img img
  • CN 62-1091/P
  • ISSN 1001-8166
  • 月刊 创刊于1986年
高级检索

地球科学进展, 2019, 34(4): 366-381 doi: 10.11867/j.issn.1001-8166.2019.04.0366

内蒙古狼山地区早二叠世晚期花岗闪长岩:地球化学、年代学、Hf同位素特征及其地质意义

刘洋,, 王文龙,, 滕学建, 郭硕, 滕飞, 何鹏, 田健, 段霄龙

中国地质调查局天津地质调查中心,天津 300170

Geochemistry and Hf Isotopes Characteristics and Geological Significance of Latest Early Permian Granodiorite of Langshan Area, Inner Mongolia

Liu Yang,, Wang Wenlong,, Teng Xuejian, Guo Shuo, Teng Fei, He Peng, Tian Jian, Duan Xiaolong

Tianjin Center of Geological Survey,China Geological Survey,Tianjin 300170,China

通讯作者: 王文龙(1971-),男,辽宁盖州人,工程师,主要从事岩石学、地球化学及区域地质调查工作. E-mail:499692710@qq.com.

收稿日期: 2018-12-25   修回日期: 2019-03-06   网络出版日期: 2019-05-22

基金资助: 中国地质调查项目“1∶5万查干呼舒庙等六幅区域地质矿产调查”.  编号:1212014121079

Corresponding authors: Wang Wenlong(1988-), male, Gaizhou County, LiaoNing Province, Engineer. Research areas include petrology、geochemistry and regional geological survey. E-mail:499692710@qq.com

Received: 2018-12-25   Revised: 2019-03-06   Online: 2019-05-22

作者简介 About authors

刘洋(1986-),男,新疆奇台人,工程师,主要从事构造地质学学研究及地质调查工作.E-mail:125313766@qq.com , E-mail:125313766@qq.com

摘要

狼山地区位于内蒙古西部,索伦蛇绿岩带西南,晚古生代岩浆岩分布广泛,是中亚造山带晚古生代构造演化研究的关键位置。利用LA-ICP-MS锆石U-Pb测年方法获得狼山地区沙日楚鲁花岗闪长岩及莫若古花岗闪长岩的形成时代分别为(278.07±0.66) Ma和(278.05±0.69) Ma,为早二叠世晚期岩浆活动的产物;岩石地球化学特征表明,狼山地区早二叠世晚期花岗闪长岩属于高钾钙碱性系列(SiO2:63.76%~67.88%;K2O:2.74%~4.02%)、弱过铝质岩石(A/CNK:0.94~1.07),具有中等的Mg#(38.98~47.53);轻稀土(LREEs)及大离子亲石元素富集,重稀土及高场强元素亏损,具有弱的Eu负异常,为具有陆缘弧花岗岩特征的I型花岗岩。锆石Hf同位素分析结果显示,沙日楚鲁花岗闪长岩及莫若古花岗闪长岩具有负的而略显分散的εHft)值(-0.6~-7.5),其源区物质主要来源于华北古老地壳,并有少量幔源物质加入。结合区域地质背景,认为狼山地区早二叠世晚期花岗闪长岩形成于古亚洲洋向南俯冲的活动大陆边缘环境,彼时洋盆尚未闭合。

关键词: 华北北缘 ; 狼山地区 ; 活动大陆边缘 ; 地球化学 ; I型花岗岩

Abstract

The Langshan area is located in the west of Inner Mongolia, southwest of the Solonker ophiolite belt, which is the ideal workplace to study tectonic-magmatic evolution and geodynamics background in Late Paleozoic because of the intense magmatism. LA-ICP-MS Zircon U-Pb ages yielded the formation time of granodiorite of Sharichulu and Moruogu granitic pluton (278.07±0.66) Ma and (278.05±0.69) Ma, respectively, forming in the latest early Permian. Geochemical characteristics showed that the Zhalashan granites were high-K calc-alkaline (SiO2:63.76%~67.88%;K2O:2.74%~4.02%) and weak peraluminous rocks (A/CNK:0.94~1.07) with moderate Mg# values (38.98~47.53). In addition,it exhibited LILE and LREEs enriched, HFSE and HREEs depleted with slight Eu anomaly, and all of the above-mentioned indicated the characteristics of I-type granites and arc-related. Zircon Hf isotope showed that the scatter εHf(t)values varied from -0.6~-7.5, which suggests a mixed magma source of old continental crust with a small involvement of mantle components. Together with regional geological background,the authors hold that the Latest early Permian granodiorite of Langshan area formed in an active continental margin setting under the background of southward subduction of the Paleo-Asian Ocean which were not close at that time.

Keywords: The northern margin of the North China Craton ; Langshan area ; Active continental margin ; Geochemistry ; I-type granitoid.

PDF (10575KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

刘洋, 王文龙, 滕学建, 郭硕, 滕飞, 何鹏, 田健, 段霄龙. 内蒙古狼山地区早二叠世晚期花岗闪长岩:地球化学、年代学、Hf同位素特征及其地质意义. 地球科学进展[J], 2019, 34(4): 366-381 doi:10.11867/j.issn.1001-8166.2019.04.0366

Liu Yang. Geochemistry and Hf Isotopes Characteristics and Geological Significance of Latest Early Permian Granodiorite of Langshan Area, Inner Mongolia. Advances in Earth Science[J], 2019, 34(4): 366-381 doi:10.11867/j.issn.1001-8166.2019.04.0366

1 引 言

中亚造山带位于塔里木板块、华北板块以北,西伯利亚板块东南(图1a)[1,2],在漫长的陆壳演化中,先后经历了增生、碰撞和造山等不同的构造演化阶段,是显生宙陆壳增生与改造最显著的大陆造山带[1,3],中亚造山带与古亚洲洋的构造演化关系密切[1,3]。古亚洲最终的闭合位置、时限一直存在争议,目前普遍接受的观点是古亚洲洋的闭合位置在索伦—西拉木伦缝合带,时限为晚古生代—早中生代时期[4,5,6],然而对于二叠纪的构造背景仍然存在较大分歧,是俯冲还是碰撞后伸展?

图1

图1   狼山地区地质简图

Fig.1   Geological map in Langshan

(a)中亚造山带构造简图[1,2];(b)晚古生代—早中生代华北北缘岩浆岩分布图[7];(c)研究区地质简图[8];1:中—新元古界变质岩;2:新元古界变质岩;3:晚古生界沉积岩;4:中—新生界沉积岩;5:中元古代侵入岩;6:志留纪侵入岩;7:石炭纪侵入岩;8:二叠纪侵入岩;9:三叠纪侵入岩;10:镁铁质岩石;11:获各琦断裂;12:其他断裂;13:韧性剪切带; 14:前人锆石定年位置;15:本文锆石定年位置

(a)Simplified map of the Central Asia Orogenic Belts[1,2]; (b)Distribution of the Late Paleozoic to Early Mesozoic intrusions in the northern margin of the NCC[7]; (c)Geological map of the Research area[8]; 1:Meso-Neoproterozoic metamorphic rock; 2:Neoproterozoic metamorphic rock; 3:Late Palaeozoic sedimentary rock; 4:Mes-Cenozoic sedimentary rocks; 5:Mesoproterozoic intrusive rocks; 6:Silurian magmatic rocks; 7:Carboniferous mafic rocks; 8:Permian magmatic rocks; 9:Triassic granites; 10:Mafic rocks; 11:Huogeqi Fault; 12:Other Faults; 13: Ductile shear zone; 14:Sampling location for Previous studies; 15:Sampling location for this paper


狼山地区位于华北北缘与中亚造山带南缘的结合位置(图1b)[7],在索伦缝合带西南,经历了复杂的构造演化过程,构造变形复杂、岩浆活动强烈,是区域上研究构造—岩浆演化的重要位置。针对该地区的岩浆岩前人已经开展了大量的研究工作,并取得了重要的进展,目前普遍认为狼山地区石炭纪花岗岩形成于活动大陆边缘环境[8,9],三叠纪侵入岩形成于后碰撞伸展环境[10,11],而对于二叠纪侵入岩存在较大分歧,一种观点认为狼山地区二叠纪形成于后碰撞伸展环境,形成A型花岗岩及双峰式岩浆岩[12,13,14];另一种观点则认为二叠纪形成于活动大陆边缘环境,形成一系列弧花岗岩[15],并且对于狼山地区二叠纪岩浆岩的源区研究不够深入。

本文资料以1∶5万区调项目在狼山地区新填绘出的早二叠世晚期沙日楚鲁花岗闪长岩及莫若古花岗闪长岩为基础,该期花岗闪长岩具有典型的陆缘弧花岗岩特征。针对该期花岗岩进行了地球化学分析、Hf同位素和锆石测年等工作,以期对区域早二叠世晚期的构造环境及古亚洲的闭合时限提供有益参考。

