img img
  • CN 62-1091/P
  • ISSN 1001-8166
  • 月刊 创刊于1986年
高级检索

地球科学进展, 2019, 34(4): 399-413 doi: 10.11867/j.issn.1001-8166.2019.04.0399

固体地球科学

胶东三山岛金矿床黄铁矿原位微区微量元素特征及对矿床成因的指示

林祖苇,, 赵新福,, 熊乐, 朱照先

中国地质大学(武汉)资源学院,湖北 武汉 430074

In-situ Trace Element Analysis Characteristics of Pyrite in Sanshandao Gold Deposit in Jiaodong Peninsula: Implications for Ore Genesis

Lin Zuwei,, Zhao Xinfu,, Xiong Le, Zhu Zhaoxian

Faculty of Earth Resources, China University of Geosciences, Wuhan 430074, China

通讯作者: 赵新福(1982-),男,江苏镇江人,教授,主要从事经济地质研究. E-mail:xfzhao@cug.edu.cn

收稿日期: 2018-12-12   修回日期: 2019-02-10   网络出版日期: 2019-05-22

基金资助: 国家重点研发计划项目“华北东部巨量金来源、迁移与富集机理”.  编号:2016YFC0600104

Corresponding authors: Zhao Xinfu(1982-), male, Zhenjiang City, Jiangsu Province, Professor. Research areas include economic geology.E-mail:xfzhao@cug.edu.cn

Received: 2018-12-12   Revised: 2019-02-10   Online: 2019-05-22

作者简介 About authors

林祖苇(1993-),男,山东烟台人,硕士研究生,主要从事金矿床地球化学研究.E-mail:linzw@cug.edu.cn , E-mail:linzw@cug.edu.cn

摘要

胶东地区是我国最大金成矿聚集区,其金矿床的成因长期以来一直存在很大争议,三山岛金矿床是胶东地区最大的金矿床,通过采用LA-ICP-MS分析不同阶段黄铁矿中微量元素组成,可以探讨成矿流体演化及成矿物质来源。根据野外地质特征及岩相学观察,结合SEM结构分析将三山岛金矿床的黄铁矿分为3个阶段,6个亚类,即黄铁绢英岩化带(Py1)中包裹大量绢云母和石英的Py1-a和表面光滑的Py1-b,石英—黄铁矿±菱铁矿脉(Py2)中富含矿物包裹体的Py2-a和与菱铁矿共生且表面光滑的Py2-b,石英—多金属硫化物脉(Py3)中有很多细粒多金属硫化物包裹体的Py3-a和表面光滑的Py3-b。3个阶段黄铁矿晶格中金含量均很低,大部分小于1×10-6,金主要以可见金形式存在。从早阶段到晚阶段黄铁矿中Au与Ag,Cu,Pb,Sb有较好的正相关性,且含量有逐渐增加的趋势。最早阶段黄铁矿中Co+Ni的含量很高(最高为9 268×10-6),反映了早期黄铁矿可能来源于岩浆岩源区,后期Co/Ni值逐渐降低,暗示了成矿流体温度逐渐降低。结合地质特征和黄铁矿微量元素研究,表明三山岛金矿床成矿物质可能来源于深部岩浆热液储库,通过地震泵机制沿断裂构造多次侵位成矿。

关键词: 三山岛金矿床 ; LA-ICP-MS ; 黄铁矿 ; 微量元素 ; 矿床成因

Abstract

There are controversies about the genesis of the lode gold deposits in Jiaodong area. The Sanshandao gold deposit is the largest one in Jiaodong area. To better understand the genesis of the gold deposit, it is necessary to know the evolution of ore-forming fluid and the source of ore-forming material for the Sanshandao gold deposit. In this paper, the trace element composition of pyrite at different metallogenic stages in the Sanshandao gold deposit was analyzed by using LA-ICP-MS. Based on geological characteristics and petrography observation and SEM analysis, pyrite can be divided into three stages and six classes, including porous Py1-a and smooth Py1-b in pyrite-sericite-quartz alteration (Py1), many mineral inclusions in the Py2-a and smooth Py2-b associated with carbonate in the quartz-pyrite ± siderite veins (Py2), a lot of polymetallic sulfide inclusions hosted Py3-a and Py3-b with smooth and oscillation band in the quartz-polymetallic sulfide vein (Py3). The experimental results show that the gold content is very low in the lattice of pyrite, most of which is less than 1×10-6, and gold mainly occurs in the form of visible gold. The contents of Au, Ag, Cu, Pb and Sb of pyrite gradually increase from early stage to late stage. The high content of Co+Ni in the earliest stage (up to 9268×10-6) reflects that pyrite in the early stage is likely derived from magma, and the Co/Ni ratio gradually decreases, suggesting the decrease of ore forming fluid temperature. Combined with the geological observations and trace elements component of pyrite, the study shows that the genesis of the Sanshandao gold deposit is related to the evolution of magmatic hydrothermal reservoir. The ore-forming fluid is transported several times along the fault by seismic pumping.

Keywords: Sanshandao Gold Deposit ; LA-ICP-MS ; Pyrite ; Trace element ; Ore genesis.

PDF (12987KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

林祖苇, 赵新福, 熊乐, 朱照先. 胶东三山岛金矿床黄铁矿原位微区微量元素特征及对矿床成因的指示. 地球科学进展[J], 2019, 34(4): 399-413 doi:10.11867/j.issn.1001-8166.2019.04.0399

Lin Zuwei. In-situ Trace Element Analysis Characteristics of Pyrite in Sanshandao Gold Deposit in Jiaodong Peninsula: Implications for Ore Genesis. Advances in Earth Science[J], 2019, 34(4): 399-413 doi:10.11867/j.issn.1001-8166.2019.04.0399

胶东地区金矿床黄金储量超过4 000 t,其黄金储量占中国黄金总储量的1/4以上[1]。关于胶东地区金矿床的成因类型划分,一直存在很大的争议[2,3]。一种观点认为成矿流体和成矿物质来源于古太平洋板块及上覆沉积物在俯冲过程中的脱挥发分,为一种特殊的造山型金矿[4,5,6,7];另一种观点认为华北克拉通周缘的金矿床形成于华北克拉通破坏的峰期,富集的岩石圈地幔熔融产生的熔/流体与地壳的相互作用造成金元素短期巨量聚集成矿,构造体制转变提供了动力学基础[8,9,10];还有一种观点认为在燕山期长期强烈构造—岩浆活动下,新太古代基底活化富集成矿[1,11];此外还有学者强调了胶东地区金矿床是一种与岩浆热液有关的中低温脉状金矿床,提出了胶东型金矿床[12,13]。因此,该类型金矿床成矿流体演化和成矿物质来源研究对解决胶东地区金矿床成因具有重要的理论意义。

黄铁矿作为中温热液脉状金矿床最丰富的硫化物,通常包含较多的亲铁亲铜元素,最丰富的元素是Co,Ni,Cu,As和Zn,最高可达10 000 ×10-6,其次是Se,Mo,Ag,Sb和Pb,含量可以达到1 000×10-6,最少的是Au,Bi和Sn,含量为10×10-6~100×10-6 [14]。如果黄铁矿发生了溶解再沉淀或者有外来流体的交代,上述元素的变化可以记录黄铁矿在不同地质条件下的形成和演化过程[15,16,17,18,19,20,21,22,23]。在金矿床中,由于无法直接限定金矿床中金的来源,考虑到黄铁矿与金的关系最紧密,因此可以通过对黄铁矿的研究来间接示踪金的来源。此外,在与不同类型的金矿床中黄铁矿的微量元素特征存在明显的差异,比如与还原性侵入岩有关的金矿床中黄铁矿的Au与As,Cu,Te,Sb,Pb,Ag和Bi有较好的正相关性,且含有较多的高温元素,如W和Sn[24,25,26,27];赋存在沉积岩中的金矿床中黄铁矿包含了大量的不可见金和较多的地层元素,比如Mo,Hg,Tl和Se[19,28];与变质作用有关的金矿床其黄铁矿中与金有关的元素有As,Bi,Pb和Ag[29]。对黄铁矿微量元素变化开展研究,可以反映成矿作用过程,对判定矿床类型有重要的指示作用。

