img img
  • CN 62-1091/P
  • ISSN 1001-8166
  • 月刊 创刊于1986年
高级检索

地球科学进展, 2019, 34(3): 265-274 doi: 10.11867/j.issn.1001-8166.2019.03.0265

长链烯酮在古大气二氧化碳分压重建的应用

马晓旭,, 刘传联,, 金晓波, 张洪瑞, 马瑞罡

同济大学海洋地质国家重点实验室,上海 200092

The Application of Alkenone-Based pCO2 Reconstructions

Ma Xiaoxu,, Liu Chuanlian,, Jin Xiaobo, Zhang Hongrui, Ma Ruigang

State Key Laboratory of Marine Geology, Tongji University, Shanghai 200092, China

收稿日期: 2018-12-21   修回日期: 2019-02-16   网络出版日期: 2019-04-25

基金资助: 国家重大科技专项子课题“南海深水区古海洋学与优质烃源岩关系研究.  编号:2016ZX05026007-03
国家自然科学基金项目“利用颗石藻生理作用来校正烯酮古CO2气压计中的b值”.  编号:41806050

Received: 2018-12-21   Revised: 2019-02-16   Online: 2019-04-25

作者简介 About authors

马晓旭(1994-),女,山东淄博人,硕士研究生,主要从事古海洋的研究.E-mail:jiselle@163.com , E-mail:jiselle@163.com

刘传联(1963-),男,山东济宁人,教授,主要从事海洋微体古生物和古海洋学研究.E-mail:liucl@tongji.edu.cn , E-mail:liucl@tongji.edu.cn

摘要

大气二氧化碳浓度的变化与全球冰盖变化、温度、海平面变化密切相关,了解过去大气二氧化碳浓度的变化及对二氧化碳与气候之间关系的研究,是预测未来气候变化的重要手段。长链烯酮碳同位素是重建古大气二氧化碳分压(pCO2)的重要指标之一,广泛应用于新生代以来大气二氧化碳的重建。对长链烯酮重建大气二氧化碳的方法进行了综述,介绍了颗石藻长链烯酮的地球化学性质,回顾了二氧化碳被动扩散模型的发展、长链烯酮重建二氧化碳的指标的发展及其不确定性,颗石藻的碳浓缩机制以及新生代以来长链烯酮重建大气二氧化碳的地质记录。

关键词: 长链烯酮 ; 大气二氧化碳分压 ; 碳同位素 ; 颗石藻 ; 被动扩散模型

Abstract

The changing of atmospheric carbon dioxide concentration is closely related with the changing of global ice sheet,temperature and sea level. Knowledge of the past atmospheric carbon dioxide concentration and its relationship with climate is an important method of predicting the future climate change. Coccolith derived long-chain alkenone carbon isotope is one of the important proxies to reconstruct past carbon dioxide, which is wildly applied in the reconstruction of the Cenozoic atmospheric carbon dioxide. In this paper, we focused on the method of alkenone-based atmospheric carbon dioxide concentration, including the geochemical properties of long-chain alkenone, carbon diffusive model and the carbon isotope fraction. Then, we introduced the development of alkenone-based carbon dioxide proxy and its uncertainty. Coccolith cell geometry and growth rate have great influence on carbon dioxide fraction. Besides, there are some uncertainties about carbon concentration mechanisms in coccolithes, which may have some influence on alkenone-based carbon dioxide method to reconstruct ancient carbon dioxide more accurately. At the end, we summarized the Cenozoic carbon dioxide record with various proxies including alkenone carbon dioxide, boron isotope, palaeosol carbonate nodules and stomatal indices of fossil leaves.

Keywords: Long-chain alkenone ; Atmospheric carbon dioxide ; Carbon isotope ; Coccolith ; Diffusive models.

PDF (2024KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

马晓旭, 刘传联, 金晓波, 张洪瑞, 马瑞罡. 长链烯酮在古大气二氧化碳分压重建的应用. 地球科学进展[J], 2019, 34(3): 265-274 doi:10.11867/j.issn.1001-8166.2019.03.0265

Ma Xiaoxu. The Application of Alkenone-Based pCO2 Reconstructions. Advances in Earth Science[J], 2019, 34(3): 265-274 doi:10.11867/j.issn.1001-8166.2019.03.0265

1 引 言

二氧化碳是重要的温室气体,吸收红外辐射引起温室效应造成全球变暖,影响全球气候[1]。工业革命以来大气二氧化碳分压(pCO2)迅速升高,南极冰芯的气泡二氧化碳记录显示全球pCO2从全新世初期的240×10-6~280×10-6增加到现代的411×10-6 [2],达到了近800 ka以来的最高值[3,4]。但是过去pCO2在长时间尺度波动范围极大,仅上新世就曾达到 400×10-6[5],因此了解过去大气二氧化碳的变化对了解气候敏感性和碳循环研究至关重要。目前对于pCO2的了解主要依据对南极冰芯记录气泡组成的pCO2测量[3,4]、树叶化石的气孔指数[6,7,8]、古土壤次生碳酸盐结核的碳同位素[9,10]、有孔虫硼同位素[5,11,12]和生标化合物(烯酮)的稳定同位素[13,14,15,16,17]分析。但每个方法存在一定的适用性和局限性,如南极冰芯记录最长只能追溯到800 ka[18];树叶化石和古土壤次生碳酸盐结核保存在陆地上容易受到成岩作用或环境因素的影响;有孔虫的硼同位素和B/Ca值计算得到pH,需要结合碱度计算pCO2[19,20],且碱度无法直接测得,需要盐度或者模型推算,误差较大;烯酮碳同位素可以直接求得水溶二氧化碳CO2(aq)的浓度,且烯酮由颗石藻产生,来源稳定,颗石藻为单细胞藻类生理作用相比于有孔虫更为单一,因此误差更小。但是烯酮重建大气二氧化碳的方法中对生长速率替代性指标的构建还不够完善。重建大气二氧化碳的方法的建立和完善,对于我们了解pCO2的变化机制及其与气候系统间的关系起到关键作用。

烯酮碳同位素方法从颗石藻生理作用与同位素分馏关系研究入手、通过建立动力学模型解释碳同位素变化,对溶解二氧化碳进行重建,深海沉积物中烯酮物质的碳同位素受环境因素[19]影响较小。本文旨在综述利用颗石藻长链烯酮碳同位素分馏(εp37:2)重建pCO2的方法,介绍该方法建立的过程、影响因素、碳浓缩机制及其在古pCO2重建中的应用。

