.

南黄海西北部沉积物中矿物组合特征及其分布规律

[J]. 海洋与湖沼,1981126): 512-521.

[本文引用: 1]

Bao GendeWang Yifan.

Authigenic iron sulfide in sediments from Changjiang River mouth and near-shore

[J]. Transactions of Oceanology and Limnology,19834): 51-58.

[本文引用: 2]

鲍根德汪依凡.

东海陆架沉积物中自生硫化铁的初步研究

[J]. 海洋湖沼通报,19834): 51-58.

[本文引用: 2]

Zhu M XShi X NYang G Pet al.

Formation and burial of pyrite and organic sulfur in mud sediments of the East China Sea inner shelf: Constraints from solid-phase sulfur speciation and stable sulfur isotope

[J]. Continental Shelf Research,20135424-36.

[本文引用: 2]

Zhang MingyuChang XinHu Liminet al.

The source,transport and burial process of organic carbon in the inner shelf of the East China Sea and its deposition record

[J]. Acta Sedimentologica Sinica,2020.DOI:10.14027/j.issn.1000-0550.2020.080.

DOI      [本文引用: 1]

张明宇常鑫胡利民.

东海内陆架有机碳的来源、输运与埋藏过程及其沉积记录

[J]. 沉积学报,2020. DOI: 10.14027/j.issn.1000-0550.2020.080.

DOI      [本文引用: 1]

Lin SHuang K MChen S K.

Organic carbon deposition and its control on iron sufide formation of the southern East China Sea continental shelf sediments

[J]. Continental Shelf Research,200020619-635.

[本文引用: 4]

Xiong LinfangShi XuefaDeng Yuet al.

Distribution characteristics of the organic matter in the surficial sediments on the shelf of the southern Yellow Sea and the northern East China Sea

[J]. Marine Science Bulletin,2013323): 281-286.

[本文引用: 1]

熊林芳石学法邓煜.

南黄海、东海北部陆架区表层沉积物有机质分布特征

[J]. 海洋通报,2013323): 281-286.

[本文引用: 1]

Zhu M XHao X CShi X Net al.

Speciation and spatial distribution of solid-phase iron in surface sediments of the East China Sea continental shelf

[J]. Applied Geochemistry,201227892-905.

[本文引用: 1]

Gomes M LHurtgen M T.

Sulfur isotope systematics of a euxinic,low-sulfate lake: Evaluating the importance of the reservoir effect in modern and ancient oceans

[J]. Geology,2013416): 663-666.

[本文引用: 1]

Wu XuetingLiu LihuaWu Nengyouet al.

Geochemistry of early diagenesis in marine sediments: Research progress

[J]. Marine Geology Frontiers,20153112): 17-26.

[本文引用: 1]

吴雪停刘丽华吴能友.

海洋沉积物中早期成岩作用地球化学研究进展

[J]. 海洋地质前沿,20153112): 17-26.

[本文引用: 1]

Zhang YonghuaWu Zijun.

Sedimentary organic carbon mineralization and its contribution to the marine carbon cycle in the marginal seas

[J]. Advances in Earth Science,2019342): 202-209.

[本文引用: 1]

张咏华吴自军.

陆架边缘海沉积物有机碳矿化及其对海洋碳循环的影响

[J]. 地球科学进展,2019342): 202-209.

[本文引用: 1]

Wang MengCai FengLi Qinget al.

Characteristics of authigenic pyrite and its sulfur isotopes influenced by methane seep at core A,site 79 of the middle Okinawa Trough

[J]. Science China: Earth Sciences,20154512): 1 819-1 828.

[本文引用: 1]

王蒙蔡峰李清.

冲绳海槽79站位A孔甲烷渗漏影响下的自生黄铁矿及其硫同位素特征

[J]. 中国科学:地球科学,20154512): 1 819-1 828.

[本文引用: 1]

Lin Z YSun X MPeckmann Jet al.

How sulfate-driven anaerobic oxidation of methane affects the sulfur isotopic composition of pyrite: A SIMS study from the South China Sea

[J]. Chemical Geology,201644026-41.

[本文引用: 1]

Zhang XLin C MLi Y Let al.

Sealing mechanism for cap beds of shallow-biogenic gas reservoirs in the Qiantang River incised valley,China

[J]. Continental Shelf Research,201369155-167.

[本文引用: 1]

Chen Y FDeng BZhang J.

Shallow gas in the Holocene mud wedge along the inner East China Sea shelf

[J]. Marine and Petroleum Geology,2020114104233.

[本文引用: 1]

Tyson R V.

Sedimentation rate,dilution,preservation and total organic carbon: Some results of a modelling study

[J]. Organic Geochemistry,200132333-339.

[本文引用: 1]

Middelburg J J.

Organic carbon,sulphur,and iron in recent semi-euxinic sediments of Kau Bay,Indonesia

[J]. Geochimica et Cosmochimica Acta,1991553): 815-828.

[本文引用: 1]

Lang X GTang W BMa H Ret al.

Local environmental variation obscures the interpretation of pyrite sulfur isotope records

[J]. Earth and Planetary Science Letters,2020533116056.

[本文引用: 1]

Pasquier VSansjofre PRabineau Met al.

Pyrite sulfur isotopes reveal glacial-interglacial environmental changes

[J]. Proceedings of the National Academy of Sciences,201711423): 5 941-5 945.

Ma KSun Z LZhu M Xet al.

Characterizing geochemistry of organic carbon,sulfur,and iron in sediments of the middle Okinawa Trough since the last glacial maximum

[J]. Deep Sea Research I: Oceanographic Research Papers,2020. DOI: 10.1016/j.dsr.2020.103452.

DOI      [本文引用: 1]

Leavitt W DHalevy IBradley A Set al.

Influence of sulfate reduction rates on the Phanerozoic sulfur isotope record

[J]. Proceedings of the National Academy of Sciences,201311028): 11 244-11 249.

[本文引用: 1]

Zheng YZheng H BKissel Cet al.

Sedimentation rate control on diagenesis,East China Sea sediments

[J]. Physics of the Earth and Planetary Interiors,2011187301-309.

[本文引用: 3]

/