三山岛金矿床作为胶东最大的蚀变岩型金矿床,近些年找矿勘查工作屡获重大突破。前人主要在矿床基础地质特征、岩相学、流体包裹体特征和年代学等方面对三山岛金矿床开展了较为广泛的研究[30,31,32,33,34,35]。目前,仍然缺乏对黄铁矿微观结构和微量元素含量等方面的研究,本文在野外地质观察的基础上,对三山岛金矿床中黄铁矿开展了详细的成矿阶段及世代划分,通过分析黄铁矿微区结构和微量元素组成,探讨了金的赋存状态和可能的成矿物质来源,从而丰富了三山岛金矿床及胶东同类型矿床的成因认识。

1 区域地质背景

华北克拉通主要由太古宙—古元古代变质基底和上覆中元古代—新生代盖层组成,其地质演化历史可以追溯到3.85~3.2 Ga,是世界最古老的克拉通之一[36,37]。华北克拉通包含3个组成部分:东部地块、西部地块和两者之间所夹的中部造山带。在古元古代末期(约1.85 Ga),东、西陆块两者沿中部造山带进行拼合形成一个整体,便转入了稳定的克拉通演化阶段[38]

在显生宙以来,华北克拉通不断遭受周围板片的俯冲和碰撞作用。在晚古生代—早中生代时期,华北克拉通北缘一直受到西伯利亚南侧增生陆缘的俯冲和碰撞,随着古亚洲洋的闭合,形成了中亚造山带,而位于华北克拉通南部的扬子克拉通在三叠纪向北俯冲碰撞产生了大别—苏鲁超高压造山带[39,40,41],随后在中侏罗世(180~170 Ma)古太平洋板块开始向欧亚大陆俯冲[42]。在早白垩世,华北克拉通的古老克拉通岩石圈地幔逐渐被新生岩石圈地幔置换并发生克拉通破坏,发育了广泛的岩浆活动、构造变形和金成矿作用[43,44](图1a)。

图1

图1   华北克拉通与胶东地区区域地质图(据参考文献[45]修改)

Fig 1   Simplified geological map of the North China craton and Jiaodong Penisula (modifed after reference [45])

(a)华北克拉通地质简图;(b)胶东地区区域地质图

(a) Simplified geologic map of the North China Craton;(b) Geological map of the Jiaodong Peninsula


胶东半岛位于华北克拉通的东缘,由北部的胶北隆起区和南部的苏鲁超高压造山带组成,两者以五莲—荣成断裂为界。金矿床几乎全部分布在胶北隆起区。胶北隆起区的地质单元主要由前寒武纪变质基底和中生代岩浆岩组成(图1b)。前寒武纪变质基底由太古宙花岗—绿岩带组成,主要包括新太古界胶东群、英云闪长岩—奥长花岗岩—花岗闪长岩(Tonalite-Trondhjemite-Grandiorite,TTG)片麻岩,古元古界粉子山群和荆山群高级变质泥岩[1]。中生代岩浆岩有晚侏罗世(165~150 Ma)玲珑、昆嵛山、鹊山和文登4个杂岩体[46,47]、早白垩世(132~123 Ma)郭家岭型似斑状花岗闪长岩[10,46,48]、130~110 Ma酸性至基性火山岩、125~90 Ma碱性花岗岩和中性—镁铁质脉岩[12,47,49]

胶东地区在早白垩世之前,由于古太平洋板块的俯冲,区域受到北西向—南东向挤压[50],在125~120 Ma,古太平洋板块俯冲角度发生了80°偏转,形成了NNE和NE向拉张脆性构造,同期发育了广泛的金成矿作用[51]

2 矿床地质

三山岛金矿区位于胶北隆起区的西缘,主要为蚀变岩型矿化,在局部张性空间也有含金石英脉产出。三山岛金矿床的黄金储量超过1 500 t[34]。矿区构造主要为NE向与NW向,NE向断裂为主控矿构造,倾向南东,倾角为35°~40°,断裂上盘为郭家岭型似斑状花岗闪长岩,下盘为玲珑型黑云母二长花岗岩,断裂具有继承—活化多期次活动特征,沿断裂从北向南依次控制着三山岛、新立和仓上3个大型—超大型金矿床。NW向断裂为破矿构造。三山岛金矿床主要有2个矿体,其中I号矿体平均金品位为3.86 g/t,矿体产状与断裂产状一致,主要呈透镜状、沿走向具有尖灭再现和分支复合等特征(图2)。

图2

图2   三山岛金矿床区域地质图(据参考文献[34]修改)

Fig 2   Generalized geological map of the Sanshandao gold deposit modified after reference [34])

(a) 三山岛断裂带地质特征;(b) 三山岛矿区地质特征

(a) Geologic map of the Sanshandao fault belt; (b) Geological map of the Sanshandao gold ore field


断裂两侧围岩蚀变强烈且具有较明显的分带性,从内向外依次为黄铁绢云岩化带、钾化带和未蚀变花岗岩。根据野外地质穿插关系和矿物结构关系,矿化蚀变共分成5个阶段:成矿最早期的钾化阶段,往往分布在矿体外围,大量钾长石交代斜长石,黄铁矿很少(图3a);黄铁绢英岩化阶段,厚度可达100多米,主要表现为黄铁绢云岩化,可见少量花岗岩残余石英斑晶,该阶段花岗结构完全消失,暗色矿物全部被交代为黄铁矿和绢云母(图3b);石英—黄铁矿±菱铁矿阶段,厚度5~10 cm,倾角陡立(约70°),黄铁矿与石英共生呈脉状形式产出,偶尔存在菱铁矿(图3c和图3d);石英—多金属硫化物阶段,主要呈细脉状或网脉状,主要矿物有黄铁矿、黄铜矿、闪锌矿和方铅矿等(图3c和图3f);石英—碳酸盐阶段,石英—碳酸盐呈细脉状穿插早阶段矿石(图3e)。其中第二、三、四阶段均发育金矿化,是主要的成矿阶段(图4)。

图3

图3   三山岛金矿矿脉切穿关系及典型蚀变特征

Fig.3   The crosscutting relationships of gold ore-bodies and typical hydrothermal alteration in the Sanshandao gold deposit

(a)矿体边缘的钾化蚀变带中被一条石英脉穿切;(b)黄铁绢云岩化带中发育石英角砾,且有少量碳酸岩脉沿裂隙充填;(c)石英—黄铁矿—菱铁矿脉穿切黄铁绢云岩化带,后被石英—多金属硫化物脉穿切;(d)乳白色石英脉中的黄铁矿呈粗粒自形;(e)石英—黄铁矿脉被晚期碳酸盐脉穿切;(f)石英—多金属硫化物脉被后期构造错断;Ccp:黄铜矿;Gn:方铅矿;Py:黄铁矿;Q:石英;Sd:菱铁矿;Ser:绢云母; Sp:闪锌矿

(a) Potassic alteration is cut by quartz vein at the edge of ore body;(b) Quarz phenocrysts associated with siderite in the pyrite-sericite-quartz alteration;(c) Quartz-pyrite- siderite vein cut pyrite-sericite-quartz alteration, then is cut by polymetallic sulfide vein; (d) A milk white quartz-pyrite vein cut pyrite-sericite-quartz alteration, pyrite occurs as euhedral granular; (e)Quartz-pyrite vein is cut by carbonate vein;(f) Polymetallic sulfide vein is displaced by latter structure. Ccp: Chalcopyrite; Gn: Galena; Py: Pyrite; Q: Quartz; Sd: Siderite; Ser: Sericite; Sp: Sphalerite