2 长链烯酮及其应用

长链烯酮(long-chain alkenones)为一系列37~39个碳原子组成的碳链,且还有带2~4个碳双键的不饱和甲基或乙基酮的脂肪族化合物。长链烯酮在DSDP(Deep Sea Drilling Project)40航次的中新世到更新世的沉积物中首次被发现[21],随后发现其存在于各个大洋沉积物中。长链烯酮在沉积物中含量丰富,在全球范围内均可长时间保存[22,23,24]。对长链烯酮相对于其他化合物可以长时间保存的原因有几种猜测,首先其化学键的链长和不饱和键所在的位置固定,不饱和键的生物结构较为少见,使得其在沉积物中长时间保存不被细菌破坏;其次其双键结构使烯酮的生物降解作用比其他不饱和脂类更慢;最后其长链分子使得烯酮在水溶液中不易溶解,从而使其不易被微生物降解,同时烯酮可能被生物以某种形式压缩在一起使其不易被降解[23]

现代大洋中烯酮的生产者主要为Emiliania huxleyiGephrocapsa oceanica[25,26,27,28]。其中E. huxleyi在地质记录中最早出现于0.27 Ma[29]G.oceanca最早出现于1.85 Ma[30],但长链烯酮在地质记录中最早可追溯到白垩纪[31,32,33],更早期的生产者被认为是Noelaerhabdaceae科的其他属种,如Reticulofenestra spp.,Cyclicargolithus spp.和Pseudoemiliania lacunosa[25,26,34,35,36,37],此外还有非钙化的现代生产者如Isochrysis galbana[27],但主要分布在近岸,不作为开阔大洋的烯酮来源来讨论。

长链烯酮由于其可以长时间保存,含量丰富且不易受到溶解作用的影响,在古环境研究中应用广泛。作为常用替代性指标,长链烯酮堆积速率可以指示古生产力[38,39]、烯酮不饱和度(U37K')指标可以指示古温度[39,40,41,42]、C37:2烯酮碳同位素δ13C可以用于计算海水及大气pCO2[17,43,44]

3 长链烯酮重建pCO2的方法

3.1 碳同位素分馏和被动扩散模型

碳同位素分馏εp指环境中的溶解二氧化碳与生物进行光合作用、形成有机碳过程的碳同位素分馏[45,46,47]

εp=δ13CCO2aq+1000δ13Corg+1000×1000

式中:δ13CCO2aq表示水溶二氧化碳的碳同位素分馏值,无法直接测得,需要同时期的碳酸盐矿物碳同位素通过转换公式求得;δ13Corg是有机物的碳同位素,可通过地质记录直接测得;εp的主要影响因素是溶解二氧化碳浓度[CO2(aq)][48,49],其次还有细胞生长速率μ[24,49,50]、细胞体积与表面积比值V/SA[22]。对于εp值的变化使用C3植物的扩散模型解释:CO2(aq)随二氧化碳浓度梯度进入和流出细胞,细胞内二氧化碳到达叶绿体进行光合作用,这2个过程为碳运输过程;到达叶绿体后的CO2(aq)通过光合作用固定形成有机碳,称为碳固定过程。εp值即为碳运输和碳固定过程中的碳同位素分馏[51,52]

εp=εt+εf-εtCiCe

式中:εfεt均为常数,分别代表碳固定和碳被动扩散过程中的碳同位素分馏系数,CeCi分别代表细胞外和细胞内二氧化碳浓度。εf值为所有与碳固定有关的同位素变化值,包括Rubisco酶,β羧化酶等催化反应[53,54]。Goericke等[55]测量了现代海水表层不同纬度浮游植物有机物的εf值为25~28。Hayes[56]将浓度梯度Ce-Ci考虑在内,重新整理了公式(2)得到:

εp=εf+γCeεt-εf

式中:γ表示假设的固定的CO2需求量。Francois等[50]发现在被动扩散模型中除了[CO2(aq)]的影响,细胞渗透性、表面积和生长速率(μ)也会影响εp,并引入了羧化速率(G)的定义:

G=k1Ce-k-1Ci

式中:k1k-1为扩散进入和离开细胞的速率常数,k与细胞膜渗透性有关,假设进入和流出细胞的速率常数相等,此时k1=k-1。Laws等[53]结合培养数据和现场观察发现,不考虑呼吸作用和光呼吸作用时,μ/[CO2(aq)]与εp存在线性相关,因此生长速率又可以表示为:

μ=k1Ce-k-1CiC

式中:C为细胞内碳含量。根据Francois的假设,二氧化碳流入和流出的细胞膜的渗透率相等,也就是k1=k-1[50],公式(2)可以由以上公式代入并简化为:

εp=εt+εf-εt1-μCkCe

式中:k是细胞膜对二氧化碳的渗透率与表面积乘积[53,57],细胞内碳含量C与细胞体积成比例[58],因此公式(6)可以整理为:

εp=εt+εf-εt1-μCeVSA

εp对[CO2(aq)]精确估算还需要生长速率与细胞表面积(SA)与体积(V)比值(V/SA),V/SA越大,水溶二氧化碳CO2(aq)扩散进入细胞的量越大。

Rau等[59]总结了前人的工作,总结了εp的影响因素包括Ce、细胞半径、细胞生长速率、细胞膜的渗透性(P)、温度、一定的pH和盐度等[50,53,55],并将各个影响因子写入模型中:

εp=εf+(εf-εd)QsCe(rDT1+rrk+1P)

式中:εd为CO2(aq)扩散迁移到水中时的同位素分馏,DT为CO2(aq)扩散到海水中时随温度变化时的扩散系数,r为细胞半径,r/rk为细胞外HCO3-自发转换为CO2(aq)的CO2(aq)通量,Qs为CO2(aq)穿过细胞膜单位表面积的通量。

3.2 长链烯酮重建pCO2

利用εp重建[CO2(aq)]的方法基于2点假设:碳固定过程中使用的无机碳来源为CO2(aq)光合作用过程中CO2(aq)从环境中进入碳固定位点的方式为简单扩散[60]。Hayes等[61]首次将εp作为pCO2指标应用到沉积物组分中生物标志物中的εp分析中,并将εp与[CO2(aq)]转化为简单对数公式[61]

εp=Alog[CO2(aq)]+B

式中:A和B为常数,数值根据不同的海洋环境而定。随后Jasper等[45,62]提出碳同位素分馏的公式(1)。

其中δ13CCO2aq为CO2(aq)的碳同位素组成,可利用同时代有孔虫壳体的碳同位素求得[45,62]。δ13Corg为浮游生物的碳同位素组成,可通过烯酮碳同位素δ13C37:2求得[17,45,62]

δ13Corg=δ13C37:2+1000Δδ1000+1-1000

式中:Δδ为烯酮碳同位素的不饱和度,其不受生长速率影响[24,45,62],培养数据显示Δδ值变化范围为3.1~5.9[63,64]。在pCO2重建中,Δδ值通常为4.2[13,15,16,65,66]

