地球科学进展, 2019, 34(12): 1288-1300 DOI: 10.11867/j.issn.1001-8166.2019.12.1288

综述与评述

耕作侵蚀研究回顾和展望

许海超,1,2, 张建辉,1, 戴佳栋1,2, 王勇1,3

1.中国科学院水利部 成都山地灾害与环境研究所,四川 成都 610041

2.中国科学院大学,北京 100049

3.四川农业大学 水利水电学院,四川 雅安 625014

Review and Prospect of Tillage Erosion Research

Xu Haichao,1,2, Zhang Jianhui,1, Dai Jiadong1,2, Wang Yong1,3

1.Institute of Mountain Hazards and Environment, Chinese Academy of Sciences and Ministry of Water Conservancy, Chengdu 610041, China

2.University of Chinese Academy of Sciences, Beijing 100049, China

3.College of Water Conservancy and Hydropower Engineering, Sichuan Agricultural University, Sichuan Ya’an 625014, China

通讯作者: 张建辉(1963-),男,四川崇州人,研究员,主要从事土壤侵蚀与土壤物理研究. E-mail:zjh@imde.ac.cn

收稿日期: 2019-09-01   修回日期: 2019-11-30   网络出版日期: 2020-01-17

基金资助: 国家自然科学基金项目“耕作对紫色土母(泥)岩成土与侵蚀的对立作用机制”.  41571267
中国科学院水利部成都山地灾害与环境研究所“一三五”方向性项目“长江上游生态—水过程演变特点与趋势”.  SDS-135-1702

Corresponding authors: Zhang Jianhui (1963-), male, Chongzhou City, Sichuan Province, Professor. Research areas include soil erosion and physics. E-mail:zjh@imde.ac.cn

Received: 2019-09-01   Revised: 2019-11-30   Online: 2020-01-17

作者简介 About authors

许海超(1990-),男,山东临沂人,博士研究生,主要从事土壤侵蚀与土壤物理研究.E-mail:sdxhc@139.com

XuHaichao(1990-),male,LinyiCity,ShandongProvince,Ph.Dstudent.Researchareasincludesoilerosionandphysics.E-mail:sdxhc@139.com

摘要

耕作侵蚀是土壤侵蚀的重要组成,会导致地形、土壤性质和坡面水文过程的变化,已被证实是一个重要的土壤退化过程。利用科学文献计量法,总结了耕作侵蚀的发展历程、影响因子和研究方法。在此基础上,分析研究热点和趋势,对研究中存在的问题和挑战进行总结和讨论。耕作侵蚀的发生是耕作侵蚀力和景观可蚀性共同作用的结果,前者主要受人为因子影响,而后者主要由自然因子决定。为了科学认识耕作侵蚀过程及其发生和作用机制,长期以来开展了大量不同空间尺度和时间尺度的研究,并构建了多种独立的耕作侵蚀模型。随着对耕作侵蚀认识的逐步深化,耕作侵蚀从最初的独立研究逐步发展为与水蚀结合的综合土壤侵蚀研究,构建了大量科学评估区域和长时间尺度土壤侵蚀和地形演化的综合模型。然而,耕作侵蚀的多尺度综合研究有待进一步突破,与其他形式侵蚀的交互作用还有待进一步深入探索。构建精确的耕作侵蚀评估和预测模型,编制耕作侵蚀防治标准,协调耕作和土壤保护之间的关系是未来的重要发展方向。