图4

图4   三山岛金矿床成矿期次与阶段划分

Fig.4   Paragenesis sequence of ore and gangue minerals of the Sanshandao gold deposit of the Sanshandao gold deposit

Py2产出于石英—黄铁矿±菱铁矿阶段中,黄铁矿主要与石英和菱铁矿共生呈脉状穿插黄铁绢云岩化带。Py2-a与石英共生,为该阶段主要类型的黄铁矿,其主要呈半自形—它形,中粗粒,大小为200~500 μm,可见少量黄铜矿、方铅矿、闪锌矿和自然金等矿物包裹体,黄铁矿脆性碎裂程度较高;在与菱铁矿共生的黄铁矿中,可见Py2-a被改造的特征,形成残余的核部Py2-b,其表面光滑,BSE图像上较Py2-a更亮(图5e)。

Py3产出于石英—多金属硫化物阶段中,半自形—它形,中粗粒,大小为400~600 μm,与黄铜矿、方铅矿和闪锌矿共生。BSE图像下可见明显核边结构,核部Py3-a在BSE图像下呈暗色,包裹了大量细粒黄铜矿、闪锌矿、方铅矿和金银矿等矿物,而边部Py3-b在BSE图像下呈亮色,表面平整光滑,偶尔包裹其他硫化物(图5h)。


矿石中主要金属矿物为黄铁矿、黄铜矿、闪锌矿和方铅矿,以及少量磁黄铁矿、金银矿和自然金等;非金属矿物主要有石英、绢云母、方解石、菱铁矿、长石、绿泥石及少量的磷灰石、锆石、独居石等。矿石构造简单,以块状构造、脉状构造和浸染状构造为主(图3);矿石结构主要为自形—半自形粒状结构、包含结构、交代残余结构、乳滴状结构及填隙结构(图5)。可见金为金银矿和银金矿,主要呈现与黄铜矿、闪锌矿和方铅矿共生的形式,分布在黄铁矿的裂隙中或以矿物包裹体的形式赋存在黄铁矿中(图5f和图5i)。

图5

图5   不同世代黄铁矿镜下结构(a,d,f,g,i)和BSE图像(b,c,e,h)特征

Fig.5   Photomicrographs(a,d,f,g,i) and BSE images(b,c,e,h) of different pyrite generations

(a)黄铁绢云岩化阶段中浸染状黄铁矿Py1-a包裹了大量石英和绢云母,边部为光滑状Py1-b(反射光);(b)和(c)Py1-a与Py1-b的BSE图像不均一,反映其成分变化较大(BSE图像);(d)石英黄铁矿脉中有多金属硫化物细脉穿插(正交光);(e)石英—黄铁矿±菱铁矿阶段中Py2-a呈交代残余结构被Py2-b交代,Py2-a中包裹大量的方铅矿、黄铜矿、磁黄铁矿等与石英共生,Py2-b表面光滑,与菱铁矿共生(BSE图像);(f)石英—黄铁矿±菱铁矿阶段中自然金以裂隙金、包裹金的形式赋存在黄铁矿和石英中(反射光);(g)石英—多金属硫化物阶段中黄铁矿呈自形细粒零散分布于石英—多金属硫化物脉中(反射光);(h)石英—多金属硫化物阶段中可见早阶段包裹大量闪锌矿包裹体的Py3-a被与闪锌矿共生的Py3-b包裹,Py3-b表面光滑(BSE图像);(i)石英—多金属硫化物阶段中自然金与方铅矿、黄铜矿共生,沿裂隙充填黄铁矿中(反射光)

(a) Py1-a grains with irregular shape and numerous silicate inclusions,Py1-b with smooth surface in pyrite-sericite-quartz stage(reflected light);(b)and (c) The BSE images of Py1-a and Py1-b are not uniform, which reflects that the composition changes greatly(BSE image);(d) Polymetallic sulfide vein cut by quartz-pyrite vein(orthogonal light);(e) Py2-a as replacement remnant is metasomasised by Py2-b (BSE image);(f) Gold occurs in pyrite and quartz in the form of enclosure and fracture in the quartz-pyrite±siderite stage(reflected light);(g) Pyrite grains are cubic crystals in Sphalerite vein(reflected light);(h) Glossy Py3-b intergrown with sphalerite overgrowing the Py3-a with many sphalerite inclusions, the BSE image of Py3-a is more black than Py3-b(BSE image);(i) Gold, sphalerite, chalcopyrite, and galena assemblages in fracture of pyrite veins(reflected light)


3 样品采集与实验方法

实验样品采自三山岛矿区-346 m中段的129采场和钻孔编号为ZK78-2的岩芯,通过系统编录,从中选出最典型的矿石:浸染状黄铁绢英岩、石英黄铁矿脉和石英多金属硫化物脉,分别代表了第二、三、四主成矿阶段的黄铁矿。每个阶段选择1~2块典型样品,磨制厚度为0.7 mm的加厚探针片,结合光学显微镜图像与BSE图像(Back Scattered Electron Imaging)观察黄铁矿结构和共生组合,划分黄铁矿类型。

黄铁矿微量元素分析在中国科学院地球化学研究所矿床地球化学国家重点实验室完成。激光剥蚀系统标样采用NWR-213,实验分析仪器为Agilent 7700x型四级杆质谱仪。氦气(480 mL/min)运载剥蚀物离开剥蚀舱后与氩气(900 mL/min)均匀混合,之后进入ICP-MS进行元素含量测定。每次分析前有30 s的空白背景值测定,随后是60 s的激光剥蚀样品信号测定。激光斑束直径为50~70 μm,频率为10 Hz,激光能量约为5 J/cm2。分析方法为多外标—无内标法,GSE-1G,MASS和Py做外标。具体实验条件见参考文献[52]。测试元素包括49Ti,52Cr,55Mn,56Fe,59Co,61Ni,65Cu,66Zn,72Ge,75As,82Se,85Rb,88Sr,95Mo,109Ag,115In,118Sn,121Sb,125Te,197Au,202Hg,115Tl,208Pb和209Bi。对分析数据的离线处理(包括样品和空白信号的数据图谱选择等)依据Liu等[52]的标准方法采用ICPMSDataCal软件进行处理。

4 黄铁矿微观结构和世代划分

根据详细的野外地质调查和显微矿相学观察,可以将三山岛金矿床3个成矿阶段的黄铁矿,包括黄铁绢英岩阶段(Py1)、石英—黄铁矿±菱铁矿阶段(Py2)和石英—多金属硫化物阶段(Py3),进一步划分出6个亚类(表1)。

表1   三山岛金矿床不同亚类黄铁矿特征

Table 1  The features of different pyrite generations

成矿阶段黄铁矿世代形态特征矿物共生组合BSE特征
黄铁绢云岩化阶段Py1-a半自形—它形,大小为50~200 μm,有大量绢云母和石英矿物包裹体与绢云母和石英共生不均一
Py1-b表面光滑与绢云母和石英共生不均一
石英—黄铁矿±菱铁矿阶段Py2-a包裹少量方铅矿、黄铜矿等矿物与自然金、方铅矿、黄铜矿和石英共生暗色
Py2-b表面光滑与菱铁矿共生亮色
石英—多金属硫化物阶段Py3-a包裹大量的方铅矿、黄铜矿等矿物与自然金、方铅矿、黄铜矿和石英共生暗色
Py3-b表面光滑与自然金、方铅矿、黄铜矿和石英共生亮色

新窗口打开| 下载CSV


Py1产于黄铁绢云岩化阶段中,该阶段中黄铁矿主要呈浸染状与绢云母和石英共生。根据产出状态,可以分为2个世代。Py1-a呈半自形—它形粒状,大小为50~ 200 μm,包裹了大量的绢云母和石英,部分Py1-a被Py1-b包裹,BSE图像显示黄铁矿成分不均一;Py1-b表面平整光滑,偶见少量黄铜矿和磁黄铁矿包裹体,常呈集合体形式产出,BSE图像显示变化较大(图5a~c)。