由公式(8)可知,扩散模型中εp不仅随[CO2(aq)]变化,还与藻类生长参数有关,为了方便计算,Jasper等[45]将公式(2)和公式(3)简写为:

εp=εf-bCe

式中:b为光合作用过程中所有影响总碳同位素分馏的生理作用值,包括生长速率和细胞体表面积比值[24,56,62];εf为光合作用中的碳同位素分馏[50,51]

b值的经验公式计算最早由Bidigare等[24]提出,根据不同地区的现场观察和实验室连续培养发现b值与磷酸盐浓度[PO43-]存在良好的线性相关。[PO43-]超过0.1 μmol/L时,可用[PO43-]指示产烯酮藻类的生长速率,并从太平洋上升流地区样品中总结了[PO43-]与b值的关系式:

b=38+160[PO43-]

Laws等[67]通过全球数据对比,对公式(12)进行了校正:

b=79+120[PO43-]

并提出b值是关于εf的函数:b=(εf-εpCe,其中εf值为25~28[55],Pagani[60]计算了不同εf值时的b值下的[CO2(aq)],随后总结了不同εf下的b值(图1),可通过[PO43-]计算不同εf值时的b值:

b=84.07+118.54[PO43-](εf=25),
b=105.58+129.00[PO43-](εf=26),
b=115.45+135.66[PO43-](εf=27),

图1

图1   εf25时,自然环境中浮游植物类群b值与[PO43-]的比值(数据来自参考文献[24,67~69])

Fig. 1   b values of natural haptophyte populations versus soluble phosphate when εf is 25(Data from references[24,67~69])


3.3 模型不确定性

长链烯酮δ13C重建pCO2的方法假设:被动扩散模型适用于所有产烯酮藻类;b值与[PO43-]的线性关系适用于所有时间空间;εf值(25~28)可以约束所有b[70]

但该计算方法中的误差包括:计算b值时参数[PO43-]为现代海水特定位点透光层的[PO43-][66,70],与过去海水[PO43-]值存在一定误差;CO2(aq)转换pCO2时利用亨利定律(Herry’s law)计算,需要用到同时代的古温度值,而古温度估算主要来自于生物标志物指标如TEX86和U37k',这些指标的不确定性会对pCO2值造成一定误差;长链烯酮计算pCO2的方法依赖于扩散作用模型[公式(3)],但[CO2(aq)]不是εp值的唯一影响因素[公式(6)],还包括细胞几何特征[58]、生长速率[24,49,50,53]。而培养环境如光照、温度和营养可利用性对细胞几何特征和生长速率又有影响[63,67,71]

3.3.1 细胞几何特征

培养数据显示颗石藻的细胞大小会影响εP[53,57],CO2(aq)进入和流出细胞的通量与颗石藻表面积成正比[53,55],细胞内碳含量数值可通过细胞体积进行估算[58]。颗石大小与细胞大小成正比,可通过测量颗石的几何参数计算颗石大小从而估算细胞大小[72,73,74]。培养实验、现场观测和沉积记录均显示培养数据显示更大的细胞对应更高的体表面积比值,εp值更低[58],从而对pCO2 的估算产生影响。Henderiks等[74,75,76]对颗石藻大小进行校正使得颗石藻大小对模型的不确定性减小:

b'=bV:SAfossilV:SAEhux

式中:V∶SAfossil为每个样品的颗石形态,V∶SAEhux为常数,反应当代颗石藻E.huxleyi的细胞大小。来自连续培养数据显示r=(2.6±0.3)μm;V∶SAEhux=(0.9±0.1)μm[58]

3.3.2 生长速率

大量室内培养、现场观察数据证明εpμ/[CO2(aq)]存在线性相关,浮游植物的生长速率μ会影响εp值(图2[22,50,53,54,55],Bidigare等[24]通过在氮营养盐限制,连续光照培养中发现E.huxleyiεpμ/[CO2(aq)]负相关,Ribesell等[63]在营养盐充足、16小时光照8小时黑暗(16∶8 h)循环光照条件下分批次培养E.huxleyi并对比Bidigare等[24]数据发现,后者εpμ/[CO2(aq)]比值更高,趋势更陡,说明不同培养环境差异影响μ值改变、从而影响碳同位素分馏。培养数据显示生长速率μ会受到环境变化包括pCO2、光照、温度、营养盐可利用性(氮、磷、铁等)的影响[72,77,78],生长速率的变化会改变细胞碳需求,改变细胞内部、细胞表面和细胞外周围的[CO2(aq)][59]。Pagani等[44]认为应在开阔大洋低生产力地区,表层水[PO43-]变化最小的区域测定长链烯酮δ13C以减小对μ值的影响。同时颗石Sr/Ca比和烯酮堆积速率可以反应海区生产力[37,79],结合生产力与b值对照,选择生产力波动较小区域数据、降低μ值对b值的影响、从而减小模型的不确定性。

图2

图2   生长速率与光合作用的影响因素

Fig. 2   The influence factors of growth rate and photosynthesis

(a)不同培养环境中εpμ/CO2的比值,(b)不同光照条件下εpμ/CO2的比值,数据来自参考文献[80];(a)连续培养数据来自参考文献[24],分批培养数据来参考文献[63]

εp versus μ/CO2 from different cultures(a), εp versus μ/CO2 from different irradiance experiments(b) (data from reference[80]);Chemostat incubation data from reference[24], dilute batch cultures data from reference[63]