2 区域地质背景及岩体地质

狼山构造带构造线方向主体以北东向为主,局部晚古生代地层为近南北向构造线,狼山构造带的北东方向为索伦缝合带,狼山构造带的北西为查干楚鲁、恩格尔乌苏蛇绿岩带(图1b)。目前认为晚二叠世末—晚三叠世为恩格尔乌苏蛇绿岩带所代表的洋盆最终闭合[16],区域上与索伦—林西缝合带闭合时间一致。获各琦断裂呈北东东—南西西向横贯研究区,前人研究认为该断裂为分割华北北缘与中亚造山带南缘构造边界[17],类似于区域上赤峰—白云鄂博断裂的构造意义[6,18]。此外,狼山地区还发育复杂的多期次的构造变形及叠加褶皱[19]

宝音图岩群主要分布在断裂北西一侧,为研究区时代最老地层,主要由石英岩、石榴石云母片岩、斜长角闪岩和大理岩等组成,变质程度高绿片岩相—低角山岩相,侵入其中的岩脉形成时代为(895.5±6.8) Ma,在石英岩中碎屑锆石最小峰值年龄为1 187~1 395 Ma,将其形成时代限定为中元古界晚期—新元古界。狼山群主要为一套绿片岩相浅变质、强变形的碎屑岩加碳酸盐岩组合,主要分布在获各琦铜矿一带及获各琦断裂南东侧(图1c)[8],岩性主要为变质石英砂岩、变质粉砂岩、板岩、大理岩等。胡健民等[20]和刘超辉等[21]在狼山群碎屑中获得了小峰值年龄为0.8~1.2 Ga的碎屑锆石年龄。前人在狼山群的火山岩夹层中也获得过804~878 Ma锆石U-Pb年龄[20,21]。晚古生代地层主要分布在研究区西侧,整体构造线以近南北向为主[15],中新生代地层主要分布在测区西侧地势平坦开阔的区域。

研究区发育大量不同时代(中元古代、古生代和早中生代)侵入岩(图1c)。中元古代侵入岩主要以一套变质变形程度较高的花岗岩为主,以普遍发育片麻状构造为主要特征,主要分布在研究区北东侧[22]。早古生代侵入岩主要分布于获各琦铜矿(断裂)以北,主要岩石组合为二长花岗岩—花岗闪长岩—石英闪长岩等[14];晚古生代侵入岩在研究区分布较广,主要分布在研究区中部及南部,主要岩石组合为花岗闪长岩—石英闪长岩—辉长岩等,时代为二叠纪和石炭纪[8,14];早中生代主要为三叠纪侵入岩,主要分布在测区中部及东部,岩石组合为二长花岗岩—正长花岗岩等[10,11]

本文选取沙日楚鲁岩体及莫若古岩体2个典型的花岗质岩体进行详细研究。沙日楚鲁岩体及莫若古岩体走向为北西—南东向,侵入到围岩新元古界狼山群中。岩体具有球形风化特征(图2a),岩性较为单一,主要为花岗闪长岩,岩石具有中细粒花岗结构,局部发育似斑状结构(斑晶主要为斜长石),岩石整体呈块状,无明显的变质变形。岩石中的矿物组成包括斜长石(35%~45%)、钾长石(15%~25%)、石英(20%~30%)、黑云母(10%)及角闪石(5%)(图2b)。

图2

图2   花岗闪长岩野外及镜下照片

Fig.2   Field and microscope photographs for granodiorite

(a)岩体野外特征;(b)花岗闪长岩镜下特征;(c)闪长质包体;(d)包体镜下特征;Kfs:钾长石;Pl:斜长石;Q:石英;Bi:黑云母;Hb:角闪石;Ap:磷灰石

(a)Field feature of pluton; (b)Microscope feature of granodiorite;(c)Field feature of dioritic xenoliths; (d)Microscope feature of Microscope feature of dioritic xenoliths; Kfs:K-feldspar; Pl:Plagioclase; Q:Quartz; Bi:Biotite; Hb:Hornblende; Ap:Apatite


岩体中发育大量暗色包体,包体呈椭圆状和纺锤状等,长轴一般为5~20 cm,包体与花岗闪长岩接触界限清晰,具有暗色的细粒冷凝边(图2c)。包体岩性为闪长岩,在显微镜下呈微细粒花岗结构,矿物粒径多小于1 mm,岩石主要由斜长石、钾长石、黑云母和角闪石组成,偶见少量石英及磷灰石。其中磷灰石呈针状及长柱状晶型(图2d)。

样品TW6477-1采至东侧沙日楚鲁花岗闪长岩岩体,样品TW6907-1采至西侧莫若古花岗闪长岩岩体,分别对其进行锆石U-Pb测年和锆石原位Hf同位素测试,并分别在沙日楚鲁岩体及莫若古岩体中采集5件和4件全岩分析测试。

3 分析测试方法

3.1 锆石测年及Hf同位素取岩石的新鲜样品,将样品加工至80目,依次经过水粗淘—强磁分选—电磁分选—酒精细淘等流程,之后在镜下挑选锆石,将锆石颗粒制靶并抛光,阴极发光照相在北京锆年领航科技有限公司制作完成,采用设备为日本电子JSM-6510型扫描电镜。锆石原位U-Pb年龄测试及原位Hf同位素测试在天津地质调查中心实验室完成,设备为激光剥蚀多接收器电感耦合等离子体质谱仪(LA-MC-ICPMS),连接NEW WAVE 193-FXArF准分子激光器和Neptune多接收器电感耦合等离子体质谱仪设备,使用He气为载气。采用的激光束斑直径35 μm,剥蚀时间30 s,人工合成硅酸盐标准参考物质NIST610(美国国家标准技术研究院研制),最终年龄计算使用GJ-1,GJ-1是MacQuarie大学大陆地球化学与成矿作用研究中心实验室的U-Pb测定标准[23]。锆石为无色和浅褐色,粒径在10 mm左右,不发育明显的环带特征,LA-ICP-MS测定显示,该锆石年龄是谐和的[23,24,25,26,27]。数据的分析处理使用ICPMSDataCal 9.2[28]进行离线处理,使用Isoplot/Ex_ver3[29]进行协和图(U-Pb年龄)的编制及最终平均加权年龄的计算。锆石原位微区Hf同位素,设备为激光剥蚀多接收器电感耦合等离子体质谱仪(LA-MC-ICPMS),与U-Pb年龄测定的仪器相同,剥蚀时间30 s,激光剥蚀束斑直径50 μm,计算Hf同位素比值使用GJ-1为外标[0.282006±24(n=159,2SD)],详细配置和流程见参考文献[30],Hf同位素数据处理程序与年龄处理分析程序相同,均使用ICPMSDataCal 9.2完成[28]

3.2 全岩分析全岩分析在天津地质调查中心实验室完成。将新鲜岩石样品,用水将表面冲洗干净,然后晾干,通过粗碎、中碎将样品加工至小于1 mm,缩分,保留地质副样,将样品加工至200目之后,送实验室进行分析。主量元素采用X射线荧光光谱法测定,标样测定值与推荐值相对误差在0.11%~6.25%;FeO采用重铬酸钾容量法测定,相对误差在0~4.00%;微量元素采用高压密闭消解法和敞口四酸溶样法进行前处理,ICP-MS测定,样品测定值和推荐值的相对误差在2.67%~7.87%。