4 黄铁矿微区分析结果

4.1 黄铁矿激光剥蚀信号特征

由于一些黄铁矿中存在较多细小的矿物包裹体,在激光剥蚀过程中,部分情况下不可避免地会同时剥蚀到黄铁矿中的矿物包裹体,剥蚀曲线会呈现突然变高的情况,这在多孔状和与其他硫化物共生的黄铁矿中较多出现。如出现上述情况,在数据分析过程中将尽量避免选择这些信号。从图6中可以看出,As和Co信号平坦,说明这些元素以晶格替代的形式赋存在黄铁矿晶格中,而Au与Cu,Ag,Sb,Te,Pb和Bi具有相似的变化趋势,说明黄铁矿会包裹细小的金银矿、黄铜矿和Sb-Pb-Bi-Ag矿物包裹体。此外,Ag还与Pb,Bi有一致的信号变化规律。从不同元素激光剥蚀曲线的高低也可以观察出元素的相对含量,总体来看,Py3中金的信号较高,显示有较高的晶格金含量或者大量细小的金矿物包裹体,而Py1和Py2黄铁矿晶格中的金含量很低,接近检测限(图6)。

图6

图6   不同亚类典型黄铁矿激光剥蚀曲线

Fig.6   Representative time-resolved depth profiles for pyrite grains of different generations


4.2 黄铁矿微量元素特征

利用LA-ICP-MS对三山岛金矿床不同阶段和亚类的黄铁矿进行测试,共32种元素,其中Sc,Ti,V,Cr,Mn,Ga,Ge,Se,Rb,Sr,Y,Mo,In,Sn,Ba,W,Hg和Tl元素在黄铁矿中含量极低,且不同阶段变化不大,个别含量很高的分析点可能是受到了矿物包裹体的影响,主要元素分析结果如表2所示。

表2   不同亚类黄铁矿LA-ICP-MS微量元素分析结果(×10-6

Table 2  Trace elements analysis on pyrites of different generations using LA-ICP-MS(×10-6)

黄铁矿世代分析编号CoNiCuZnAsAgSbTeAuPbBiCo/NiPb/Bi
检测限0.010.140.411.050.410.050.020.230.020.060.01
Py1-aSSD-2-13742100.330.966270.100.050.480.021.341.051.781.28
SSD-2-24561375.041.2634.533.150.385.140.0821.5149.323.320.44
SSD-2-343744211.510.622562.260.483.690.1717.6623.070.990.77
SSD-2-44311985.650.972082.770.835.000.1645.2447.072.180.96
SSD-2-53602457.801.1455.5014.000.618.440.1048.3649.251.470.98
SSD-17-19 0741947.070.3936.450.050.011.590.001.333.7046.690.36
SSD-17-22 2631 1412.620.031 0450.070.232.840.121.645.251.980.31
Py1-bSSD-2-621.662121.750.671 9141.570.831.850.2213.536.740.102.01
SSD-2-71103551.200.491 3660.350.200.490.054.262.070.312.06
SSD-2-833.4351.690.410.471 7270.270.170.270.076.290.990.656.37
SSD-9-110928.481.680.631 1160.740.440.580.1510.556.923.821.52
SSD-9-213737.694.920.482742.240.730.920.1922.3110.633.632.10
SSD-9-313.9333.406.380.6144711.862.971.710.353 90238.070.42102
SSD-9-40.481.621.170.641 06449.610.494.680.081 97393.360.2921.13
SSD-9-514.1314.713.920.722082.790.860.760.2632.709.820.963.33
SSD-9-67.0920.727.171.082782.392.580.560.3851.7411.340.344.56
SSD-9-75.7023.251.520.5549748.770.905.190.06430240.000.251.79
SSD-9-85.5831.960.680.624594.540.132.340.1088.6222.200.173.99
Py2-aSSD-7-10.103.8719.552.6420213.648.320.460.3865.520.950.0268.95
SSD-7-20.1692.5577.912.731852.921.270.470.1217.350.240.0071.79
SSD-7-30.108.2246219.943.594.690.590.100.0132.060.080.01423
SSD-7-40.340.329.890.341 28810.233.810.210.2015.710.121.06127
Py2-bSSD-7-514.751382.401.792 2630.521.060.240.0910.450.230.1145.24
SSD-7-61.342210.460.192 5660.080.060.110.031.480.020.0169.42
SSD-7-72.879380.460.533 2110.010.180.050.012.070.030.0075.96
Py3-aSSD-17-32.142421 00523230.5392.788.801.660.842 8480.020.011.23×105
SSD-17-431.1667532.816.101 5081.372.820.050.1339.540.010.053 990
SSD-17-58.822118.561.881754.924.490.050.2276.180.020.044 441
SSD-17-60.069.3916516 7376.2437.613.670.000.3843.180.010.014 374
SSD-17-71.4350.5924118 90469.9737.145.740.070.681240.030.033 597
Py3-bSSD-17-81.399.212279 07374332.0810.080.000.871010.020.154 367
SSD-17-92.5263.0920121464.454.002.720.050.0436.470.000.04
SSD-17-1046.5527.8328.073.288 32019.681.650.197.804080.001.67
SSD-17-115.6374.390.903.382.841.380.010.000.000.230.000.08
SSD-17-120.1622.9636714 2622.541203.960.073.1068.500.020.014 424
SSD-17-130.2114.0967817 4121.932807.210.0636.551180.020.017 358

注:“—”表示Bi没有检出

新窗口打开| 下载CSV


在黄铁绢英岩化阶段中的黄铁矿Py1-a与Py1-b中主要微量元素特征相似,仅Co和Ni等元素差异较明显。其中,Py1-a中的Co含量(中位数为1 913×10-6)比Py1-b(中位数为41.5×10-6)高2个数量级,Py1-a中Ni含量(中位数为367×10-6)比Py1-b(中位数为73.7×10-6)高1个数量级,Py1-a中的As含量(中位数为850×10-6)高于Py1-b(中位数为323×10-6),Py1-a中Te和Bi含量略高于Py1-b。Py1-b中Ag含量高于Py1-a。总体而言,Py1在各阶段黄铁矿中Co,Te和Bi含量较高,而Cu,Zn和Sb含量相对较低。

石英—黄铁矿±菱铁矿阶段中的黄铁矿Py2中As的含量较高,中位数为744×10-6,Ag和Co的含量较低。Py2-b比Py2-a含量增加的元素有Co,Ni和As。而亲铜元素均有所降低,如Cu,Zn,Ag,Sb,Au,Pb和Bi。其中Py2-a中有较多的Ag-Pb-Bi包体。

石英多金属硫化物阶段中Py3的Au含量中位数为0.68×10-6,最高值为36.55×10-6。这一阶段黄铁矿中Te和Bi含量最低,As含量变化很大(1.37×10-6~8 319×10-6)。黄铁矿中方铅矿、闪锌矿和黄铜矿等矿物包裹体较多。Py3-b较Py3-a微量元素Ni和As含量降低。

以Py1-a各元素的中位数为基准,将其他阶段黄铁矿微量元素与其比较,可以更好地反映各阶段黄铁矿微量元素特征(图7)。整体来看,各阶段黄铁矿微量元素蛛网图比较相似,反映了具有相似的来源。Py1-a最富集Co,Te和Bi;Py2-a最贫Co,Py2-b最富集As,最贫Ag,Sb,Au和Pb,Py3-a最富集Ag和Sb;Py3-b最富集Cu,Au和Pb,而最贫As和Bi。总体来看,随着成矿作用进行,成矿流体中Co,Te和Bi含量逐渐降低,而Cu,Ag,Sb,Au和Pb逐渐富集。