关键词: 耕作侵蚀力 ; 景观可蚀性 ; 耕作工具 ; 耕作侵蚀模型

Abstract

Tillage erosion is an important component of soil erosion, which leads to changes in topography, soil properties and hydrological processes on the slope. In this paper, scientific literature analysis was made to review the historical evolution, control factors, and research methods on tillage erosion, and the challenges and opportunities of the research were summarized. It was found that the study of tillage erosion began in the United States, flourished in Europe, and developed rapidly around the world, from the review of the research history from 1942 to 2018. According to the characteristics of historical evolution, the process of tillage erosion research was divided into four stages: embryonic stage (before 1992), slow developing stage (1992-1998), rapid developing stage (1999-2006), and comprehensive research stage (2007-2018). Tillage erosion is the result of the combined effects of tillage erosivity and landscape erodibility, and its influencing factors can be divided into anthropogenic and natural factors. Tillage erosivity is mainly influenced by anthropogenic factors, while landscape erodibility is mainly determined by natural factors. Many studies with different temporal and spatial scales have been conducted by various measuring techniques, which were used to determine the process of tillage erosion, and a relatively integrated technical system has been initially established. With further studies, a number of comprehensive models, which combined tillage erosion with water erosion, were constructed to assess soil erosion and landscape evolution on greater temporal and spatial scales. However, there are still many scientific issues of tillage erosion to be explored, integrated and standardized. First, the spatial scale of tillage erosion research is mainly concentrated on small and medium scales. Future research should rely on advanced technologies, such as 3S (RS, GIS and GPS) technology, UAV aerial images, radar data and 3-D scan technology, to assess and predict macro-scale tillage erosion. There is also an urgent need of comprehensive research with multiple scales to promote the prediction accuracy of tillage erosion because different characteristics of tillage erosion are present on different spatial and temporal scales. Second, compared with natural factors, anthropogenic factors are more complex and changeable, which makes the macro-scale evaluation of tillage erosion more difficult as few tillage erosion models considered natural and human factors synchronously. Constructing a multi-factor model will be beneficial to improving the accuracy of tillage erosion assessment and prediction. Additionally, although diversified methods provided effectively technical support for tillage erosion research by ceaseless optimization, there were differences between the results obtained by different methods. Third, further research is needed to determine the interaction between tillage and water erosion. The accelerating effect of tillage erosion on water erosion has been preliminarily understood, but quantitative evaluation is not enough. Meanwhile, the studies of water erosion effects on tillage erosion are still in the qualitative description stage, and the technical methods need to be supplemented. Finally, there is still a lack of concrete and enforceable standards of tillage erosion control. Formulating standards for tillage erosion control based on regional soil properties, topographies and tillage systems is an important development direction in the future. Coordinating the contradiction between tillage and soil conservation from the perspective of farmers, who are agricultural producers, can improve the flexibility and feasibility of soil and water conservation policies.

Keywords: Tillage erosivity ; Landscape erodibility ; Tillage tool ; Erosion model

PDF (2151KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

许海超, 张建辉, 戴佳栋, 王勇. 耕作侵蚀研究回顾和展望. 地球科学进展[J], 2019, 34(12): 1288-1300 DOI:10.11867/j.issn.1001-8166.2019.12.1288

Xu Haichao, Zhang Jianhui, Dai Jiadong, Wang Yong. Review and Prospect of Tillage Erosion Research. Advances in Earth Science[J], 2019, 34(12): 1288-1300 DOI:10.11867/j.issn.1001-8166.2019.12.1288

1 引 言

耕作是农业生产的一个重要环节,既可以疏松土壤、有效地改善土壤结构,又可以掩埋地表残留物并控制杂草,从而促进作物生长[1]。然而,由于地球陆地表面起伏不平,很多耕地位于坡地之上。在坡地上耕作,土壤会在工具动力和重力作用下从原位置剥离产生净顺坡位移,如果某一位置土壤输出量小于补充量,即发生耕作侵蚀[2,3,4]。耕作侵蚀是坡耕地上坡和凸坡位置主要的土壤侵蚀过程,也是下坡和凹坡位置土壤沉积的重要来源[5,6]。这不仅会导致侵蚀区土壤浅薄化[7,8],还会引起坡面土壤有机碳(Soil Organic Carbon,SOC)和养分(如N,P和K)的重新分配,经过长期的积累导致地表耕作条件变差,整体地力下降[9,10,11]。在全球大多数地区,耕作侵蚀与坡面水蚀处于同一数量级,在某些地区甚至超过后者[12,13,14]。耕作还会把土壤从上坡区域搬运到邻近的下坡区域(或中坡位置),为水蚀提供物源,同时降低上坡区域水稳定性土壤团聚体含量,导致坡面水蚀产沙量增加[15,16,17]

耕作侵蚀是农业景观演化的主要驱动力,可以解释水蚀和风蚀过程无法解释的土壤重新分布格局[2,18,19]。从地貌学的角度来看,存在2种不同效应的耕作侵蚀:在坡面单元上,由于坡度变化(地形变化)导致的耕作侵蚀,其具有“削高填洼”作用,会使坡面趋于平缓,从而减小坡地单元内的耕作难度;在大的景观尺度上,由于地块边界(田间边界)的存在而引起的耕作侵蚀会在景观中形成地坎和梯田崖,使连续的坡面变得间断[7,14,20],致使地形复杂化、耕地破碎化[21,22],导致田间运输困难,严重阻碍农业机械化进程,从而限制山区农民劳动生产效率的提升[23]