4 碳浓缩机制

长链烯酮重建pCO2模型的可行性建立在被动扩散模型上[60],即被动扩散CO2(aq)进行光合作用,但是对比过去pCO2记录,现代pCO2浓度值较低,许多浮游藻类(如硅藻和鞭毛藻类)演化出对碳主动吸收机制即碳浓缩机制(CO2 Concentrating Mechanism,CCM),利用碳酸酐酶(CA)转化HCO3-为CO2(aq)供藻类利用[53,57,81,82,83,84]。对于颗石藻是否存在CCM仍有争议,CCM的存在会对ɛp值产生影响,从而影响对pCO2的估算。Nimer等[85]通过培养重钙化程度的E. huxleyi Bigelow(No.8E)和轻钙化程度的E. huxleyi Lohmann(No.79)发现颗石藻在稳定期的培养环境中溶解无机碳(Dissolved Inorganic Carbon,DIC)耗尽,钙化速率降低到60%时,重钙化程度的E. huxleyi同时检测到了体外碳酸酐酶(eCA)和体内碳酸酐酶(iCA)的活性。Nimer等[86]通过培养实验发现E. huxleyi体内[CO2(aq)]在不同pH情况下是体外[CO2(aq)]的几倍,认为E.huxleyi存在逆浓度梯度主动运输CO2(aq)的能力。同年培养实验发现培养环境中[CO2(aq)]降低时E.huxleyi中钙化程度中等类型E.huxleyi(Lohmann)Hay&Mohler会利用HCO3-作为碳源[87]。Nimer等[88]通过培养实验发现在培养稳定期低DIC浓度下可检测到E.huxleyi细胞体外碳酸酐酶(eCA)的活性,但在G.oceanica未发现eCA活性,认为G.oceanica可能存在阴离子交换机制利用HCO3-作为碳源。Herfort等[89]E.huxleyi(PCC.B11)进行培养时发现在任何DIC浓度下都存在离子交换通道吸收HCO3-,当CO2和HCO3-浓度受限制时,检测到eCA的存在,因而认为E.huxleyi存在2种HCO3-获取机制,即高DIC浓度时利用离子通道,低DIC浓度时同时利用eCA和离子通道。Laws等[90]通过分批培养的E.huxleyi δ13C和生长速率数据发现,E.huxleyi在低生长速率时DIC主要利用HCO3-,高生长速率时主要来自CO2的吸收。Rost等[80]在不同光照强度下对E.huxleyi(PML B92/11)进行分批次培养时,发现光照强度增加导致εp降低,认为εp降低主要由HCO3-的主动吸收而非eCA调节控制。Rost等[91]在不同[CO2(aq)]条件下的培养实验中发现,颗石藻E.huxleyi可以主动吸收HCO3-,但体外碳酸酐酶eCA含量较少且不随pCO2浓度发生改变,室外培养实验也得到相同的结果[92]。不同光周期环境下分批次培养E.huxleyi(B92/11),发现pCO2浓度降低时CO2渗出增加,认为E.huxleyi CCM机制较低,同时在光照循环条件下E.huxleyi会利用HCO3-作为碳源,但O2演化中半饱和浓度K1/2降低,说明CCM机制效率低,同时未检测到eCA活性[93]

总的来说,基于培养实验数据,部分重钙化的E.huxleyi属种如PML B92/11利用HCO3-作为碳源[93,94]E.huxleyi的部分属种使用eCA催化水解反应提高细胞外CO2(aq)浓度从而利用CO2作为碳源[95]。培养数据显示E.huxleyi的eCA不随CO2的改变发生变化[91,92]。有的培养实验和现场实验认为E.huxleyi存在CCMs机制[86,94,96],有的培养实验认为E.huxleyi不存在CCMs或者CCMs的效率比较低[93,97,98]。如果考虑到藻类CCMs机制的存在,基于有机质δ13C的pCO2数据会比实际数据偏高[99],因此,了解CCMs机制对提高长时间尺度中长链烯酮pCO2重建精度至关重要。

5 长链烯酮重建pCO2的应用

Jasper等[45]最早将长链烯酮重建pCO2方法应用在墨西哥湾北部100 ka的沉积物记录中,随后长链烯酮重建pCO2的方法得到了广泛应用,大量的研究结果恢复了自中始新世以来的pCO2记录,并探讨了pCO2与全球气候之间的响应。记录显示pCO2自新生代以来逐渐降低,其中中始新世pCO2较高,约为2 000×10-6,随后晚始新世降低到1 000×10-6 [16]。晚渐新世时pCO2降低至约350×10-6,随后在25 Ma左右又快速降低,早中新世到中中新世pCO2维持在较低的水平(260×10-6~190×10-6[44],但中中新世的pCO2存在争议,Badger等[100]的数据显示中中新世(14 Ma)pCO2约为300×10-6,比Pagani等[44]pCO2数据高。晚中新世时期10 Ma左右pCO2升高至320×10-6~250×10-6[43]。Seki等[66]pCO2数据显示5 Ma是上新世最温暖的时期,pCO2达到300×10-6~400×10-6pCO2降低至工业革命前水平274×10-6~285×10-6。Pagani等[15]的数据显示pCO2在早上新世4~5 Ma,pCO2浓度的均值为390×10-6~280×10-6, 4.5 Ma时pCO2和温度达到最高,36×10-6~415×10-6,随后5~0.5 Ma时pCO2持续下降。Zhang等[17]对单个站位40 Ma以来长时间尺度pCO2记录重建显示,pCO2在中中新世浓度最高,平均400×10-6~500×10-6,随着中中新世气候转型约14 Ma时pCO2浓度下降,总体趋势大致与前人的研究工作一致。29 ka以来的pCO2记录显示,pCO2在11~17 ka时快速上升[14]。对比其他pCO2重建指标包括浮游有孔虫硼同位素,土壤次生碳酸盐等数据,结果基本一致,显示新生代以来pCO2在始新世极热事件达到峰值,渐新世逐渐降低,晚中新世小幅度升高至450×10-6左右后上新世逐渐降低至工业革命前的280×10-6

对于pCO2与全球气候变化之响应原因,Pagani等[65]通对对比pCO2重建与C4植被扩张记录,认为造成始新世—渐新世pCO2逐渐降低可能与南极冰盖扩张及C4植被扩张有关。Pagani等[13]通过对始新世到渐新世界线(E-O界线)附近的pCO2的重建发现pCO2的降低早于南极冰盖扩张时间,认为南极冰盖的扩张是pCO2的降低的结果,而晚中新世10 Ma左右pCO2升高则是对东南极冰盖的扩张的响应[44]。Seki等[66]pCO2数据显示5 Ma是上新世最温暖的时期,3.2~2.8 Ma时pCO2的降低对应北半球冰川作用加强。Palmer等[14]对29 ka以来的pCO2进行重建,认为pCO2在11~17 ka快速上升,海气交换加强,可能受到东亚季风的影响。对比烯酮碳同位素重建的pCO2与其他指标包括硼同位素、叶片气孔和碳酸盐岩重建的pCO2存在高度一致性(图3)。

图3

图3   不同指标下的50 Ma以来pCO2记录[5,6,11,15,17,65,66,100,101,102,103,104,105]

Fig. 3   Cenozoic pCO2 record from different proxies[5,6,11,15,17,65,66,100,101,102,103,104,105]


6 结论与展望

本文介绍了长链烯酮重建大气二氧化碳的方法模型和限制。长链烯酮重建大气二氧化碳的方法是通过长链烯酮的碳同位素计算海水中溶解二氧化碳浓度,进而利用亨利定律使用温度和溶解二氧化碳浓度求得大气二氧化碳浓度。该方法建立在C3植物的二氧化碳被动扩散模型上,即假设环境中溶解二氧化碳通过扩散机制进入细胞内,通过光合作用进行有机碳固定,同时考虑生长速率、细胞体表面积比值和主动运输机制对ɛp值的影响。碳浓缩机制主要存在于高等陆生植物和海洋大型浮游藻类中,该机制的出现被认为是对现代较低的二氧化碳浓度的响应。颗石藻中是否存在碳浓缩机制还存在争议,碳浓缩机制的存在会对长时间尺度上大气二氧化碳的重建产生影响。对比长链烯酮重建的大气二氧化碳记录和其他大气二氧化碳指标记录显示,新生代以来大气pCO2在始新世最高、随后逐渐降低。

长链烯酮是一个可以反应长时间尺度大气二氧化碳记录的良好指标,目前对颗石藻大小的校正已经很完善并且应用在地质记录中,但对于生长速率还没有很好的替代性指标,同时没有很好地考虑主动运输对pCO2估算的影响。目前利用长链烯酮对pCO2的重建数据多为上新世以来,缺少中新世及以前的数据。通过对b值的校正和改进,结合更精确的温度和营养物质的估算可以更精确的计算大气二氧化碳浓度,从而了解过去气球气候变化。

参考文献

RuddimanW F.