图7

图7   三山岛金矿各亚类黄铁矿微量元素含量特征蛛网图

Fig. 7   Spider diagram of trace element concentration in pyrites of main mineralization stages


4.3 黄铁矿微量元素相关性

Au与其他主要微量元素的协变关系如图8所示,根据激光剥蚀信号图谱,投图前已将部分剥蚀到矿物包裹体的数据排除在外,因为这些数据点会影响到元素的相关性。

图8

图8   黄铁矿微量元素相关图解

Fig.8   Binary plots of selected trace elements in pyrites of different generations

(a)Au vs Ag;(b)Au vs As,金饱和曲线公式为CAu = 0.02 ×CAs+ 4×10-5 [53];(c)Au vs Sb;(d)Cu+Pb vs Au+Ag;(e)Au vs Bi;(f)Au vs Te;(g)Te vs Bi;(h)Pb vs Ag;(i)Pb vs Bi;灰色区域为检测限

(a)Au vs Ag;(b)Au vs As,Au saturation line by CAu = 0.02 ×CAs+ 4×10-5 [53];(c)Au vs Sb;(d)Cu+Pb vs Au+Ag;(e)Au vs Bi;(f)Au vs Te;(g)Te vs Bi;(h)Pb vs Ag;(i)Pb vs Bi;The shadow areas show the average detection limit of the trace elements


从Py1至Py3,Au与Ag具有一定的正相关性。Py1分布趋势较稳定,主要沿着Au/Ag=0.1趋势线分布,Py2和Py3中Au/Ag值逐渐下降,主要沿着Au/Ag=0.01趋势线分布(图8a)。Au-As协变图中Au与As相关性不明显(图8b)。Au与Sb,Cu,Pb有很好的正相关关系(图8c和图8d)。Au与Te只在石英—黄铁矿±菱铁矿阶段显示一定的正相关性,且Au/Te约为0.5,说明在此阶段有碲金矿(AuTe2)沉淀(图8e)。Te与Bi有很好的正相关性,从早阶段到晚阶段Te和Bi含量逐渐降低(图8g)。Pb与Ag有较好的正相关关系,而Pb与Bi的相关图解中分成了3个区域,每一区域相关性很好,表明每个阶段流体Bi的含量有差别(图8h和图8i)。

5 讨 论

5.1 金的赋存状态

Au在黄铁矿中的赋存形式可以分为2种,一种是可见金,主要分布在黄铁矿裂隙中或者被黄铁矿包裹的包裹金中;另一种是不可见金,主要赋存在黄铁矿晶格中或者小于250 nm的显微金中[29]。在光学显微镜下可见大量自然金和银金矿,说明存在大量可见金(图5f和图5i)。LA-ICP-MS剥蚀曲线中Au的信号在检出限左右,但是也常见Au与Ag,Cu,Te,Sb,Pb等元素有一致的信号变化规律,显示有含金显微矿物包裹体存在,根据Reich等[53]模拟出的Au-As饱和曲线投图发现,除Py3-b个别数据高于Au饱和曲线,其余样品数据均落在曲线之下,显示在黄铁矿晶格中金不饱和。但是本次测试的三山岛金矿中黄铁矿晶格金含量大部分低于1×10-6,结合矿石中大量的可见金矿物颗粒,说明Au主要以可见金形式赋存。Py3-b中有个别测试点的金含量高于金饱和曲线,可能是局部空间震荡,使金发生大量卸载,以众多显微细小包裹体形式赋存在黄铁矿中[33,54]

在卡林型金矿、浅成低温热液型金矿以及造山型金矿中,富As的黄铁矿通常有极高的Au含量,主要是由于As进入黄铁矿中引起寄主黄铁矿的矿物晶胞参数增大或产生晶格位错为Au的富集提供了空间[55]。三山岛金矿床中所有黄铁矿的As含量很低,中位数为274×10-6,且As与Au没有明显的正相关关系(图8b),说明成矿流体中As含量较低,并对Au的沉淀作用有限。Te的含量在黄铁绢云岩化阶段和石英多金属硫化物阶段与Au无相关性,而在石英—黄铁矿±菱铁矿阶段中,Te与Au有很好的相关性,但总体Te的含量很低,对Au的搬运和富集也比较有限(图6)。推测Au在成矿热液中主要以Au(HS)0和Au(HS)2-络合物的形式运移[56]

5.2 黄铁矿结构及形成世代

三山岛金矿床与胶北隆起区其他蚀变岩型金矿床成矿过程类似[7,57]。成矿流体沿主要断裂构造上移,最初均形成以钾长石为主的蚀变带,后来大规模的绢云岩化沿主断裂发育,叠加在早阶段的钾化蚀变。水岩反应和成矿流体中相分离作用导致物理化学环境改变,如温度、压力和氧逸度等因素,可能是导致Au沉淀的主要因素[58],比如花岗岩中富Fe的黑云母和角闪石被蚀变释放出Fe2+与流体中的Au(HS)0或Au(HS)2-反应形成黄铁矿和Au[7,33,53,59]

Fe2++2Au(HS)0aq+2H2(g)=FeS2+Au2S0+H2S+2H+

Fe2++Au(HS)2aq-=FeS2+Au0+H2

由于Au很少进入黄铁矿晶格中,而是以Au的显微矿物包裹体的形式存在于黄铁矿中,所以黄铁绢云岩化阶段在激光剥蚀信号中常见金的异常信号突起,而在光学显微镜下很少见到自然金[54]。Py1-a和Py1-b就是这个过程中早、晚2个亚类的黄铁矿。

石英—黄铁矿脉和石英—多金属硫化物脉通常沿着黄铁绢云岩化带中的裂隙充填,品位较高,有大量的可见金沉淀。流体包裹体研究显示原生的H2O-CO2和纯H2O包裹体共存,流体包裹体研究发现均一温度为160~325 ℃[31]。在张性环境下,流体快速上侵减压发生不混溶或者相分离作用,Au(HS)0分解,造成了金的快速沉淀和黄铁矿的形成,这个过程主要形成了Py2-a和Py3-a 2个亚类的黄铁矿。在石英黄铁矿脉中,与菱铁矿共生的黄铁矿在BSE下可见交代早世代黄铁矿的特征(图5e),表明晚期流体进一步改造黄铁矿Py2-a形成Py2-b。在石英多金属硫化物脉中,Py3-b在BSE下明显晚于Py3-a,其金含量变化较大,有3个测试点高于1×10-6,有2个测试点高于Au-As饱和曲线,其可能代表了石英—多金属硫化物脉上移充填的过程中,局部环境不稳定,导致了成矿物质大量卸载,金直接以纳米金的形式沉淀[53,60]

5.3 黄铁矿微量元素对流体成分演化的制约

以往总结的大量经验表明不同成因类型的黄铁矿Co/Ni值存在较大差异,而且不同成矿阶段黄铁矿的Co,Ni含量和Co/Ni值也有所差异[22,61,62,63]。沉积岩中的黄铁矿有很低的Co和Ni值(Co+Ni小于100×10-6),且Co/Ni<1[19],而与岩浆岩有关的黄铁矿Co+Ni大于1 000×10-6,且Co/Ni>1[61]。围岩玲珑花岗岩中Co+Ni含量只有6×10-6左右[33],而主成矿期黄铁绢云岩阶段的黄铁矿中Co+Ni最高含量为9 268×10-6,反映了黄铁矿的形成可能与深源岩浆热液流体有关[63]。Co比Ni更易受温度控制,随着温度升高,Co往往比Ni更容易进入黄铁矿晶格中[55,64],Py1的Co/Ni测试数据主要落在0.1~10,Py1-a主要落在1~10,Py1-b主要落在0.1~1,而Py2和Py3的Co/Ni测试数据主要落在0.01~0.1,这2个阶段相差较小。从主成矿早阶段到晚阶段Co/Ni值的降低反映出成矿流体温度逐渐降低(图9)。罗栋[65]对三山岛不同阶段石英测温也发现,黄铁矿绢云岩阶段中石英包裹体完全均一温度主要在280~380 ℃,石英黄铁矿阶段中石英包裹体完全均一温度主要在220~320 ℃,石英多金属硫化物阶段中石英包裹体完全均一温度主要在200~340 ℃,反映了成矿早阶段温度最高,而石英黄铁矿与石英多金属硫化物阶段流体温度变化较小,与黄铁矿微量元素反应特征一致。