中国山地面积占陆域国土的65%,坡度大于6°的耕地为2.97×107 hm2,占全国耕地总量的27%。由于人多地少,土地的耕作强度大[24],导致耕作侵蚀问题尤为突出。然而,国内对耕作侵蚀的关注度远不及其他土壤侵蚀形式[11,25]。此外,中国不同区域的自然环境(如地形、土壤性质、气候)和耕作习惯(如耕作工具、耕作制度)差异巨大,不同区域的耕作侵蚀规律可能不同,也增加了大尺度耕作侵蚀研究的难度。例如,西北黄土区土层深厚,而西南紫色土区土层浅薄,这2个区域的机械化程度都偏低且以短陡坡侵蚀为主[9,26];东北黑土区土层厚度有限,机械化程度高,长期的高强度耕作造成的耕作侵蚀更为普遍[6,27]。值得一提的是,近年来国内学者开展了很多耕作侵蚀与其他侵蚀形式的交互作用研究[15,16,17,19,28],为完善耕作侵蚀研究提供了重要资料支持。

自20世纪末和21世纪初,耕作侵蚀受到土壤侵蚀研究领域的广泛关注以来,耕作侵蚀研究在发生机制、测算方法和环境效应等方面取得了稳步推进。2019年,联合国粮农组织(Food and Agriculture Organization of the United Nations,FAO)出版的《Soil Erosion: The greatest challenge for sustainable soil management》中,已将耕作侵蚀列为与水蚀和风蚀同等重要的土壤侵蚀形式[29],再次凸显了耕作侵蚀研究的必要性。回顾耕作侵蚀研究的发展历程,尚有许多亟待解决的科学问题。本文沿耕作侵蚀研究的发展脉络总结归纳已有研究,在此基础上阐述耕作侵蚀研究的热点和发展态势,提出当前研究存在的问题与未来发展方向,期望能进一步凝练科学共识,把握学科发展前沿。

2 耕作侵蚀研究回顾

2.1 耕作侵蚀研究的时空分布

为查清国际耕作侵蚀研究的历史脉络,首先使用Web of Science 数据库对相关文献进行检索,检索策略为TS =(“tillage erosion” OR “soil erosion by tillage” OR “soil translocation by tillage” OR “soil redistribution by tillage” OR “soil displacement by tillage” OR “soil dislocation by tillage”),在核心合集中筛选得到英文研究论文和综述共304篇。通过进一步筛选和补充,共得到352篇1942—2018年正式发表的英文文献(只包括研究论文和综述)。从图1可以发现,1942—1992年耕作侵蚀研究较少,为间断性研究;自1992年开始,国际上对耕作侵蚀展开持续性研究,但是1999年之前相关研究较少;从20世纪90年代末,耕作侵蚀关注度逐渐上升,2007年以后基本维持在相对稳定的状态。此外,90%以上的耕作侵蚀文献发表于近20年间(1999—2018年)。

图1

图1   19422018年世界耕作侵蚀年发文量

Fig. 1   Annual published papers of tillage erosion in the world from 1942 to 2018


为查清耕作侵蚀研究在世界范围的空间分布特征,本文选择352篇文献的研究区和第一单位所在地作为参考依据。1942—2018年,以欧洲、亚洲和北美洲为研究区的文献分别占41.21%,25.27%和22.80%,合计89.28%;文献第一单位所在地也主要分布在欧洲、北美洲和亚洲,分别占49.72%,25.85%和20.74%,合计96.31%。可见,来自这三大洲的学者在推动耕作侵蚀研究发展方面做出了较大贡献,其中欧洲学者对耕作侵蚀的关注度最高。随着时间推进,欧洲、北美洲和非洲相关研究数量先增长后下降。但是,亚洲在1942—2018年的3个时段内,耕作侵蚀研究数量呈快速增加态势(图2)。

图2

图2   19422018年世界耕作侵蚀研究的空间分布

Fig. 2   Regional distribution of tillage erosion research in the world from 1942 to 2018


至2018年,共有46个国家作为研究区开展过耕作侵蚀研究(图3)。研究区主要位于中国、美国、加拿大、比利时和西班牙,分别占16.48%,11.54%,10.44%,9.07%和6.87%,合计54.40%。1942—1998年相关研究主要集中在美国、加拿大和比利时等国家(图3a);1999—2008年,世界各国耕作侵蚀研究都有所增加,比利时是该时期研究耕作侵蚀最多的国家(图3b);2009—2018年,只有中国、德国和法国的耕作侵蚀研究数量处于增长状态,其他国家相关研究数量相比于1999—2008年都有所下降,该时期中国成为耕作侵蚀研究最多的国家(图3c)。可见,近20年耕作侵蚀研究在中国得到快速发展。此外,值得指出的是,从国内耕作侵蚀研究区的分布格局来看,中国的耕作侵蚀研究主要开展于西南紫色土区、西北黄土区和东北黑土区,分别占中国研究总量(英文60篇,中文60篇,合计120篇)的64.17%,18.33%和10.83%。