Earth's climate: Past and future

[J]. Eos Transactions American Geophysical Union, 2007, 82(47): 576-576.

[本文引用: 1]

Natiional Oceanic and Atmospheric Administraition Trends in Atmospheric Carbon Dioxide. [EB/OL]. [2018-10-01]., 2019-02/2019-03.

URL     [本文引用: 1]

MonninE, BarnolaJ M.

Atmospheric CO2 concentrations over the last glacial termination

[J]. Science, 2001, 291(5 501): 112-114.

[本文引用: 2]

LüthiD, LeF M, BereiterB, et al.

High-resolution carbon dioxide concentration record 650,000-800,000 years before present

[J]. Nature, 2008, 453(7 193): 379-382.

[本文引用: 2]

BartoliG, HönischB, ZeebeR E.

Atmospheric CO2 decline during the Pliocene intensification of Northern Hemisphere glaciations

[J]. Paleoceanography, 2011, 26(4):

PA4213

.

[本文引用: 4]

RetallackG J.

Refining a pedogenic-carbonate CO2 paleobarometer to quantify a middle Miocene greenhouse spike

[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2009, 281 (1/2): 57-65.

[本文引用: 3]

SteinthorsdottirM, VajdaV, PoleM.

Significant transient, pCO2, perturbation at the New Zealand Oligocene-Miocene transition recorded by fossil plant stomata

[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2019,515:152-161.

[本文引用: 1]

KürschnerW M, KvačekZ, DilcherD L.

The impact of miocene atmospheric carbon dioxide fluctuations on climate and the evolution of terrestrial ecosystems

[J]. Proceeding of the National Academy of Sciences USA, 2008, 105(2): 449-453.

[本文引用: 1]

LeierA, QuadeJ, DecellesP, et al.

Stable isotopic results from paleosol carbonate in South Asia: Paleoenvironmental reconstructions and selective alteration

[J]. Earth and Planetary Science Letters, 2009, 279(3/4): 242-254.

[本文引用: 1]

NordtL, AtchleyS, DworkinS I.

Paleosol barometer indicates extreme fluctuations in atmospheric CO2 across the Cretaceous-Tertiary boundary

[J]. Geology, 2002, 30(8):703.

[本文引用: 1]

HönischB, HemmingN G, ArcherD, et al.

Atmospheric carbon dioxide concentration across the mid-Pleistocene transition

[J]. Science, 2009, 324(5 934): 1 551-1 554.

[本文引用: 3]

PearsonP N, PalmerM R, PearsonP N,et al.

Atmospheric carbon dioxide over the past 60 million years

[J]. Nature, 2000, 406(6 797): 695-699.

[本文引用: 1]

PaganiM, HuberM, LiuZ, et al.

The role of carbon dioxide during the onset of Antarctic glaciation

[J]. Science, 2011, 334(6 060): 1 261-1 264.

[本文引用: 3]

PalmerM R, BrummerG J, CooperM J, et al.

Multi-proxy reconstruction of surface water pCO2 in the northern Arabian Sea since 29ka

[J]. Earth and Planetary Science Letters, 2010, 295(1/2): 49-57.

[本文引用: 3]

PaganiM, LiuZ H, LariviereJ, et al.

High Earth-system climate sensitivity determined from Pliocene carbon dioxide concentrations

[J]. Nature Geoscience, 2010, 3(1): 27-30.

[本文引用: 5]

BijiP K, HoubenA J, SchoutenS, et al.

Transient Middle Eocene atmospheric CO₂ and temperature variations

[J]. Science, 2010, 330(6 005): 819.

[本文引用: 3]

ZhangY G, PaganiM, LiuZ, et al.

A 40-million-year history of atmospheric CO2

[J]. Philosophical Transactions of the Royal Society A Mathematical Physical Engineering Sciences, 2013, 371(2 001): 20130096.

[本文引用: 6]

ZeebeR E.

History of seawater carbonate chemistry, atmospheric CO2, and ocean acidification

[J]. Annual Review of Earth and Planetary Sciences, 2012, 40(1): 141-165.

[本文引用: 1]

FosterG L, LearC H, RaeJ W B.

The evolution of pCO2, ice volume and climate during the middle Miocene

[J]. Earth and Planetary Science Letters, 2012, 341/344(8): 243-254.

[本文引用: 2]

YuJ M, ElderfieldH, HönischB.

B/Ca in planktonic foraminifera as a proxy for surface seawater pH

[J]. Paleoceanography, 2007, 22(2):1-17.

[本文引用: 1]

BoonJ J, SchuylP J W, LeeuwJ W D, et al.

Organic geochemical analyses of core samples from site 362

RidgeWalvis,

DSDP Leg 40

[R]//Initial Reports of the Deep Sea Drilling Project.

Texas:Texas A & M University

1978.

[本文引用: 1]

PoppB N, KenigF, WakehamS G, et al.

Does growth rate affect ketone unsaturation and intracellular carbon isotopic variability inEmiliania huxleyi?

[J]. Paleoceanography, 1998, 13(1): 35-41.

[本文引用: 3]

BrassellS C.

Applications of biomarkers for delineating marine paleoclimatic fluctuations during the Pleistocene

[M]//Engel M H, Macko S A, eds. Organic Geochemistry. Topics in Geobiology. Boston:Springer,1993.

[本文引用: 2]

BidigareR R, FlueggeA, FreemanK H, et al.

Consistent fractionation of 13C in nature and in the laboratory: Growth-rate effects in some haptophyte algae

[J]. Global Biogeochem Cycles, 1997, 11(2): 279-292.

[本文引用: 10]

VolkmanJ K, EglntonG, CornerE D S, et al.

Long-chain alkenes and alkenones in the marine coccolithophorid Emiliania huxleyi

[J]. Phytochemistry, 1980, 19(12): 2 619-2 622.