4 分析结果

4.1 形成时代分析测试结果如表1所示。

表1   花岗闪长岩LA-ICP-MS 锆石U-Pb定年结果

Table 1  LA-ICP-MS zircon U-Pb dating results of the granodiorite

样品和岩性样点号含量/×10-6Th/U同位素比值表面年龄/Ma
PbU207Pb/235U206Pb/238U207Pb/206Pb206Pb/238U207Pb/235U
6477.1.01153480.230.31730.00400.04400.00020.05230.000627812804
样品:TW6477-1;岩性:花岗闪长岩6477.1.02102290.350.32130.00560.04410.00020.05280.000927812835
6477.1.03173880.380.31760.00580.04390.00020.05240.000927712805
6477.1.0461440.340.31920.00820.04430.00020.05230.001327922817
6477.1.05264950.270.60660.00820.04430.00020.09930.001328014817
6477.1.0681780.400.32180.00740.04400.00020.05300.001227822837
6477.1.07194340.330.32110.00330.04430.00020.05260.000527922833
6477.1.08214710.330.31810.00300.04430.00030.05200.000528022803
6477.1.09183930.340.31660.00520.04450.00020.05160.000828112795
6477.1.10153440.440.31660.00370.04380.00030.05240.000627622793
6477.1.11224750.470.31510.00360.04410.00030.05190.000627822783
6477.1.12102240.380.31520.00550.04400.00030.05190.000927822785
6477.1.13184030.420.31150.00380.04360.00030.05180.000627522753
6477.1.14204640.330.31490.00350.04380.00030.05220.000527622783
6477.1.15163570.310.31280.00430.04370.00030.05200.000727522764
6477.1.1661320.390.31180.01160.04370.00030.05170.0019276227610
6477.1.17112340.280.31770.00890.04440.00030.05190.001628022808
6477.1.18102230.250.31640.01510.04380.00030.05240.0025276227913
6477.1.19102130.260.31580.00570.04410.00030.05190.001027822795
6477.1.2061410.300.31700.00900.04440.00030.05180.001528022808
6477.1.2191910.280.31650.00590.04420.00030.05190.001027922795
6477.1.22224850.280.31820.00340.04420.00020.05220.000527922813
6477.1.23122800.260.31660.00400.04420.00030.05190.000627922794
6477.1.24235070.280.31700.00340.04430.00020.05190.000527922803
样品:TW6907-1;岩性:花岗闪长岩6907.1.0151040.490.31180.01380.04360.00030.05190.0023275227612
6907.1.0251100.510.31500.01260.04400.00030.05200.0020277227811
6907.1.0361180.590.31860.01220.04390.00030.05260.0020277228111
6907.1.0471300.640.31390.00890.04400.00030.05170.001427822778
6907.1.0561160.450.31250.01070.04380.00030.05170.001727622769
6907.1.0651010.490.31650.01130.04420.00030.05190.0019279227910
6907.1.074800.470.31560.01520.04400.00030.05200.0025278227913
6907.1.083680.620.31430.01820.04410.00030.05170.0030278227716
6907.1.0951050.650.31480.01090.04410.00030.05170.0018278227810
6907.1.104940.600.31490.01270.04410.00030.05180.0020278227811
6907.1.114860.610.31710.01180.04420.00030.05210.0020279228010
6907.1.1251110.580.31360.00990.04400.00030.05170.001627822779
6907.1.1361340.650.31470.00710.04410.00030.05170.001227822786
6907.1.144900.630.31540.01000.04420.00030.05170.001627922789
6907.1.155970.670.31550.01130.04410.00030.05190.0018278227810
6907.1.164940.670.31930.01130.04430.00030.05220.0018280228110
6907.1.174970.630.31600.01130.04410.00030.05200.0019278227910
6907.1.1851180.630.31870.00980.04420.00030.05240.001627922819
6907.1.1961280.790.31480.00790.04410.00030.05170.001327822787
6907.1.204910.630.31560.00970.04430.00030.05170.001627922799
6907.1.2161450.440.31470.01490.04400.00030.05190.0024278227813
6907.1.2251050.670.31530.00840.04410.00030.05180.001427822787
6907.1.234900.630.31320.01120.04420.00030.05140.0018279227710
6907.1.2451180.590.31480.01510.04400.00030.05190.0024278227813

新窗口打开| 下载CSV


中细粒花岗闪长岩(TW6477-1),锆石为长柱状,晶面光滑、平直,锆石长100~200 μm,长宽比例为1∶2~1∶3,锆石中岩浆震荡环带发育,韵律清晰,显示典型岩浆锆石的特征(图3a)。对其中的24颗锆石开展分析测年,测点5未参与计算(明显偏离谐和线),剩余23个测点的206Pb/238U表面年龄变化于275~ 281 Ma,Pb的含量为6×10-6~23×10-6,U的含量为132×10-6~507×10-6,Th/U为0.23~0.47。加权平均最终年龄(206Pb/238Pb)为(278.07±0.66) Ma[MSWD(Mean Squared Weighted Deviates)=0.85,n=23](图4a),代表沙日楚鲁花岗闪长岩的侵位时代。

图3

图3   花岗闪长岩部分锆石CL图像

Fig.3   CL images of selected zircon grains

黄圈代表锆石U-Pb测年位置;白圈代表Hf同位素分析位置

Yellow circles:Zircon U-Pb ages; White circles:εHf(t) values


图4

图4   TW6477-1 TW6907-1锆石U-Pb测年谐和图和加权平均年龄图

Fig.4   Zircon U-Pb condordia and weighted average age diagrams for TW6477-1 and TW6907-1


中细花岗闪长岩(TW6907-1),锆石形态与样品TW6477-1具有一定的差异,锆石相对较小,总体呈短柱状,锆石大小集中在50~80和60~120 μm,锆石震荡环带发育,韵律清晰,具有典型岩浆锆石特征(图3b)。对其中的24颗锆石开展分析测年,所测测点均位于谐和线之上。24个测点206Pb/238Pb年龄为275~280 Ma,Pb含量为3.3×10-6~6.6×10-6,U含量为67.9×10-6~144.7×10-6,Th/U值为0.44~0.79,加权平均最终年龄(206Pb/238Pb)为(278.05±0.69) Ma(MSWD=0.29,n=24),代表莫若古花岗闪长岩的侵位时代,与东侧沙日楚鲁花岗闪长岩基本为同期形成(图4b)。

4.2 锆石原位Hf同位素样品测试数据如表2所示。

表2   花岗闪长岩锆石Hf同位素组成

Table 2  Hf isotopic compositions for zircons of granodiorite

样品和岩性样点号T/Ma176Yb/177Hf176Lu/177Hf176Hf/177HfmεHf(0)εHf(t)TDM1/MaTDMC/MafLu/Hf
样品:TW6477.1岩性:花岗闪长岩6 477.1.012780.02690.00110.2825120.0000319.2-3.31.11 5052 020-0.97
6 477.1.032780.02170.00090.2824890.00002310.0-4.10.81 5542 090-0.97
6 477.1.042780.01730.00070.2823910.00002313.5-7.50.81 7702 396-0.98
6 477.1.052780.02260.00100.2825120.0000269.2-3.20.91 5022 016-0.97
6 477.1.062780.02110.00090.2824560.00002611.2-5.20.91 6262 192-0.97
6 477.1.072780.02170.00090.2824190.00002312.5-6.60.81 7112 312-0.97
6 477.1.092780.01850.00080.2824240.00002412.3-6.30.91 6972 293-0.98
6 477.1.102780.02740.00110.2824850.00002510.1-4.20.91 5642 105-0.97
6 477.1.112780.02780.00110.2824850.00002310.1-4.20.81 5642 105-0.97
6 477.1.122780.03460.00140.2824790.00002210.4-4.50.81 5812 128-0.96
6 477.1.132780.02560.00110.2824890.00002110.0-4.10.71 5552 091-0.97
6 477.1.142780.01720.00070.2824230.00002112.4-6.40.71 6992 297-0.98
6 477.1.152780.01840.00080.2824850.00002310.2-4.20.81 5612 100-0.98
6 477.1.162780.02000.00080.2824070.00002412.9-7.00.91 7372 349-0.97
6 477.1.172780.02240.00090.2824240.00002412.3-6.40.81 7002 297-0.97
6 477.1.182780.01450.00060.2824450.00002211.6-5.60.81 6492 225-0.98
6 477.1.192780.01720.00070.2824960.0000259.7-3.80.91 5342 062-0.98
6 477.1.202780.02080.00090.2824050.00002113.0-7.00.71 7412 355-0.97
6 477.1.212780.01820.00080.2824440.00002211.6-5.60.81 6522 229-0.98
6 477.1.242780.02150.00090.2825150.0000259.1-3.10.91 4942 005-0.97
样品:TW6907.1岩性:花岗闪长岩6 907.1.012780.02150.00070.2825580.0000227.6-1.60.81 3961 866-0.98
6 907.1.022780.02280.00060.2825360.0000238.3-2.40.81 4451 935-0.98
6 907.1.032780.02250.00070.2825840.0000216.7-0.70.71 3391 785-0.98
6 907.1.042780.02080.00070.2825130.0000219.2-3.20.71 4972 009-0.98
6 907.1.052780.02420.00050.2825800.0000206.8-0.80.71 3441 792-0.98
6 907.1.062780.01750.00040.2825450.0000188.0-2.00.61 4231 904-0.99
6 907.1.072780.01960.00060.2825500.0000177.8-1.80.61 4131 889-0.98
6 907.1.082780.01930.00060.2825410.0000198.2-2.20.71 4341 919-0.98
6 907.1.102780.01930.00050.2825850.0000186.6-0.60.61 3341 778-0.99
6 907.1.112780.01830.00050.2825320.0000218.5-2.50.71 4521 945-0.99
6 907.1.122780.01700.00040.2825690.0000187.2-1.10.61 3691 827-0.99
6 907.1.132780.02760.00080.2824720.00002110.6-4.70.71 5902 142-0.98
6 907.1.142780.01740.00050.2824670.00001910.8-4.80.71 5982 152-0.98
6 907.1.162780.02080.00050.2825050.0000179.4-3.40.61 5132 032-0.98
6 907.1.182780.02400.00060.2824880.00001910.0-4.00.71 5522 087-0.98
6 907.1.202780.01610.00050.2825670.0000197.3-1.30.71 3751 836-0.98