图3

图3   世界耕作侵蚀研究区分布图

Fig. 3   Distribution map of the study area of tillage erosion research in the world


2.2 耕作侵蚀研究的发展历程

耕作引起的土壤运动研究始于北美洲,并在欧洲兴起,后在世界范围内扩展。本文根据耕作侵蚀的研究进程将其划分为4个阶段:萌芽阶段(1992年之前)、缓慢发展阶段(1992—1998年)、快速发展阶段(1999—2006年)和综合研究阶段(2007—2018年)。

2.2.1 萌芽阶段

当前能查阅到最早的耕作侵蚀英文研究文献可以追溯到1942年,Mech等[30]在美国首次进行耕作引起的土壤位移实验,证明了耕作会引起非常明显的土壤运动。耕作侵蚀(Tillage erosion)这个概念最早也是由美国学者Papendick等[21]在1977年提出,并定义为机械工具引起的土壤顺坡运动。该阶段还处于耕作侵蚀研究的探索初期,发现坡面土壤性质、微地形、作物产量的变化和耕作引起的坡面物质的重新分配密切相关[22,31],但鲜有学者指出耕作引起的土壤顺坡运动是一种土壤侵蚀形式[22,32,33,34]。例如,Verity等[34]发现耕作时间越长,上坡侵蚀越严重,却并不认为这是由耕作引起的土壤侵蚀,而是从水蚀和风蚀的角度对现象进行解释。同期,也有学者基于模拟耕作实验建立了土壤水平运动计算模型,同时考虑了不同耕作工具、耕作深度、耕作方向引起的土壤运动[32,33]。该阶段为耕作侵蚀研究的萌芽期,耕作引起的土壤运动及其对土壤性质和地形的影响得到重视,但是缺乏系统性研究,也没有公认这是一种土壤侵蚀形式。相关研究数量较少,且研究方法较为简单,大多为定性描述,定量研究不足。

2.2.2 缓慢发展阶段

进入20世纪90年代,特别是1992年之后,在耕作侵蚀定量研究方面开展了一系列工作,在测定方法、影响机制及模型构建方面积累了大量的经验和数据[1,2,7,18,35,36]。Lindstrom等[2,35]给出了耕作侵蚀的明确定义,并基于点示踪法进行了系统研究,建立了铧犁耕作引起的土壤运动距离与坡度的一元线性函数关系。在许多区域的研究表明,土壤侵蚀的主要贡献者不是水蚀而是耕作侵蚀[12,18]。Govers等[37]使用双过程(水蚀和耕作侵蚀)模型,计算得到耕作侵蚀贡献大于50%,并初步构建了较为通用的耕作侵蚀模型,提出土壤传输系数k[36]

k=-Dρbβ

式中:D为耕作深度(m),ρb为土壤容重(kg/m3),β为土壤位移与坡度之间关系的线性回归方程的斜率。

在这个研究阶段,耕作侵蚀的重要性被研究所证实,尤其是定量研究的开展,为耕作侵蚀概念和理论的提出提供了坚实的科学依据。虽然该时期耕作侵蚀研究数量较少,但从定义到方法、机理和模型研究上都取得了一定进展,为耕作侵蚀研究奠定了基本框架。

2.2.3 快速发展阶段

1999年起,耕作侵蚀研究发文量骤增,进入快速发展阶段,耕作侵蚀国际会议的召开是相关研究快速发展的主要推力。1997—2000年,欧盟开展了大型耕作侵蚀研究项目TERON(Tillage Erosion: Current State, Future Trends and Prevention),组织了7个国家的学者协作攻关,研究范围包括全部欧盟国家。1997年8月在加拿大多伦多(Toronto)举行了第1次耕作侵蚀国际研讨会;1999年4月在比利时鲁汶(Leuven)举行了第2次耕作侵蚀国际会议;2001年8月在英国埃克塞特(Exeter)再次举行了关于耕作侵蚀影响的重要国际会议[38]