图9

图9   三山岛金矿不同阶段黄铁矿Co vs Ni 含量关系

Fig 9   Relationship between pyrite Co and Ni contents of different generations at Sanshandao gold deposit


Te和Bi从早阶段到晚阶段黄铁矿中含量逐渐降低,反映了流体中Te和Bi的含量逐渐降低。Bi与Pb在绝大多数金矿床的黄铁矿中具有相关性[23,29,66],但在三山岛金矿床中,不同阶段之间黄铁矿的Pb-Bi分成3个各自相关性较好的区域,所以根据黄铁矿的Pb/Bi值可以区分不同的成矿阶段,这指示了可能存在多阶段的热液活动作用(表2和图8i)。

三山岛金矿床与Au相关的元素组合为Ag-Cu-Pb-Sb,且从早阶段到晚阶段,黄铁矿中Au,Ag,Cu,Pb和Sb含量逐渐升高,反映了晚阶段流体更加富集Au,Ag,Cu,Pb和Sb(图7)。每当静水压力大于静岩压力时,成矿流体从储库沿区域断裂快速上移成矿[58]

6 结 论

(1)三山岛金矿床是典型蚀变岩型金矿床,通过对不同成矿阶段的黄铁矿矿相学研究发现,黄铁矿具有多个亚类,基于黄铁矿原位微量元素分析,发现黄铁矿晶格中Au含量极低,流体中As的含量较低限制了Au进入黄铁矿晶格的能力。

(2)从早阶段到晚阶段,黄铁矿中Au,Pb,Cu,Sb和Ag逐渐增加,Co/Ni值逐渐降低,反映了成矿流体逐渐富集Au,Pb,Cu,Sb和Ag,温度逐渐降低。

(3)黄铁绢云岩阶段的黄铁矿Co+Ni的含量很高(最高为9 268×10-6),反映了早阶段黄铁矿可能来源于岩浆岩源区,而随着岩浆热液演化进行,形成不同世代的黄铁矿。

参考文献

Song Mingchun , Li Sanzhong , Santosh M , et al .

Types, characteristics and metallogenesis of gold deposits in the Jiaodong Peninsula, Eastern North China Craton

[J]. Ore Geology Reviews, 2015, 65(Part3):612-625.

[本文引用: 3]

Chen Yanjing , Fu Shigu , Lu Bing , et al .

Classification of metallogenic series and types of gold deposits

[J]. Advances in Earth Science,1992, 7(3): 73-79.

[本文引用: 1]

陈衍景富士谷卢冰 .

金矿成因类型和系列的划分

[J]. 地球科学进展, 1992, 7(3): 73-79.

[本文引用: 1]

Jiang Shaoyong , Dai Baozhang , Jiang Yaohui , et al .

Jiaodong and Xiaoqinling: Two orogenic gold provinces formed in different teconic settings

[J]. Acta Petrologica Sinica,2009, 25(11): 2 727-2 738.

[本文引用: 1]

蒋少涌戴宝章姜耀辉 .

胶东和小秦岭:两类不同构造环境中的造山型金矿省

[J]. 岩石学报, 2009, 25(11): 2 727-2 738.

[本文引用: 1]

Goldfarb R , Baker T , Dube B , et al .

Distribution, character and genesis of gold deposits in metamorphic terranes

[M] // Hedenquist J W , Thompson J F H , Goldfarb R G , al et , eds .

Economic Geology 100th Anniversary Volume

Littleton, Colorado, USA:Society of Economic Geologists,2015: 407-450.

[本文引用: 1]

Richard Goldfarb , David Groves .

Orogenic gold: Common or evolving fluid and metal sources through time

[J]. Lithos, 2015, 233:2-26.

[本文引用: 1]

Groves D , Goldfarb R , Santosh M .

The conjunction of factors that lead to formation of giant gold provinces and deposits in non-arc settings

[J]. Geoscience Frontiers, 2016, 7(3): 303-314.

[本文引用: 1]

Yang Liqiang , Deng Jun , Wang Zhongliang , et al .

Relationships between gold and pyrite at the Xincheng Gold Deposit, Jiaodong Peninsula, China: Implications for gold source and deposition in a brittle epizonal environment

[J]. Economic Geology, 2016, 111: 105-126.

[本文引用: 3]

Li Jianwei , Bi Shijian , David Selby , et al .

Giant Mesozoic gold provinces related to the destruction of the North China craton

[J]. Earth and Planetary Science Letters, 2012, 349/350:26-37.

[本文引用: 1]

Zhu Rixiang , Fan Hongrui , Li Jianwei , et al .

Decratonic gold deposits

[J]. Science in China(Series D), 2015, 45(8): 1 153-1 168.

[本文引用: 1]

朱日祥范宏瑞李建威 .

克拉通破坏型金矿床

[J]. 中国科学:D辑, 2015, 45(8): 1 153-1 168.

[本文引用: 1]

Cai Yachun , Fan Hongrui , Santosh M , et al .

Decratonic gold mineralization: Evidence from the Shangzhuang gold deposit, eastern North China Craton

[J]. Gondwana Research, 2018, 54:1-22.

[本文引用: 2]

Zhang Chao , Liu Yu , Liu Xiangdong , et al .

Characteristics of sulfur isotope geochemistry of the Xincheng gold deposit,Northwest Jiaodong

[J]. Acta Petrologica Sinica,2014, 30(9): 2 495-2 506.

[本文引用: 1]

张潮刘育刘向东 .

胶西北新城金矿床硫同位素地球化学

[J]. 岩石学报, 2014, 30(9): 2 495-2 506.

[本文引用: 1]

Yang Liqiang , Deng Jun , Wang Zhongliang , et al .

Mesozoic gold metallogenic system of the Jiaodong gold province,Eastern China

[J]. Acta Petrologica Sinica ,2014, 30(9): 2 447-2 467.

[本文引用: 2]

杨立强邓军王中亮 .

胶东中生代金成矿系统

[J]. 岩石学报, 2014, 30(9): 2 447-2 467.

[本文引用: 2]

Li Lin , Santosh M , Li Shengrong .

The "Jiaodong type" gold deposits: Characteristics, origin and prospecting

[J]. Ore Geology Reviews, 2015, 65:589-611.

[本文引用: 1]

Fontboté L , Kouzmanov K , Chiaradia M , et al .

Sulfide minerals in hydrothermal deposits

[J]. Elements, 2017, 13(2): 97-103.

[本文引用: 1]

Ross Large , Valeriy Maslennikov , Francois Robert , et al .

Multistage sedimentary and metamorphic origin of pyrite and gold in the Giant Sukhoi Log Deposit, Lena gold province, Russia

[J]. Economic Geology and the Bulletin of the Society of Economic Geologists, 2007, 102(7): 1 233-1 267.

[本文引用: 1]

Chang Zhaoshan , Ross Large , Valeriy Maslennikov .

Sulfur isotopes in sediment-hosted orogenic gold deposits: Evidence for an early timing and a seawater sulfur source

[J]. Geology, 2008, 36(12): 971.

[本文引用: 1]

Nigel Cook , Cristiana Ciobanu , Mao Jingwen .

Textural control on gold distribution in As-free pyrite from the Dongping, Huangtuliang and Hougou gold deposits, North China Craton (Hebei Province, China)

[J]. Chemical Geology, 2009, 264(1/4): 101-121.