注:εHf(0)=[(176Hf/177Hf)s/(176Hf/177Hf)CHUR,0-1]×10 000; εHf(t)={[(176Hf/177Hf)s-/(176Lu/177Hf)s×(eλt-1)]/[(176Hf/177Hf)CHUR,0-(176Lu/177Hf)s×(eλt-1)]-1}×10 000; TDM=1/λ×ln{1+[(176Hf/177Hf)s-(176Hf/177Hf)DM]/[(176Lu/177Hf)s-(176Lu/177Hf)DM];TDMC=TDM-(TDM-t)×[(fcc-fs)/(fcc-fDM)]; fs= (176Lu/177Hf)s/[(176Lu/177Hf)CHUR-1;其中(176Lu177Hf)s和(176Hf/177Hf)s为样品测定值,(176Lu/177Hf)CHUR=0.0332,(176Hf/177Hf)CHUR,0=0.282772;(176Lu/177Hf)DM =0.0384, (176Hf/177Hf)DM =0.28325. fcc, fsfDM分别为大陆平均地壳、样品和亏损地幔的 fLu/Hf, fcc =-0.55, fDM =0.16. t为样品成岩年龄, λ=1.867×10-11a-1[]

新窗口打开| 下载CSV


对中细粒花岗闪长岩(TW6477-1)20颗锆石进行了分析测试,锆石测点的Hf同位素组成比较一致,比值(176Lu/177Hf)均小于0.002,176Hf/177Hf值为0.282692~0.282874(20颗锆石),εHft)值均为负值,为-3.1~-7.5;对应的二阶模式年龄TDMC为1 494~1 770 Ma。

对中细粒花岗闪长岩(TW6907-1)16颗锆石进行了分析测试,锆石测点的Hf同位素组成比较一致,176Lu/177Hf值均小于0.002,176Hf/177Hf值为0.282391~0.282515(16颗锆石),εHft)值均为负值,为-0.6~-4.8;对应的二阶模式年龄TDMC为1 334~1 598 Ma。

4.3 岩石地球化学样品主量、微量及稀土元素分析结果如表3所示。

表3   花岗闪长岩主量元素的质量百分含量(%)和微量元素(×10-6)分析结果

Table 3  Major (wt.%) and trace elements (×10-6) data of granodiorite

岩性沙日楚鲁岩体莫若古岩体
编号6477-1P8-1P8-2P8-3P8-46907-1P15-1P15-2P15-3
SiO265.3767.5867.8866.3465.0266.565.2463.7666.23
TiO20.630.450.420.560.650.530.530.620.48
Al2O315.6415.5315.471616.4315.6816.1816.0616.23
Fe2O30.780.230.180.560.61.10.851.310.34
FeO3.813.032.823.313.883.093.423.313.41
MnO0.100.070.070.070.080.100.100.090.07
MgO1.541.0911.461.611.781.992.041.74
CaO3.522.923.083.813.53.43.644.633.82
Na2O2.833.233.252.853023.113.383.13.64
K2O3.834.053.9443.663.512.743.262.82
P2O50.190.140.130.160.190.190.180.170.14
LOI1.341.361.440.520.940.681.371.280.71
H2O0.680.630.530.670.860.470.870.680.5
CO20.650.620.80.980.670.190.450.430.076
Total99.5899.6899.6899.6499.5899.6799.6299.6399.63
K2O/Na2O1.351.251.211.401.211.130.811.050.77
Mg#39.4039.0838.9842.1740.9645.3947.5346.4047.14
A/CNK1.031.031.021.001.071.041.070.941.02
Li34.734.636.9334355.136.84632.2
Sc11.68.988.5310.51211.210.516.411.2
V45.328.726.643.345.449.656.855.249
Cr2013.212.21917.63929.546.827.5
Co7.66.656.558.699.0810.79.212.69.25
Ni6.833.593.695.484.7411.512.811.210.6
Cu10.85.793.910.19.681214.99.297.32
Zn50.34342.86266.658.252.558.750.4
Ga18.217.116.817.619.417.918.818.117.7
Rb129157151140142144122130112
Sr300282271312314311549312471
Zr220139158161184153144164147
Nb9.438.188.37.278.578.716.919.147.01
Cs5.3424.817.610.517.6113.268.155.26
Ba696596444844778638671720774
Hf6.154.845.465.095.884.5245.174.65
Ta0.851.021.260.710.90.830.520.820.57
Pb25.7336136.130.328.826.927.634.1
Th10.816.715.31514.111.29.2312.310.9
U1.433.22.991.151.341.180.741.261.23
La20.624.725.630.431.224.824.425.825.5
Ce41.857.862.763.757.546.947.257.454.9
编号6477-1P8-1P8-2P8-3P8-46907-1P15-1P15-2P15-3
Pr5.455.966.287.747.75.855.775.945.68
Nd2121.522.629.428.521.821.421.819.7
Sm4.434.885.335.675.54.183.854.574.04
Eu1.260.9811.411.421.071.091.271.1
Gd4.224.85.14.564.853.723.514.53.66
Tb0.760.790.890.80.890.550.50.660.54
Dy4.544.615.354.475.142.972.643.822.81
Ho0.940.971.110.8610.580.510.760.55
Er2.732.843.32.4631.641.442.081.54
Tm0.420.440.540.370.460.240.20.310.23
Yb2.93.053.72.423.041.591.412.081.48
Lu0.440.470.560.350.460.240.210.320.23
Y26.224.629.521.926.11613.918.813.7
LREE94.54115.82123.51138.32131.82104.60103.71116.78110.92
HREE43.1542.5750.0538.1944.9427.5324.3233.3324.74
ΣREE137.69158.39173.56176.51176.76132.13128.03150.11135.66
σEu0.880.610.580.820.820.810.890.850.86
(La/Yb)N4.795.464.668.476.9210.5211.678.3611.62
(Yb)N13.8814.5917.7011.5814.557.616.759.957.08
Sr/Y11.4511.469.1914.2512.0319.4439.5016.6034.38

新窗口打开| 下载CSV


沙日楚鲁花岗闪长岩及莫若古花岗闪长岩总体具有较为一致的全岩主量元素特征,其中SiO2含量为63.76%~67.88%,K2O含量为2.74%~4.05%,在图5a中,样品点落入高钾钙碱性系列区域;Al2O3含量为15.47%~16.43%,A/CNK为0.94~1.07,在A/NK-A/CNK中落入过铝质区域(图5b);样品Mg#值为38.98~47.53(平均值43),K2O/Na2O值为0.77~1.40(平均值1.13)。相对而言,位于东侧的沙日楚鲁花岗闪长岩具有相对较高的SiO2和K2O含量,相对较低的MgO和Na2O含量,反映了二者主量元素上的细微差别。

图5

图5   花岗闪长岩岩石判别图解

Fig.5   Discrimination diagrams of the granodiorite

(a)SiO2-K2O图解[32];(b)A/CNK-A/NK图解[33]; A/CNK=Al2O3/(CaO+Na2O+K2O);A/NK=Al2O3/(Na2O+K2O)

(a)SiO2-K2O diagram[32];(b)A/CNK-A/NK diagram[33]


稀土元素配分曲线显示(图6a),沙日楚鲁花岗闪长岩及莫若古花岗闪长岩稀土总量偏低(128.03×10-6~176.76×10-6),轻稀土(94.54×10-6~138.32×10-6)相对富集,重稀土(24.32×10-6~50.05×10-6)相对亏损,其中东侧沙日楚鲁花岗闪长岩稀土总量、轻稀土含量、总稀土含量均高于西侧莫若古花岗闪长岩,而沙日楚鲁花岗闪长岩轻重稀土的分馏程度[(La/Yb)N为4.66~8.47],明显较莫若古花岗闪长岩的分馏程度弱[(La/Yb)N为8.36~11.67],沙日楚鲁花岗闪长岩稀土曲线相对平坦,莫若古花岗闪长岩稀土曲线相对倾斜。沙日楚鲁花岗闪长岩具有中等的Eu负异常(δEu为0.58~0.88),莫若古花岗闪长岩Eu负异常相对较弱(δEu为0.81~0.89)。在微量元素蛛网图中(图6b),沙日楚鲁花岗闪长岩及莫若古花岗闪长岩具有较为一致的表现,岩石表现为高度富集Rb,Ba,U和K等大离子亲石元素(Large Ion Lithophile Element,LILE),相对亏损Nb,Ta,P和Ti等高场强元素(High Field Intensity Elements,HFSE)。