[本文引用: 2]

MarloweI T, GreenJ C, NealA C, et al.

Long chain (n-C37-C39) alkenones in the Prymnesiophyceae: Distribution of alkenones and other lipids and their taxonomic significance

[J]. British Phycological Bulletin, 1984, 19(3): 203-216.

[本文引用: 2]

MarloweI T, BrassellS C, EglintonG, et al.

Long-chain alkenones and alkyl alkenoates and the fossil coccolith record of marine sediments

[J]. Chemical Geology, 1990, 88(3): 349-375.

[本文引用: 2]

VolkmanJ K, BarrerrS M, BlackburnS I, et al.

Alkenones in Gephyrocapsa oceanica:Implications for studies of paleoclimate

[J]. Geochimica et Cosmochimica Acta, 1995, 59(3): 513-520.

[本文引用: 1]

ThiersteinH R, GeitzenauerK R, MolfinoB, et al.

Global synchroneity of late Quaternary coccolith datum levels Validation by oxygen isotopes

[J]. Geology, 1977, 5(7): 400.

[本文引用: 1]

Pujos-lamyA.

Essai d‘établissement d'une biostratigraphie du nannoplancton calcaire dans le Pleistocéne de I'Atlantique Nord‐oriental

[J]. Boreas, 1977, 6(4): 323-331.

[本文引用: 1]

BownP R.

Taxonomy, Evolution, and Biostratigraphy of Late Triassic-Early Jurassic Calcareous Nannofossils

[M]. London:Palaeontological Association, 1987.

[本文引用: 1]

FarrimondP, EglintonG, BrassellS C.

Alkenones in cretaceous black shales, Blake-Bahama Basin, western North Atlantic

[J]. Organic Geochemistry, 1986, 10(4/6): 897-903.

[本文引用: 1]

BrassellS C, DumitrescuM.

Recognition of alkenones in a lower Aptian porcellanite from the west-central Pacific

[J]. Organic Geochemistry, 2004, 35(2): 181-188.

[本文引用: 1]

PlancqJ, GrpssiV, HenderiksJ, et al.

Alkenone producers during late Oligocene-early Miocene revisited

[J]. Paleoceanography, 2012, 27(1):

PA1202

.

[本文引用: 1]

BeltranC, de RafelisM, MinolettiF, et al.

Coccolith δ18O and alkenone records in middle Pliocene orbitally controlled deposits: High-frequency temperature and salinity variations of sea surface water

[J]. Geochemistry, Geophysics, Geosystems, 2007, 8(5):5 003.

[本文引用: 1]

BeltranC, FloresJ A, SicreM A, et al.

Long chain alkenones in the Early Pliocene Sicilian sediments (Trubi Formation—Punta di Maiata section): Implications for the alkenone paleothermometry

[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2011, 308(3/4): 253-263.

[本文引用: 1]

BoltonC T, LawrenceK T, GibbsS J, et al.

Glacial-interglacial productivity changes recorded by alkenones and microfossils in late Pliocene eastern equatorial Pacific and Atlantic upwelling zones

[J]. Earth & Planetary Science Letters, 2010, 295(3): 401-411.

[本文引用: 2]

BoltonC T, LawrenceK T, GibbsS J, et al.

Biotic and geochemical evidence for a global latitudinal shift in ocean biogeochemistry and export productivity during the late Pliocene

[J]. Earth and Planetary Science Letters, 2011, 308(1/2): 200-210.

[本文引用: 1]

PrahlF G, MuehlhausenL A, ZahnleD L.

Further evaluation of long-chain alkenones as indicators of paleoceanographic conditions

[J]. Geochimica et Cosmochimica Acta, 1988, 52(9): 2 303-2 310.

[本文引用: 2]

MüllerPeterJ,FischerG.

C37-Alkenones as paleotemperature tool: Fundamentals based on sediment traps and surface sediments from the South Atlantic Ocean

[M]//WeferG, MulitzaS,RatmeyerV, eds.

The South Atlantic in the Late Quaternary: Reconstruction of Material Budgets and Current Systems

Berlin, Heidelberg:Springer, 2004:167-193.

[本文引用: 1]

AthanasiouM, BouloubassiI, GogouA, et al.

Sea surface temperatures and environmental conditions during the “warm Pliocene” interval (~ 4.1-3.2 Ma) in the Eastern Mediterranean (Cyprus)

[J]. Global and Planetary Change, 2017, 15046-57.

[本文引用: 1]

PrahlF G, WakehamS G.

Calibration of unsaturation patterns in long-chain ketone compositions for palaeotemperature assessment

[J]. Nature, 1987, 330(6 146): 367-369.

[本文引用: 1]

PaganiM.

Late miocene atmospheric CO2 concentrations and the expansion of C4 grasses

[J]. Science, 1999, 285(5 429): 876-879.

[本文引用: 2]

PaganiM, ArthurM A, FreemanK H.

Miocene evolution of atmospheric carbon dioxide

[J]. Paleoceanography, 1999, 14(3): 273-292.

[本文引用: 5]

JasperJ P, HayesJ M.

A carbon isotope record of CO2 levels during the late Quaternary

[J]. Nature, 1990, 347(6 292): 462-464.

[本文引用: 7]

FreemanK H, HayesJ M.

Fractionation of carbon isotopes by phytoplankton and estimates of ancient CO2 levels

[J]. Global Biogeochemical Cycles, 1992, 6(2): 185-198.

[本文引用: 1]

PoppB N, TakigikuR, HayesJ M, et al.

The post-Paleozoic chronology and mechanism of 13C depletion in primary marine organic matter

[J]. American Journal of Science, 1989, 289(4): 436.

[本文引用: 1]

DegensE T, GuillardR R L, SackettW M, et al.

Metabolic fractionation of carbon isotopes in marine plankton—I. Temperature and respiration experiments

[J]. Deep Sea Research & Oceanographic Abstracts, 1968, 15(1): 1-9.

[本文引用: 1]

RauG H, TakahashiT, Des MaraisD J, et al.

The relationship between delta 13C of organic matter and [CO2(aq)] in ocean surface water: Data from a JGOFS site in the northeast Atlantic Ocean and a model

[J]. Geochimica et Cosmochimica Acta, 1992, 56(3): 1 413-1 419.

[本文引用: 3]

FrancoisR, AltabetM A, GoerickeR, et al.

Changes in the δ13C of surface water particulate organic matter across the subtropical convergence in the SW Indian Ocean

[J]. Global Biogeochemical Cycles, 1993, 7(3): 627-644.

[本文引用: 7]

FarquharG, O'learyM, BerryJ.