[本文引用: 1]

Sung Y H , Brugger J , Ciobanu C L , et al .

Invisible gold in arsenian pyrite and arsenopyrite from a multistage Archaean gold deposit: Sunrise Dam, Eastern Goldfields Province, Western Australia

[J]. Mineralium Deposita, 2009, 44(7): 765-791.

[本文引用: 1]

Daniel Gregory , Ross Large , Jacqueline Halpin .

Trace element content of sedimentary pyrite in black shales

[J]. Economic Geology, 2015, 110:1 389-1 410.

[本文引用: 3]

Large R , Gregory D , Steadman J , et al .

Gold in the oceans through time

[J]. Earth and Planetary Science Letters, 2015, 428:139-150.

[本文引用: 1]

Fougerouse D , Micklethwaite S , Tomkins A , et al .

Gold remobilisation and formation of high grade ore shoots driven by dissolution-reprecipitation replacement and Ni substitution into auriferous arsenopyrite

[J]. Geochimica et Cosmochimica Acta, 2016, 178:143-159.

[本文引用: 1]

Hou Lin , Peng Huijuan , Ding Jun .

Textures and in situ chemical and isotopic analyses of pyrite, Huijiabao Trend, Youjiang Basin, China: Implications for paragenesis and source of sulfur

[J]. Economic Geology, 2016, 111:331-353.

[本文引用: 2]

Li Zhan , Bi Shijian , Li Jianwei , et al .

Distal Pb-Zn-Ag veins associated with the world-class Donggou porphyry Mo deposit, southern North China craton

[J]. Ore Geology Reviews, 2017, 82:232-251.

[本文引用: 2]

Lang James , Timothy Baker .

Intrusion-related gold systems: The present level of understanding

[J]. Mineralium Deposita, 2001, 36(6): 477-489.

[本文引用: 1]

Shabani K , Nezafati N , Momenzadeh M , et al .

Geology, geochemistry and mineralogy of the Tareek Darreh Gold Deposit, Northeast Irán

[J]. Geología Colombiana, 2010, 35:131-142.

[本文引用: 1]

Jixiang Sui .

The Reduced Intrusion-related Gold Mineralization in the Xiahe-Hezuo District, West Qinling Orogeny

[D]. Wuhan:China University of Geosciences(Wuhan), 2016.

[本文引用: 1]

隋吉祥 .

西秦岭夏河—合作地区与还原性侵入岩有关的金成矿作用

[D].武汉中国地质大学(武汉), 2016.

[本文引用: 1]

Carl Jones , Gawen Jenkin , Adrian Boyce , et al .

Tellurium, magmatic fluids and orogenic gold: An early magmatic fluid pulse at Cononish gold deposit?

[J]. Ore Geology Reviews, 2018. DOI:10.1016/j.oregeorev.2018.05.014.

[本文引用: 1]

Ross Large .

A carbonaceous sedimentary source-rock model for carlin-type and orogenic gold deposits

[J]. Economic Geology, 2011,106:331-358.

[本文引用: 1]

Cook N , Ciobanu C , Meria D , et al .

Arsenopyrite-Pyrite association in an Orogenic Gold Ore: Tracing mineralization history from textures and trace

[J]. Economic Geology, 2013, 108:1 273-1 283.

[本文引用: 3]

Zhou Guofa , Guxian , Deng Jun , et al .

Study on the fluid inclusions characteristics of the Sanshandao gold deposit, Shandong Province, China and its geological significance

[J]. Geoscience,2008, (1): 24-33.

[本文引用: 1]

周国发吕古贤邓军 .

山东三山岛金矿床流体包裹体特征及其地质意义

[J]. 现代地质, 2008, (1): 24-33.

[本文引用: 1]

Jiang Xiaohui , Fan Hongrui , Hu Fangfang , et al .

Comparative studies on fluid inclusion in different depths and ore genesis of the Sanshandao gold deposit, Jiaodong Peninsula

[J]. Acta Petrologica Sinica,2011, 27(5): 1 327-1 340.

[本文引用: 2]

姜晓辉范宏瑞胡芳芳 .

胶东三山岛金矿中深部成矿流体对比及矿床成因

[J]. 岩石学报, 2011, 27(5): 1 327-1 340.

[本文引用: 2]

Song Mingchun , Zhang Junjin , Zhang Pijian , et al .

Discovery and tectonic-magmatic background of superlarge deposit in offshore of northern Sanshandao, Shandong Peninsula, China

[J] . Acta Geologica Sinica ,2015,89(2): 365-383.

[本文引用: 1]

宋明春张军进张丕建 .

胶东三山岛北部海域超大型金矿床的发现及其构造——岩浆背景

[J]. 地质学报, 2015, 89(2): 365-383.

[本文引用: 1]

Li Xiaochun , Fan Hongrui , Santosh M , et al .

Hydrothermal alteration associated with Mesozoic granite-hosted gold mineralization at the Sanshandao deposit, Jiaodong Gold Province, China

[J]. Ore Geology Reviews, 2013, 53:403-421.

[本文引用: 4]

Liu Xuan , Fan Hongrui , Noreen Evans , et al .

Exhumation history of the Sanshandao Au deposit, Jiaodong: Constraints from structural analysis and (U-Th)/He thermochronology

[J]. Scientific Reports, 2017, 7(1):1-12.

[本文引用: 4]

Fan Hongrui , Zhai Mingguo , Xie Yihan , et al .

Ore-forming fluids associated with granite-hosted gold mineralization at the Sanshandao deposit, Jiaodong gold province, China

[J].Ore Geology Review, 2003, 38(6): 739-750.

[本文引用: 1]

Zhao Guochun , Simon Wilde , Peter Cawood , et al .

Archean blocks and their boundaries in the North China Craton: lithological, geochemical, structural and P-T path constraints and tectonic evolution

[J]. Precambrian Research, 2001, 107(1/2): 45-73.

[本文引用: 1]

Wang Changming , Leon Bagas , Deng Jun , et al .

Crustal architecture and its controls on mineralisation in the North China Craton

[J]. Ore Geology Reviews, 2018. DOI:10.1016/j.oregeorev.2018.05.016.

[本文引用: 1]

Simon Wilde , Zhao Guochun .

Archean to Paleoproterozoic evolution of the North China Craton

[J]. Journal of Asian Earth Sciences, 2005, 24(5): 519-522.

[本文引用: 1]

Zhang Guowei , Meng Qingren , Yu Zaiping , et al .

The orogenic process and its dynamic characteristics in Qinling orogenic belt

[J]. Science in China(Series D) ,1996, 26(3): 193-200.

[本文引用: 1]

张国伟孟庆任于在平 .

秦岭造山带的造山过程及其动力学特征

[J]. 中国科学:D辑, 1996, 26(3): 193-200.

[本文引用: 1]

Dong Yunpeng , Zhang Guowei , Franz Neubauer , et al .

Tectonic evolution of the Qinling orogen, China: Review and synthesis

[J]. Journal of Asian Earth Sciences, 2011, 41(3): 213-237.

[本文引用: 1]

Zhao Yue , Zhai Mingguo , Chen Hong , et al .

Paleozoic-early Jurassic tectonic evolution of North China Craton and its adjacent orogenic belts

[J]. Geology in China,2017, 44(1): 44-60.

[本文引用: 1]

赵越翟明国陈虹 .

华北克拉通及相邻造山带古生代—侏罗纪早期大地构造演化

[J]. 中国地质, 2017, 44(1): 44-60.

[本文引用: 1]

Wu Fuyuan , Yang Jinhui , Chinghua Lo , et al .

The Heilongjiang Group: A Jurassic accretionary complex in the Jiamusi Massif at the western Pacific margin of northeastern China

[J]. Island Arc, 2007, 16(1): 156-172.

[本文引用: 1]

Zhu Rixiang , Chen Ling , Wu Fuyuan , et al .