图6

图6   花岗闪长岩稀土元素配分图和微量元素蛛网图

Fig.6   Chondrite-normalized REE parterns and primitive-mantle normalized trace element spider diagrams of the granodiorite

(a)稀土元素化配分图;(b)微量元素原始地幔蛛网图[34]

(a)Chondrite-normalized REE parterns; (b)Primitive-mantle normalized trace element spider diagrams[34]


5 讨 论

5.1 早二叠世晚期—中二叠世岩浆活动华北北缘早二叠世晚期—中二叠世岩浆活动十分强烈,该时期侵入岩分布范围广泛,总体呈近东西向带状展布[35]。主要为一套中酸性侵入岩,岩石组合主要为石英闪长岩+花岗闪长岩+二长花岗岩,见少量辉长岩,岩石类型主要为I型花岗岩及少量A型花岗岩,局部出露少量火山岩,主要岩性为安山岩。包括内蒙古温都尔庙地区石英闪长岩和花岗闪长岩(268~272 Ma)[36,37];内蒙古乌拉特中旗地区黑云母二长花岗岩(266~279 Ma)[38];内蒙古乌拉特中旗乌梁斯太地区A型花岗岩(277 Ma)[12],内蒙古乌拉特中旗地区北七哥陶辉长岩(269 Ma)[13];内蒙古狼山地区火山岩及侵入岩(265~285 Ma)[14,15];内蒙古镶黄旗闪长岩(274 Ma)[39];内蒙古四子王旗地区大井坡二长花岗岩[(271±2) Ma][40]。本文通过锆石LA-ICP-MS测年新获得内蒙古狼山地区沙日楚鲁花岗闪长岩和莫若古花岗闪长岩的年龄为(278.07±0.66) Ma和(278.05±0.69) Ma,该岩体的同位素年龄、地球化学及分布构造部位等特征与区域上同时代的岩浆岩可对比。

5.2 岩石成因及源区特征沙日楚鲁及莫若古花岗闪长岩为准铝质—弱过铝质花岗岩(0.94<A/CNK<1.07,平均值1.02),暗色矿物主要为原生黑云母及角闪石,副矿物为榍石及磁铁矿,大离子亲石元素富集(LILEs,如Rb,Ba和Th等)、高场强元素亏损(HFSEs,如Nb,Ta和Ti等),并且岩石中富含暗色微粒包体,显示其具有I型花岗岩的特征。尽管沙日楚鲁花岗闪长岩及莫若古花岗闪长岩均为I型花岗岩,并且岩石学及矿物学特征基本相同,但是二者的全岩地球化学特征存在着一定的差异。总体而言,位于东侧沙日楚鲁花岗闪长岩相比西侧的莫若古花岗闪长岩K2O和SiO2含量相对较高,Cr,Ni,MgO和Na2O含量相对较低,并且Eu负异常更为明显,稀土总量更高。花岗岩形成集合了熔融—岩浆上升—结晶等复杂的演化过程。因此受源区物质组分、部分熔融程度、岩浆岩形成时的物理化学条件及岩浆冷却过程中可能经历的各种复杂的岩浆作用的影响,形成的岩石往往具有不同的地球化学特征。由于沙日楚鲁岩体及莫若古岩体的形成时代一致,并且产出位置相近,因此二者经历的岩浆演化过程可能是一致的,而源区的差异可能是导致二者地球化学特征差异的主导因素。

锆石的Lu-Hf同位素体系封闭温度较高,后期熔融、分离结晶等不会影响其同位素比值,锆石εHf结果能够反映或代表岩浆源区基本特征,而对于不均一的Hf同位素特征,则很可能指示了一个开放体系,可能与具有不同放射性成因的Hf同位素含量的几种岩浆混合有关[41,42,43]。本文获得的沙日楚鲁及莫若古花岗闪长岩的2个样品均具有负的而略显分散的Hf同位素组成。其中沙日楚鲁花岗闪长岩εHft)值为-3.1~-7.5;对应的二阶段模式年龄介于1 494~1 770 Ma,莫若古花岗闪长岩εHft)值为-0.6~-4.8;对应的二阶段模式年龄为1 334~1 598 Ma,在相关图解中(图7),样品点主要落入兴蒙造山带与燕山地区的结合位置,表明研究区花岗闪长岩的源区主要由华北古老地壳,并可能有年轻地壳或亏损地幔的加入。相对而言,沙日楚鲁花岗闪长岩具有更为富集的Hf同位素组成特征,表明其中混有的年轻地壳或亏损地幔相对较少,反映了沙日楚鲁花岗闪长岩与莫若古花岗闪长岩源区的差异性。

图7

图7   花岗闪长岩εHf(t)-t图解

Fig.7   εHf(t)-t diagrams of granodiorite


沙日楚鲁及莫若古花岗岩具有相对较高的SiO2,Al2O3及全碱含量,相对较低的MgO,Fe2O3,Cr,Ni含量及Mg#值,属弱过铝质及高钾钙碱性系列花岗岩,显示壳源花岗岩的特点。花岗闪长岩样品中Rb/Sr值为0.22~0.56(平均值0.42),略低于壳源岩浆的比值(>0.5),明显高于原始地幔的比值(<0.03)。原始地幔的Zr/Hf和Nb/Ta平均值分别为37.0和17.8,地壳的Zr/Hf和Nb/Ta平均值分别为33.0和11.4[44,45];花闪闪长岩样品中Zr/Hf值为28.72~36.00(平均值32.17),Nb/Ta值为6.59~13.29(平均值10.30),表明源区以壳源物质为主,并有少量幔源物质加入。

另外,沙日楚鲁及莫若古花岗闪长岩中普遍发育的闪长质暗色微粒包体也证明了幔源物质的贡献。花岗闪长岩中的包体呈椭圆状,纺锤状等,显示塑性流动状态,从包体与寄主岩体的接触关系来看,包体具有冷凝边,并发育反冲脉,包体呈细粒—微细粒半自形粒状结构,矿物粒度明显小于寄主岩石,为典型的岩浆结构,并且发育细小针状以及长柱状磷灰石(图2c),这些特征是指示岩浆混合作用发生的直接证据[46,47,48],结合区域上对于该时期岩浆混合作用的论述[36,49,50],证实二叠纪华北北缘发生较为明显的壳幔交互作用,而沙日楚鲁花岗闪长岩与莫若古花岗闪长岩全岩地球化学特征的差异表明二者在形成的过程中幔源物质的贡献比例存在差异,莫若古花岗闪长岩的源区中可能混入更多的幔源物质。

6 构造环境及地质意义

岩石学及地球化学分析均指示了俯冲带的构造背景,花岗闪长岩轻稀土、大离子亲石元素(Rb,Ba和K)相对富集,高场强元素(Nb,Ta,P和Ti)亏损,显示弧花岗岩特征。这也得到了主微量元素构造环境判别图解的支持,在Sr/Y-Y及((La/Yb)N-YbN图解中,样品点均落入岛弧花岗岩区域(图8),在微量元素构造环境判别Pearce图解上,样品均落在岛弧花岗岩区域(图9a,9b);样品在主量元素构造环境判别图解上(图9c)落在板块碰撞前区域;岩浆岩岩石组合主要为中酸性侵入岩,相对应同期火山岩以安山岩、流纹岩为主,并含有少量玄武岩,与不成熟的洋内岛弧特征不同[55,56],指示了相对成熟岩浆弧特征,样品在微量元素判别图解(图9d)上指示了活动大陆边缘区域的特征。沙日楚鲁及莫若古花岗闪长岩的围岩为中—新元古界狼山群,地层区划属华北板块,其中的碎屑锆石具有太古代的年龄信息,证实了古老岩石基地的存在。综上,本文认为狼山地区的沙日楚鲁及莫若古花岗闪长岩形成于活动大陆边缘环境,而非岛弧环境。

图8

图8   Sr/Y-Y(a)[51]和(La/YbN-YbN(b)图解[52]

Fig.8   Discrimination diagram of Sr/Y-Y(a)[51]and La/YbN-YbN(b)[52]


图9

图9   花岗闪长岩构造环境判别图解

Fig.9   Tectonic setting discrimination diagrams of the granodiorite

(a)Y-Nb图解[53];(b)Rb-Y+Nb图解[53];(c)R1-R2图解[54];(d)Th/Yb-Ta/Yb图解[57]

(a)Y-Nb discrimination diagrams[53];(b) Rb-Y+Nb discrimination diagrams[53];(c)R1-R2 discrimination[54];(d)Th/Yb-Ta/Yb discrimination diagrams[57]