On the relationship between carbon isotope discrimination and the intercellular carbon dioxide concentration in leaves

[J]. Australian journal of plant Physiology, 1982, 9(2): 281-292.

[本文引用: 2]

FarquharG D, EhlerngerR J R, HubickK T.

Carbon isotope discrimination and photosynthesis

[J]. Annual Review of Plant Biology, 1989, 40(1): 503-537.

[本文引用: 1]

LawsE A, PoppB N, BidigareR R, et al.

Dependence of phytoplankton carbon isotopic composition on growth rate and [CO2(aq)]: Theoretical considerations and experimental results

[J]. Geochimica et Cosmochimica Acta, 1995, 59(6): 1 131-1 138.

[本文引用: 9]

PoppB N, ParekhP, TilbrookB, et al.

Organic carbon 13C variations in sedimentary rocks as chemostratigraphic and paleoenvironmental tools

[J]. Palaeogeography Palaeoclimatology Palaeoecology, 1997, 132(1): 119-132.

[本文引用: 2]

GoerickeR, FryB.

Variations of marine plankton δ13C with latitude, temperature, and dissolved CO2 in the world ocean

[J]. Global Biogeochemical Cycles, 1994, 8(1): 85-90.

[本文引用: 5]

HayesJ M.

Factors controlling 13C contents of sedimentary organic compounds: Principles and evidence

[J]. Marine Geology, 1993, 113(1/2): 111-125.

[本文引用: 2]

LawsE A, BidigareR R, PoppB N.

Effect of growth rate and CO2 concentration on carbon isotopic fractionation by the marine diatom Phaeodactylum tricornutum

[J]. Limnology and Oceanography, 1997, 42(7): 1 552-1 560.

[本文引用: 3]

PoppB N, LawsE A, BidigareR R, et al.

Effect of phytoplankton cell geometry on carbon isotopic fractionation

[J]. Geochimica et Cosmochimica Acta, 1998, 62(1): 69-77.

[本文引用: 5]

RauG H, RiebesellU, Wolf-gladrowD.

A model of photosynthetic 13C fractionation by marine phytoplankton based on diffusive molecular CO2 uptake

[J]. Marine Ecology Progress Series, 1996, 133275-285.

[本文引用: 2]

PaganiM.

The alkenone-CO2 proxy and ancient atmospheric carbon dioxide

[J]. Philosophical Transactions of The Royal Society A Mathematical Physical Engineering Sciences, 2002, 360(1 793): 609-632.

[本文引用: 3]

HayesJ M, TakigikuR, OcampoR, et al.

Isotopic compositions and probable origins of organic molecules in the Eocene Messel shale

[J]. Nature, 1987, 329(6 134): 48-51.

[本文引用: 2]

JasperJ P, HayesJ M.

Reconstruction of paleoceanic PCO2 levels from carbon isotopic compositions of sedimentary biogenic components

[M]//ZahnR, PedersenT F, KaminskiM A, alet, eds.

Carbon Cycling in the Glacial Ocean: Constraints on the Ocean’s Role in Global Change

NATO ASI Series (Series I: Global Environmental Change), vol 17

Berlin, Heidelberg: Springer,1994.

[本文引用: 5]

RiebesellU, RevillA T, HoldsworthD G, et al.

The effects of varying CO2 concentration on lipid composition and carbon isotope fractionation in Emiliania huxleyi

[J]. Geochimica et Cosmochimica Acta, 2000, 64(24): 4 179-4 192.

[本文引用: 5]

Van DongenB E, SchoutenS, Sinninghe DamsteJ S.

Carbon isotope variability in monosaccharides and lipids of aquatic algae and terrestrial plants

[J]. Marine Ecology Progress Series, 2002, 232:83-92.

[本文引用: 1]

PaganiM, ZachosJ C, FreemanK H, et al.

Marked decline in atmospheric carbon dioxide concentrations during the Paleogene

[J]. Science, 2005, 309(5 734): 600-603.

[本文引用: 4]

SekiO, FosterG L, SchmidtD N, et al.

Alkenone and boron-based Pliocene pCO2 records

[J]. Earth and Planetary Science Letters, 2010, 292(1/2): 201-211.

[本文引用: 6]

LawsE A, PoppB N, BidigareR R, et al.

Controls on the molecular distribution and carbon isotopic composition of alkenones in certain haptophyte algae

[J]. Geochemistry Geophysics Geosystems, 2001, 2(1): 2000GC000057.

[本文引用: 2]

EekM K, WhiticarM J, BishopJ K B, et al.

Influence of nutrients on carbon isotope fractionation by natural populations of Prymnesiophyte algae in NE Pacific

[J]. Deep-Sea Research Part II:Topical Studies in Oceanography, 1999, 46(11/12): 2 863-2 876.

PoppB N, TrullT, KenigF, et al.

Controls on the carbon isotopic composition of southern ocean phytoplankton

[J]. Global Biogeochemical Cycles, 1999, 13(4): 827-843.

PaganiM.

Biomarker-Based Inferences of Past Climate: The Alkenone pCO2 Proxy

[R]. Oxford:Elsevier, 2014: 361-378.

[本文引用: 2]

RauG H, TakahashiT, MaraisD J D.

Latitudinal variations in plankton |[delta]|13C: Implications for CO2 and productivity in past oceans

[J]. Nature, 1989, 341(6 242): 516-518.

[本文引用: 1]

MüllerM N, BeaufortL, BernardO, et al.

Influence of CO2 and nitrogen limitation on the coccolith volume of Emiliania huxleyi (Haptophyta)

[J]. Biogeosciences, 2012, 9(10): 4 155-4 167.

[本文引用: 2]

BeaufortL, CouapelM, BuchetN, et al.

Calcite production by coccolithophores in the south east Pacific Ocean

[J]. Biogeosciences, 2008, 5(4): 1 101-1 117.

[本文引用: 1]

HenderiksJ, PaganiM.

Coccolithophore cell size and the Paleogene decline in atmospheric CO2

[J]. Earth and Planetary Science Letters, 2008, 269(3): 576-584.

[本文引用: 2]

HenderiksJ, PaganiM.

Refining ancient carbon dioxide estimates: Significance of coccolithophore cell size for alkenone‐based pCO2 records

[J]. Paleoceanography, 2007, 22(3): 324-329.

[本文引用: 1]

HenderiksJ.

Coccolithophore size rules—Reconstructing ancient cell geometry and cellular calcite quota from fossil coccoliths

[J]. Marine Micropaleontology, 2008, 67(1): 143-154.

[本文引用: 1]

AloisiG.

Co-variation of metabolic rates and cell-size in coccolithophores

[J]. Biogeosciences, 2015, 12(15): 4 665-4 692.

[本文引用: 1]

MüllerM N, AntiaA N, LarocheJ.