Timing, scale and mechanism of the destruction of the North China Craton

[J]. Science in China (Series D),2011, 41(5): 583-592.

[本文引用: 1]

朱日祥陈凌吴福元 .

华北克拉通破坏的时间、范围与机制

[J]. 中国科学:D辑, 2011, 41(5): 583-592.

[本文引用: 1]

Zhu Rixiang , Xu Yigang , Zhu Guang , et al .

Destruction of the North China Craton

[J]. Science in China (Series D),2012, 42(8): 1 135-1 159.

[本文引用: 1]

朱日祥徐义刚朱光 .

华北克拉通破坏

[J]. 中国科学:D辑, 2012, 42(8): 1 135-1 159.

[本文引用: 1]

Bi Shijian , Zhao Xinfu .

40Ar/39Ar dating of the Jiehe gold deposit in the Jiaodong Peninsula, eastern North China Craton: Implications for regional gold metallogeny

[J]. Ore Geology Reviews, 2017, 86:639-651.

[本文引用: 2]

Wang L G , Qiu Y M , McNaughton N J , et al .

Constraints on crustal evolution and gold metallogeny in the Northwestern Jiaodong Peninsula, China, from SHRIMP U-Pb zircon studies of granitoids

[J]. Ore Geology Reviews, 1998, 13(1/5): 275-291.

[本文引用: 2]

Guo Jinghui , Chen Fukun , Zhang Xiaoman , et al .

Evolution of syn-to post collisional magmaitsm from north Sulu UHP belt,eastern China:Zircon U-Pb geochronology

[J]. Acta Perrologica Sinica, 2005, 4(21): 1 281-1 301.

[本文引用: 2]

郭敬辉陈福坤张晓曼 .

苏鲁超高压带北部中生代岩浆侵入活动与同碰撞—碰撞后构造过程:锆石U-Pb年代学

[J]. 岩石学报, 2005, 4(21): 1 281-1 301.

[本文引用: 2]

Wang Zhongliang , Yang Liqiang , Deng Jun , et al .

Gold-hosting high Ba-Sr granitoids in the Xincheng gold deposit, Jiaodong Peninsula, East China: Petrogenesis and tectonic setting

[J]. Journal of Asian Earth Sciences, 2014, 95:274-299.

[本文引用: 1]

Zhang Tian , Zhang Yueqiao .

Geochronological sequence of Mesozoic intrusive magmatism in Jiaodong Peninsula and its tectonic constraints

[J]. Geological Journal of China Universities ,2007, 13(2): 323-336.

[本文引用: 1]

张田张岳桥 .

胶东半岛中生代侵入岩浆活动序列及其构造制约

[J]. 高校地质学报, 2007,13(2): 323-336.

[本文引用: 1]

Lu Guxian , Guo Tao , Shu Bin , et al .

Study on the multi-level controlling rule for tectonic system in Jiaodong gold-centralized area

[J]. Geotectonica et Metallogenia ,2007, 31(2): 193-204.

[本文引用: 1]

吕古贤郭涛舒斌 .

胶东金矿集中区构造体系多层次控矿规律研究

[J]. 大地构造与成矿学, 2007, 31(2): 193-204.

[本文引用: 1]

Sun Weidong , Ding Xing , Hu Yanhua , et al .

The golden transformation of the Cretaceous plate subduction in the west Pacific

[J]. Earth and Planetary Science Letters, 2007, 262(3/4): 533-542.

[本文引用: 1]

Liu Yongsheng , Hu Zhaochu , Gao Shan , et al .

In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard

[J]. Chemical Geology, 2008, 257(1/2): 34-43.

[本文引用: 2]

Reich M , Kesler S , Utsunomiya S , et al .

Solubility of gold in arsenian pyrite

[J]. Geochimica et Cosmochimica Acta, 2005, 69(11): 2 781-2 796.

[本文引用: 5]

S tephanie Mills , Andrew Tomkins , Roberto Weinberg , et al .

Implications of pyrite geochemistry for gold mineralisation and remobilisation in the Jiaodong gold district, northeast China

[J]. Ore Geology Reviews, 2015, 71:150-168.

[本文引用: 2]

Jin Xiaoye .

Geology, Mineralization and Genesis of the Nibao, Shuiyindong and Yata Gold Deposits in SW Guizhou Province, China

[D]. Wuhan:China University of Geosciences(Wuhan),2017.

[本文引用: 2]

靳晓野 .

黔西南泥堡、水银洞和丫他金矿床的成矿作用特征与矿床成因研究

[D].武汉中国地质大学(武汉), 2017.

[本文引用: 2]

Edward Mikucki .

Hydrothermal transport and depositional processes in Archean lode-gold systems: A review

[J]. Ore Geology Reviews, 1998, 13(1): 307-321.

[本文引用: 1]

Guo Lingnan , Richard Goldfarb , Wang Zhongliang , et al .

A comparison of Jiaojia- and Linglong-type gold deposit ore-forming fluids: Do they differ?

[J]. Ore Geology Reviews, 2017, 88:511-533.

[本文引用: 1]

Sibson R , Robert F , Poulsen H .

High-angle reverse faults, fluid-pressure cycling, and mesothermal gold-quartz deposits

[J]. Geology, 1988, 16: 551-555.

[本文引用: 2]

Su Wenchao , Xia Bin , Zhang Hongtao , et al .

Visible gold in arsenian pyrite at the Shuiyindong Carlin-type gold deposit, Guizhou, China: Implications for the environment and processes of ore formation

[J]. Ore Geology Reviews, 2008, 33(3/4): 667-679.

[本文引用: 1]

Li Xinghui , Fan Hongrui , Yang Kuifeng , et al .

Pyrite textures and compositions from the Zhuangzi Au deposit, southeastern North China Craton: Implication for ore-forming processes

[J]. Contributions to Mineralogy and Petrology, 2018, 173:73-93.

[本文引用: 1]

Hong Tao , Xu Xingwang , Gao Jun , et al .

Element migration of pyrites during ductile deformation of the Yuleken porphyry Cu deposit (NW-China)

[J]. Ore Geology Reviews, 2017. DOI:10.1016/j.oregeorev.2017.10.019.

[本文引用: 2]

Li Rucao , Chen Huayong , Xia Xiaoping ,et al .

Using integrated in-situ sulfide trace element geochemistry and sulfur isotopes to trace ore-forming fluids: Example from the Mina Justa IOCG deposit (southern Perú)

[J]. Ore Geology Reviews, 2018. DOI:10.1016/j.oregeorev.2018.06.010.

[本文引用: 1]

Zhao Haixiang , Hartwig Frimmel , Jiang Shaoyong , et al .

LA-ICP-MS trace element analysis of pyrite from the Xiaoqinling gold district, China: Implications for ore genesis

[J]. Ore Geology Reviews, 2011, 43(1): 142-153.

[本文引用: 2]

Xu Guofeng , Shao Jielian .

The standard characteristics and real meaning of pyrite

[J]. Geological Review, 1980, (6): 541-546.

[本文引用: 1]

徐国风邵洁涟 .

黄铁矿的标型特征及其实际意义

[J]. 地质论评, 1980, (6): 541-546.

[本文引用: 1]

Luo Dong .

Evolution of Ore-forming Fluids of Sanshandao Gold Deposit, Jiaodong Peninsula, Eastern China

[D]. Beijing:China University of Geosciences(Beijing),2014.

[本文引用: 1]

罗栋 .

胶东三山岛金矿床成矿流体演化

[D].北京中国地质大学(北京), 2014.

[本文引用: 1]

Li Zhanke , Li Jianwei , David Cooke , et al .

Textures, trace elements, and Pb isotopes of sulfides from the Haopinggou vein deposit, southern North China Craton: Implications for discrete Au and Ag-Pb-Zn mineralization

[J]. Contributions to Mineralogy and Petrology, 2016, 171(12):99-125.

[本文引用: 1]

/