中亚造山带是世界最大的增生型造山带之一,形成于古亚洲洋的长期演化及其南北两侧三大板块(西伯利亚板块与华北板块和塔里木板块)的碰撞拼贴。关于古亚洲洋闭合时限,前人进行了大量研究,近10年来,随着地质年代学的发展,大量火成岩得以确定时代归属,越来越多的学者开始倾向于接受古亚洲洋闭合于晚二叠世至早三叠世的观点,结合本文研究成果,认为古亚洲洋在早二叠世晚期—中二叠世仍处于向南俯冲的过程。首先,侵入岩方面:在华北北缘发育一条近东—西向延伸的构造—岩浆岩带,岩石组合主要为石英闪长岩、花岗闪长岩、二长花岗岩等,为一套高钾钙碱性,弱过铝质的I型花岗岩,具有陆缘弧花岗岩的特征,轻稀土、大离子亲石元素富集,重稀土、高场强元素亏损,指示形成于俯冲环境[39,58],对于该时期形成的少量A型花岗岩及双峰式岩浆岩,同样为活动大边缘环境下的产物,可能为俯冲晚期板片断离引起的局部伸展减压环境下形成,而非区域上的伸展[59]。二叠纪晚期—三叠纪主要为一套C型埃达克岩、A型花岗岩及高分异花岗岩,形成于后碰撞—伸展环境,为古亚洲洋两侧板块碰撞后的岩浆活动产物[35,39,60]。古地磁方面:李朋武等[61]对华北板块和西伯利亚板块的古地磁数据分析认为,二叠纪期间,西伯利亚板块开始快速向南运移,而华北板块缓慢向北漂移,直至二叠纪末(约250 Ma),华北和西伯利亚板块发生碰撞,其间的中亚洋盆闭合。地层方面,李锦轶[62]认为由于区域上在二叠纪处于海陆过渡相,二叠纪地层具有退积层序特征,暗示区域上在二叠纪存在残余海盆,或处于活动大陆边缘环境。Jian等[6]报道了索伦SSZ型蛇绿岩带中辉长岩和斜长花岗岩的锆石U-Pb年龄为(284±4) Ma和(288±6) Ma,说明早二叠世古亚洲洋仍处于俯冲阶段;李钢柱等[63]在内蒙古索伦山蛇绿岩带发现早二叠世发射虫动物群,证实了古亚洲洋在早二叠世时仍存在,古亚洲洋通过俯冲消减最终闭合应是在早二叠世之后。

7 结 论

LA-ICP-MS锆石U-Pb定年结果表明,狼山地区沙日楚鲁及莫若古花岗闪长岩形成于早二叠世晚期(278.1±0.7) Ma,为具有陆缘弧花岗岩特征的I型花岗岩。

Hf同位素结果显示沙日楚鲁及莫若古花岗闪长岩具有负的略显分散的εHft)值(-0.6~-7.5),表明其源区主要为古老地壳,并有少量幔源物质的加入。

狼山地区早二叠世晚期花岗闪长岩形成于活动大陆边缘环境,为古亚洲洋向南俯冲形成的产物,彼时古亚洲洋尚未闭合。

参考文献

Şengör A M C , Natal'in B A , Burtman V S .

Evolution of the Altaid tectonic collage and Palaeozoic crustal growth in Eurasia

[J]. Nature, 1993, 364(6 435): 299.

[本文引用: 5]

Jahn B M , Wu Fuyuan , Chen Bin .

Massive granitoid generation in Central Asia: Nd isotope evidence and implication for continental growth in the Phanerozoic

[J]. Episodes, 2000, 23: 82-92.

[本文引用: 3]

Jahn B M , Windley B , Natal'in B , et al .

Phanerozoic continental growth in Central Asia

[J]. Journal of Asian Earth Sciences, 2004, 23(5): 599-603.

[本文引用: 2]

Wilde S A .

Final amalgamation of the Central Asian Orogenic Belt in NE China: Paleo-Asian Ocean closure versus Paleo-Pacific plate subduction—A review of the evidence

[J]. Tectonophysics, 2015, 662: 345-362.

[本文引用: 1]

Zhang Shuanhong , Zhao Yue , Liu Jianmin , et al .

Different sources involved in generation of continental arc volcanism: The Carboniferous-Permian volcanic rocks in the northern margin of the North China block

[J]. Lithos, 2016, 240/243: 382-401.

[本文引用: 1]

Jian Ping , Liu Dunyi , Kröner A , et al .

Evolution of a Permian intraoceanic arc-trench system in the Solonker suture zone, Central Asian Orogenic Belt, China and Mongolia

[J]. Lithos, 2010, 118(1/2): 169-190.

[本文引用: 3]

Shi Xingjun , Wang Tao , Zhang Lei , et al .

Timing, petrogenesis and tectonic setting of the Late Paleozoic gabbro-granodiorite-granite intrusions in the Shalazhashan of northern Alxa: Constraints on the southernmost boundary of the Central Asian Orogenic Belt

[J]. Lithos, 2014, 208/209: 158-177.

[本文引用: 3]

Liu Min , Zhang Da , Xiong Guangqiang , et al .

Zircon U-Pb age, Hf isotope and geochemistry of Carboniferous intrusions from the Langshan area, Inner Mongolia: Petrogenesis and tectonic implications

[J]. Journal of Asian Earth Sciences, 2016, 120(15):139-158.

[本文引用: 5]

Tian Jian , Teng Xuejian , Liu Yang , et al .

Petrogenesis and tectonic significance of the Early Carboniferous hornblende gabbro and granodiorite in Langshan area, Inner Mongolia

[J]. Acat Petrologica et Mineralogica, 2018, 37(5): 754-770.

[本文引用: 1]

田健,滕学建,刘洋, .

内蒙古狼山地区早石炭世角闪辉长岩、花岗闪长岩的岩石成因及构造意义

[J].岩石矿物学杂志, 2018, 37(5): 754-770.

[本文引用: 1]

Wang Wenlong , Teng Xuejian , Liu Yang , et al .

Zircon U-Pb chronology and geochemical characteristics of Wuheertu pluton in Langshan, Inner Mongolia

[J]. Journal of Geomechanics, 2017, 23(3): 382-396.

[本文引用: 2]

王文龙,滕学建,刘洋, .

内蒙古狼山乌和尔图花岗岩岩体锆石U-Pb年代学及地球化学特征

[J].地质力学学报, 2017, 23(3): 382-396.

[本文引用: 2]

Wang Wenlong , Teng Xuejian , Liu Yang , et al .

Geochemical, LA-ICP-MS Zircon U-Pb dating and Hf isotope features of haorigeshan Monzogranite in Langshan, Inner Mongolia

[J]. Acta Geological Sinica, 2018, 92(11): 2 227-2 247.

[本文引用: 2]

王文龙,滕学建,刘洋, .

内蒙古狼山地区浩日格山二长花岗岩的地球化学特征、LA-ICP-MS锆石U-Pb定年及Hf同位素组成

[J].地质学报, 2018, 92(11): 2 227-2 247.

[本文引用: 2]

Luo Hongling , Wu Tairan , Zhao Lei , et al .

Zicron SHRIMP U-Pb dating of Wuliangsitai A-type granite on the northern margin of the North China Plate and tectonic significance

[J]. Acta Petrologica Sinica, 2009, 25(3): 515-526.

[本文引用: 2]

罗红玲,吴泰然,赵磊, .

华北板块北缘乌梁斯太A型花岗岩体锆石SHRIMP U-Pb定年及构造意义

[J].岩石学报, 2009, 25(3): 515-526.

[本文引用: 2]

Zhao Lei , Wu Tairan , Luo Hongling , et al .

SHRIMP U-Pb dating, geochemistry and tectonic implications of the Beiqigetao gabbros in Urad Zhongqi area, Inner Mongolia

[J]. Acta Petrologica Sinica, 2011, 27(10): 3 071-3 082.

[本文引用: 2]

赵磊,吴泰然,罗红玲, .

内蒙古乌拉特中旗北七哥陶辉长岩SHRIMP锆石U-Pb年龄、地球化学特征及其地质意义

[J].岩石学报, 2011,27( 10): 3 071-3 082.

[本文引用: 2]

Wang Zengzhen , Han Baofu , Feng Lixia , et al .

Geochronology, geochemistry and origins of the Paleozoic-Triassic plutons in the Langshan area, western Inner Mongolia, China

[J]. Journal of Asian Earth Sciences,2015,

97(PartB): 337-351

.

[本文引用: 4]

Guo Shuo , Teng Xuejian , Liu Yang , et al .

Geochemistry, chronology, and Hf isotope features of the Permain intermediate-basic volcanic rocks in Wulanaobao area, Urad Houqi, Inner Mongolia and its geological significance

[J]. Journal of Geomechanics, 2017, 23(3): 397-410.

[本文引用: 3]

郭硕,滕学建,刘洋, .

内蒙古乌拉特后旗乌兰敖包地区二叠纪中—基性火山岩地球化学、年代学、Hf同位素特征及其地质意义

[J].地质力学学报, 2017, 23(3):397-410.