Influence of cell cycle phase on calcification in the coccolithophore Emiliania huxleyi

[J]. Limnology and Oceanography, 2008, 53(2): 506-512.

[本文引用: 1]

KawahataH.

Biogenic sediments in the Eauripic Rise of the equatorial western Pacific during the last 265 kyr

[J]. Geochemical Journal, 1996, 30:201-215.

[本文引用: 1]

RostB, ZondervanI, RiebesellU.

Light-dependent carbon isotope fractionation in the coccolithophorid Emiliania huxleyi

[J]. Limnology and Oceanography, 2002, 47(1): 120-128.

[本文引用: 3]

BurnsB D, BeardallJ.

Utilization of inorganic carbon by marine microalgae

[J]. Journal of Experimental Marine Biology and Ecology, 1987, 107(1): 75-86.

[本文引用: 1]

ColmanB, HuertasI E, BhatilS, et al.

The diversity of inorganic carbon acquisition mechanisms in eukaryotic microalgae

[J]. Functional Plant Biology, 2002, 29(2/3): 261-270.

[本文引用: 1]

GiordanoM, BeardallJ, RavenJ A.

CO2 concentrating mechanisms in algae: Mechanisms, environmental modulation, and evolution

[J]. Annual Review of Plant Biology, 2005, 56:99-131.

[本文引用: 1]

RavenJ A.

Inorganic carbon acquisition by eukaryotic algae: Four current questions

[J]. Photosynthesis Research, 2010, 106(1/2): 123-134.

[本文引用: 1]

NimerN A, GuanQ, MerrettM J.

Extra- and intra-cellular carbonic anhydrase in relation to culture age in a high-calcifying strain of Emiliania huxleyi lohmann

[J]. New Phytologist, 1994, 126(4): 601-607.

[本文引用: 1]

NimerN A, MerrettM J.

The development of a CO2-concentrating mechanism in Emiliania huxleyi

[J]. New Phytologist, 1996, 133(3): 383-389.

[本文引用: 2]

NimerN A, MerrettM J, BriwbkeeC.

Inorganic carbon transport in relation to culture age and inorganic carbon concentration in a high-calcifying strain of Emiliania huxleyi (Prymnesiophyceae) 1

[J]. Journal of Phycology, 1996, 32(5): 813-818.

[本文引用: 1]

NimerN A, DeboraI R M, MerrettM J.

Bicarbonate utilization by marine phytoplankton species

[J]. Journal of Phycology, 2010, 33(4): 625-631.

[本文引用: 1]

HerfortL, ThakeB, RobertsJ.

Acquisition and use of bicarbonate by Emiliania huxleyi

[J]. New Phytologist, 2002, 156(3): 427-436.

[本文引用: 1]

LawsE A, ThompsonP A, PoppB N, et al.

Sources of inorganic carbon for marine microalgal photosynthesis: A reassessment of delta 13C data from batch culture studies of thalassiosira pseudonana and Emiliania huxleyi

[J]. Limnology and Oceanography, 1998, 43(1): 136-142.

[本文引用: 1]

RostB, SültemeyerD, RiebesellU.

Effect of CO2 concentration on the carbon acquisition of bloom-forming marine phytoplankton

[J]. Oceanography, 2003, 1(1): 55-67.

[本文引用: 2]

Rosario LorenzoM, IñiguezC, EggeJ K, et al.

Increased CO2 and iron availability effects on carbon assimilation and calcification on the formation of Emiliania huxleyi blooms in a coastal phytoplankton community

[J]. Environmental and Experimental Botany, 2018, 148:47-58.

[本文引用: 2]

RostB, RiebesellU, SültemeyerD.

Carbon acquisition of marine phytoplankton: Effect of photoperiod length

[J]. Limnology and Oceanography, 2006, 51(1): 12-20.

[本文引用: 3]

StojkovicS, BeardallJ, MatearR.

CO2 -concentrating mechanisms in three southern hemisphere strains of Emiliania huxleyi

[J]. Journal of Phycology, 2013, 49(4): 670-679.

[本文引用: 2]

ElzengaJ T M, PrinsH B A, StefelsJ.

The role of extracellular carbonic anhydrase activity in inorganic carbon utilization of Phaeocystis globosa (Prymnesiophyceae): A comparison with other marine algae using the isotopic disequilibrium technique

[J]. Limnology and Oceanography, 2000, 45(2): 372-380.

[本文引用: 1]

NimerN A, DixonG K, MerrettM J.

Utilization of inorganic carbon by the coccolithophorid Emiliania huxleyi (Lohmann) Kamptner

[J]. New Phytologist, 1992, 120(1): 153-158.

[本文引用: 1]

RostB, KranzS A, RichterK U, et al.

Isotope disequilibrium and mass spectrometric studies of inorganic carbon acquisition by phytoplankton

[J]. Limnology and Oceanography Methods, 2007, 5(10): 328-337.

[本文引用: 1]

ReinfelderJ R.

Carbon concentrating mechanisms in eukaryotic marine phytoplankton

[J]. Annual Review of Marine Science, 2011, 3:291-315.

[本文引用: 1]

MejíaL M, Méndez-VicenteA, AbrevayaL, et al.

A diatom record of CO2 decline since the late Miocene

[J]. Earth and Planetary Science Letters, 2017, 479:18-33.

[本文引用: 1]

BadgerM P S, LearC H, PancostR D, et al.

CO2 drawdown following the middle Miocene expansion of the Antarctic Ice Sheet

[J]. Paleoceanography, 2013, 28(1): 42-53.

[本文引用: 3]

Martonez-BotiM A, FosterG L, ChalkT B, et al.

Plio-Pleistocene climate sensitivity evaluated using high-resolution CO2 records

[J]. Nature, 2015, 518(7 537): 49-54.

[本文引用: 2]

GreenopR, FpsterG L, WilsonP A, et al.

Middle Miocene climate instability associated with high-amplitude CO2variability

[J]. Paleoceanography, 2014, 29(9): 845-853.

[本文引用: 2]

VanD B J, VisscherH, DilcherD L, et al.

Paleoatmospheric signatures in neogene fossil leaves

[J]. Science, 1993, 260 (5 115): 1 788.

[本文引用: 2]

KũrschnerW M, KvacekZ, DilcherD L.

The impact of Miocene atmospheric carbon dioxide fluctuations on climate and the evolution of terrestrial ecosystems

[J]. Proceedings of the National Academy of Sciences USA, 2008, 105(2): 449-453.

[本文引用: 2]

DaJ, ZhangY G, WangH, et al.

An Early Pleistocene atmospheric CO2 record based on pedogenic carbonate from the Chinese loess deposits

[J]. Earth and Planetary Science Letters, 2015, 426:69-75.

[本文引用: 2]

/