[本文引用: 3]

Wang Tingyin , Wang Jinrong , Wang Shizheng , et al .

Discovery of the Engeer Wusu ophiolitic mélange belt in northern Alashan and its tectonic significance

[J]. Journal of Lanzhou University (Natural Sciences), 199228(2):194-196.

[本文引用: 1]

王廷印,王金荣,王士政, .

阿拉善北部恩格尔乌苏蛇绿混杂岩带的发现及其构造意义

[J].兰州大学学报:自然科学版, 199228(2), 194-196.

[本文引用: 1]

Chen Yaping , Wei Chunjing , Zhang Jinrui , et al .

Metamorphism and zircon U-Pb dating of garnet amphibolite in the Baoyintu Group, Inner Mongolia

[J]. Science Bulletin, 2015, 60(19):1 698-1 707.

[本文引用: 1]

Zhou Hai , Zhao Guochun , Han Yigui , et al .

Geochemistry and zircon U-Pb-Hf isotopes of Paleozoic intrusive rocks in the Damao area in Inner Mongolia, northern China: Implications for the tectonic evolution of the Bainaimiao arc

[J]. Lithos, 2018, 314/315: 119-139.

[本文引用: 1]

Gong Wangbin , Hu Jianmin , Wu Sujuan , et al .

Deformation characteristics, timing and significance of the Langshan sinistral strike-slip ductile shear zone in Inner Mongolia

[J]. Earth Science Fronitiers, 2017, 24(3): 263-275.

[本文引用: 1]

公王斌,胡健民,吴素娟, .

内蒙古狼山左行走滑韧性剪切带变形特征、时间及意义

[J].地学前缘, 201724(3): 263-275.

[本文引用: 1]

Hu Jianmin , Gong Wangbin , Wu Sujuan , et al .

LA-ICP-MS zircon U-Pb dating of the Langshan Group in the northeast margin of the Alxa block, with tectonic implications

[J]. Precambrian Research, 2014, 255(Part 2): 756-770.

[本文引用: 2]

Liu Chaohui , Zhao Guochun , Liu Fulai , et al .

Late Precambrian tectonic affinity of the Alxa block and the North China Craton: Evidence from zircon U-Pb dating and Lu-Hf isotopes of the Langshan Group

[J]. Precambrian Research, 2017. DOI: 10.1016/j.precamres.2017.10.019.

[本文引用: 2]

Wang Zengzhen , Han Baofu , Feng Lixia , et al .

Tectonic attribution of the Langshan area in western Inner Mongolia and implications for the Neoarchean-Paleoproterozoic evolution of the Western North China Craton: Evidence from LA-ICP-MS zircon U-Pb dating of the Langshan basement

[J]. Lithos, 2016, 261(15): 278-295.

[本文引用: 1]

Jackson S E , Pearson N J , Griffin W L , et al .

The application of laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) to in situ U-Pb zircon geochronology

[J]. Chemical Geology, 2004, 211: 47-69.

[本文引用: 2]

Elhlou S , Belousova E , Griffin W L , et al .

Trace element and isotopic composition of GJ- red zircon standard by laser ablation

[J]. Geochim Cosmochim Acta, 2006,

70(Suppl

.

): A158

.

[本文引用: 1]

Xie Liewen , Zhang Yanbin , Zhang Huihuang , et al .

In situ simultaneous determination of trace elements, U-Pb and Lu-Hf isotopes in zircon and baddeleyite

[J]. Chinese Science Bulletin, 2008, 53(10): 1 565-1 573.

[本文引用: 1]

谢烈文,张艳斌,张辉煌, .

锆石/斜锆石U-Pb和Lu-Hf同位素以及微量元素成分的同时原位测定

[J].科学通报, 2008, 53(10): 1 565-1 573.

[本文引用: 1]

Liu Xiaoming , Gao Shan , Diwuchunrong, et al .

Simultaneous in-situ determination of U-Pb age and trace elements in zircon by LA-ICP-MS in 20 μm spot size

[J]. Chinese Science Bulletin, 2007, 52(7): 942-948.

[本文引用: 1]

柳小明,高山,第五春容, .

单颗粒锆石的20μm小斑束原位微区LA-ICP-MS U-Pb年龄和微量元素的同时测定

[J].科学通报, 2007, 52(7): 942-948.

[本文引用: 1]

Hou Kejun , Li Yanhe , Tian Yourong .

In situ U-Pb zircon dating using laser ablation-multiion counting-ICP-MS

[J]. Mineral Deposits, 2009, 28(4): 481-492.

[本文引用: 1]

侯可军,李延河,田有荣 .

LA-MC-ICP-MS锆石微区原位U-Pb定年技术

[J].矿床地质, 2009, 28(4): 481-492.

[本文引用: 1]

Liu Yongsheng , Gao Shan , Hu Zhaochu , et al .

Continental and Oceanic Crust Recycling-induced Melt-Peridotite Interactions in the Trans-North China Orogen: U-Pb Dating, Hf Isotopes and Trace Elements in Zircons from Mantle Xenoliths

[J]. Journal of Petrology, 2009, 51(1/2): 392-399.

[本文引用: 2]

Ludwig K .

Isoplot/Ex, A Geochronological Toolkit for Microsoft Excel. version 3.00

[J]. Berkeley Geochronology Centre, 2003, 4: 1-71.

[本文引用: 1]

Geng Jianzhen , Li Huaikun , Zhang Jian , et al .

Zircon Hf isotope analysis by means of LA-MC-ICP-MS

[J]. Geological Bulletin of China, 2011, 30(10): 1 508-1 513.

[本文引用: 1]

耿建珍,李怀坤,张健, .

锆石Hf同位素组成的LA-MC-ICP-MS测定

[J].地质通报, 2011, 30(10): 1 508-1 513.

[本文引用: 1]

Söderlund U , Patchett J P , Vervoort J D , et al .

The 176Lu decay constant determined by Lu-Hf and U-Pb isotope systematics of Precambrian mafic intrusions

[J]. Earth and Planetary Science Letters, 2004, 219(3/4): 311-324.

Maitre R W L .

A Classification of igneous rocks and glossary of terms: Recommendations of the International Union of Geological Sciences Subcommission on the Systematics of Igneous Rocks

[J]. Blackwell, 1989. DOI: 10.1017/CBO9780511535581.

[本文引用: 2]

Maniar P D , Piccoli P M .

Tectonic discrimination of granitoids

[J]. Geological Society of America Bulletin, 1989,101(5): 635-643.

[本文引用: 2]

Sun S S , Mcdonough W F .

Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes

[J]. Geological Society London Special Publications, 1989, 42(1): 313-345.

[本文引用: 2]

Zhang Shuanhong , Zhao Yue , Liu Jianmin , et al .

Geochronology, geochemistry and tectonic setting of the Late Paleozoic-Early Mesozoic magmatism in the northern margin of the North China Block: A preliminary review

[J]. Acta Petrologica et Mineralogica, 2010, 29(6): 824-842.

[本文引用: 2]

张拴宏,赵越,刘建民, .

华北地块北缘晚古生代—早中生代岩浆活动期次、特征及构造背景

[J].岩石矿物学杂志, 2010, 29(6): 824-842.

[本文引用: 2]

Wang Wanqiong , Xu Zhongyuan , Liu Zhenghong , et al .

Early-middle permian tectonic evolution of the Central-Northern margin of the North China Craton: Constraints from Zircon U-Pb ages and geochemistry of the granitoids

[J]. Acta Petrologica Sinica, 2013, 29(9): 2 987-3 003.

[本文引用: 2]

王挽琼,徐仲元,刘正宏, .

华北板块北缘中段早中二叠世的构造属性:来自花岗类锆石U-Pb年代学及地球化学的制约

[J].岩石学报,2013, 29(9): 2 987-3 003.

[本文引用: 2]

Zhu Xuefeng , Chen Yanjing , Wang Pin , et al .

Zircon U-Pb age, geochemistry and Hf isotopes of the causative porphyry from the Bilihe porphyry gold deposit, Inner Mongolia

[J]. Earth Science Frontiers, 2018, 25(5): 199-134.

[本文引用: 1]

朱雪峰,陈衍景,王玭, .

内蒙古毕力赫斑岩型金矿成矿岩体地球化学、锆石U-Pb年代学及Hf同位素研究

[J].地学前缘, 2018, 25(5): 120-134.

[本文引用: 1]

Wang Wanqiong , Liu Zhenghong , Wang Xing'an , et al .

SHRIMP U-Pb dating of from Hercynian biotite Monzonitic Granites in Urad Zhongqi, Inner Mongolia, and its geological significance

[J]. Journal of Jilin University (Earth Science Edition), 2012, 42(6): 1 771-1 782.

[本文引用: 1]

王挽琼,刘正宏,王兴安, .

内蒙古乌拉特中旗海西期黑云母二长花岗岩锆石SHRIMPU-Pb年龄及其地质意义

[J].吉林大学学报:地球科学版,2012, 42(6): 1 771-1 782.

[本文引用: 1]

Zhang Shuanhong , Zhao Yue , Song Biao , et al .

Contrasting Late Carboniferous and Late Permian-Middle Triassic intrusive suites from the northern margin of the North China craton: Geochronology, petrogenesis, and tectonic implications

[J]. Geological Society of America Bulletin, 2009,121(1/2): 181-200.

[本文引用: 3]

Liu Changfeng , Wu Chen , Zhu Yan , et al .

Late Paleozoic-Early Mesozoic magmatic history of central Inner Mongolia, China: Implications for the tectonic evolution of the Xingmeng Orogenic Belt, the southeastern segment of the Central Asian Orogenic Belt

[J]. Journal of Asian Earth Sciences, 2015. DOI: 10.1016/j.jseaes.2015.09.011.

[本文引用: 1]

Griffin W L , Wang X , Jackson S E , et al .

Zircon chemistry and magma mixing, SE China: In-situ analysis of Hf isotopes, Tonglu and Pingtan igneous complexes

[J]. Lithos, 2002, 61(3): 237-269.

[本文引用: 1]

Kemp A I S , Hawkesworth C J , Foster G L , et al .

Magmatic and crustal differentiation history of granitic rocks from Hf-O isotopes in zircon

[J]. Science, 2007, 315(5 814): 980-983.

[本文引用: 1]

Zhang Wenhui , Wang Cuizhi , Li Xiaomin , et al .

Zircon SIMS U-Pb age, Hf and O isotopes of mafic dikes, southwest Fujian Province

[J]. Advances in Earth Science, 2016, 31(3): 320-334.

[本文引用: 1]

张文慧,王翠芝,李晓敏, .

闽西南基性岩脉中捕获锆石SIMSU-Pb年龄及Hf、O同位素特征

[J].地球科学进展, 2016, 31(3):320-334.

[本文引用: 1]

Taylor S R , McLennan S M .

The Continental Crust: Its Composition and Evolution

[M]. Oxford:Blackwell Scientific, 1985: 312.

[本文引用: 1]

Mcdonough W F , Sun S S , Mcdonough W F , et al .

The composition of the Earth

[J]. Chemical Geology, 1995, 120(3/4): 223-253.

[本文引用: 1]

Wang Dezi , Xie Lei .

Magma mingling: Evidence from enclaves

[J]. Geological Journal of China Universities, 2008, 14 (1): 16-21.

[本文引用: 1]

王德滋,谢磊 .

岩浆混合作用:来自岩石包体的证据

[J].高校地质学报, 2008,14(1): 16-21.

[本文引用: 1]

Xiao Qinghui , Deng Jinfu .

Thoughts and Methods of Granite Research

[M]. Beijing: Geologyical Publishing House, 2012, 53-70.

[本文引用: 1]

肖庆辉,邓晋福 .

花岗岩研究思维与方法

[M].北京:地质出版社, 2002: 53-70.

[本文引用: 1]

Zhang Ruigang , Gao Xue , Yang Liqiang .

Identification of magma mixing: A case study of the DaoCheng batholith in Yidun Arc

[J]. Advances in Earth Science, 2018, 33(10): 1 058-1 074.

[本文引用: 1]

张瑞刚,高雪,杨立强 .

岩浆混合作用的识别:以义敦岛弧稻城岩体为例

[J].地球科学进展,2018, 33(10): 1 058-1 074.

[本文引用: 1]

Zhang Jianjun , Wang Tao , Zhang Zhaochong , et al .

Magma mixing origin if Yamatu Granite in Nuoergong-Langshan area, western part of the northern margin of North China craton: Petrological and geochemical evidences

[J]. Geological Review, 2012, 58(1):53-66.

[本文引用: 1]

张建军,王涛,张招崇, .

华北地块北缘西段巴音诺尔公—狼山地区牙马图岩体的岩浆混合成因

[J].地质论评, 2012, 58(1): 53-66.

[本文引用: 1]

Zhang Yongmei , Zhang Huafeng , Liu Wencan , et al .

Timing and petrogenesis of the Damiao granodiorite,Siziwangqi,Inner Mongolia

[J]. Acta Petrologica Sinica, 2009, 25(12): 515-526.

[本文引用: 1]

章永梅,张华锋,刘文灿, .

内蒙古中部四子王旗大庙岩体时代及成因

[J].岩石学报, 2009, 25(12): 515-526.

[本文引用: 1]

Defant M J , Drummond M S .

Derivation of some modern arc magmas by melting of young subducted lithosphere

[J]. Nature, 1990, 347: 662-665.

[本文引用: 2]

Martin H .

Effect of steeper Archean geothermal gradient on geochemistry of subduction-zone magmas

[J]. Geology, 1986,14(9): 753-756.

[本文引用: 2]

Pearce J A , Harris N B W , Tindle A G .

Trace element discrimination diagrams for the tectonic interpretation of granitic rocks

[J]. Journal of Petrology, 1984, 25(4): 956-983.

[本文引用: 4]

Batchelor R A , Bowden P .

Petrogenetic interpretation of granitoid rock series using multicationic parameters

[J].ChemicalGeology, 1985,48(1/4):43-55.

[本文引用: 2]

Deng,Jinfu, Xiao Qinghui , Su Shangguo , et al .

Igneous petro-tectonic assemblages and tectonic settings: A discussion

[J].Geological Journal of China Universities, 2007,13(3): 392-402.

[本文引用: 1]

邓晋福,肖庆辉,苏尚国, .

火成岩组合与构造环境:讨论

[J].高校地质学报, 2007, 13(3): 392-402.

[本文引用: 1]

Deng Jinfu , Feng Yanfang , Di Yongjun , et al .

Magmatic arc and ocean—Continent transition: Discussion

[J]. Geological Review,2015,61(3) :473-484.

[本文引用: 1]

邓晋福,冯艳芳,狄永军, .

岩浆弧火成岩构造组合与洋陆转换

[J].地质论评, 2015, 61(3): 473-484.

[本文引用: 1]

Gorton M P , Schandl E V .

From continentstoisland arcs:A geochemicalindexof tectonic settingfor arc-relatedand within-plate felsictointermediate volcan-ic rocks

[J]. Canadian Mineralogist, 2000, 38(5): 1 065-1 073.

[本文引用: 2]

Zhang Shuanhong , Zhao Yue , Kröner, et al .

Early Permian plutons from the northern North China Block: Constraints on continental arc evolution and convergent margin magmatism related to the Central Asian Orogenic Belt

[J]. International Journal of Earth Sciences, 2009, 98(6): 1 441-1 467.

[本文引用: 1]

Li Shan , Wilde S A , Wang Tao , et al .

Latest Early Permian granitic magmatism in southern Inner Mongolia, China: Implications for the tectonic evolution of the southeastern Central Asian Orogenic Belt

[J]. Gondwana Research, 2016, 291): 168-180.

[本文引用: 1]

Li Shan , Chung S L , Wilde S A ,et al .

Early-Middle Triassic high Sr/Y granitoids in the southern Central Asian Orogenic Belt: Implications for ocean closure in accretionary orogens

[J]. Journal of Geophysical Research Solid Earth, 2017. DOI: 10.1002/2017JB014006.

[本文引用: 1]

Li Pengwu , Gao Rui , Guan Ye , al et , Palaeomagnetic constraints on final closure time of Solonker-Linxi Suture [J]. Journal of Jilin University (Earth Science Edition),2006, 36: 744-758.

[本文引用: 1]

李朋武,高锐,管烨, .

内蒙古中部索伦—林西缝合带封闭时代的古地磁分析

[J].吉林大学学报:地球科学版, 2006, 36: 744-758.

[本文引用: 1]

Li Jinyi .

Permian geodynamic setting of Northeast China and adjacent regions: closure of the Paleo-Asian Ocean and subduction of the Paleo-Pacific Plate

[J]. Journal of Asian Earth Sciences, 2006, 26(3/4): 207-224.

[本文引用: 1]

Li Gangzhu , Wang Yujing , Li Chengyuan , et al .

Discovery of Early Permian radiolarian fauna in the Solon Obo ophiolite belt, Inner Mongolia and its geological significance

[J]. Chinese Science Bulletin, 2017, 62(5): 400-406.

[本文引用: 1]

李钢柱,王玉净,李成元, .

内蒙古索伦山蛇绿岩带早二叠世放射虫动物群的发现及其地质意义

[J].科学通报, 2017, 62(5): 60-66.

[本文引用: 1]

/