该阶段对耕作侵蚀模型和测定方法进行了系统性研究。学者们尝试从过程、空间和时间3个角度论述耕作侵蚀的重要性[39],建立了涵盖坡度、耕作速度、耕作深度、耕作方向的多因素耕作侵蚀模型[40]。耕作侵蚀预测模型(Tillage Erosion Prediction,TEP)和土壤再分配模型(Soil Redistribution by Tillage,SORET)可用于模拟和解释耕作引起的土壤再分配模式和土壤侵蚀—累积速率的空间变异性[41,42],卷积模型(Convolution Model)能较好地解释耕作中土壤运动的分散性、方向性和拓扑性[43]。然而,不同耕作侵蚀模型的精度存在差异。相对于阶跃函数和线性函数,指数函数模型精度最高[44];求和曲线法(Summation-Curve Method)的计算精度高于分布曲线法(Distribution-Curve Method)[45]。在测定方法方面,除了比较成熟的点示踪法和面示踪法,Bazzoffi[46]使用1981年和1998年的航拍影像有效测定了9.5 hm2丘陵地区的耕作侵蚀;Oslon等[47]使用土壤中沉降的煤灰粉尘作为示踪剂,把耕作侵蚀研究拓展到百年时间尺度。由于大部分模型都是基于137Cs技术构建的,而有些区域无法区分137Cs的2个来源(全球沉降和切诺贝利沉降),Schimmack等[48]使用239+240Pu测定耕作侵蚀,弥补了137Cs技术的不足。模型构建和测定方法方面的重大进步,提高了耕作侵蚀研究的准确性,也为大时空尺度的耕作侵蚀定量评估和预测提供了技术支撑。

2.2.4 综合研究阶段

耕作侵蚀和水蚀是坡面土壤侵蚀的重要组成,二者在形式、过程和机理等方面存在明显的异质性[7];同时二者之间又有着密切联系,侵蚀过程的前后顺序会对总侵蚀量产生较大影响。一方面,耕作侵蚀为水蚀输送了易侵蚀的疏松土壤,从而加剧水蚀[15,37];另一方面,耕作侵蚀使坡面单元内坡度减缓,又会减弱水蚀[49]。水蚀引起的坡面土壤重新分布也会影响单次耕作的土壤传输量[17]。总体上,关于耕作侵蚀与水蚀关系的研究,在理论和方法上都不成熟,相关知识还有待补充。耕作侵蚀与水蚀的综合评估一直以来是土壤侵蚀领域的重点和难点,2006年之后基于耕作侵蚀和水蚀综合模型开展了大量工作[50,51]。Van Oost等[52]率先创建了综合评价耕作侵蚀和水蚀的模型WaTEM(Water and Tillage Erosion Model)。相对于单一侵蚀模型,综合土壤侵蚀的模型的估算精度更高[53]

随着全球气候变暖问题关注度的提升,耕作侵蚀对碳氮循环的影响愈加引起关注。侵蚀造成的表层土壤的顺坡分布决定了陆地生态系统中基本元素的可用性、存量和持久性[54]。耕作不仅引起坡梯地内SOC和总氮(Total Nitrogen,TN)的再分布,也对整个景观单元内的SOC和TN分布产生影响[55,56,57,58,59,60,61]。耕作侵蚀和水蚀往往共同作用于SOC[56],地形会影响水流和耕作引起的土壤运动,从而间接影响SOC分布[57]。Zhang等[58]发现耕作侵蚀对景观内SOC顺坡方向的运动具有双重作用,一方面促进SOC储量在沉积区增加,另一方面和水蚀共同作用消耗SOC;也有研究发现耕作在促进作物残体沉积的同时也会通过影响土壤呼吸加速SOC释放[59]。然而,也有不同观点认为,耕作侵蚀对碳循环的影响很小,因为大部分SOC在同一区域靠近其侵蚀源的位置重新沉积[62]

2006年之后,除了对前期研究的延续,该阶段在土壤侵蚀综合模型构建、耕作侵蚀环境效应方面做出显著贡献,尤其是全球气候变暖背景下的碳氮循环研究。同时,该阶段耕作侵蚀研究从基础理论走向环境效应,从单纯的耕作侵蚀过程转向多重侵蚀过程的综合研究,并且耕作侵蚀被当作农业管理中的一个重要部分进行考虑[63,64,65]。虽然耕作侵蚀对SOC分布的作用机制存在争议,但相关学者普遍认为,少耕、免耕等保护性耕作方法及退耕还林还草措施可以有效减弱耕作侵蚀和水蚀,从而有助于提升SOC含量[66]

3 耕作侵蚀影响因子

耕作侵蚀的发生是耕作侵蚀力(Tillage erosivity)和景观可蚀性(Landscape erodibility)共同作用的结果,耕作侵蚀程度也随着二者的增大逐渐增大[13]。耕作侵蚀影响因子整体上可分为人为因子和自然因子两大类(图4)。耕作侵蚀力指由工具特征(如形状、宽度和长度)、耕作操作(如耕作深度、速度和方向)等人为因子决定的转移和侵蚀土壤的能力;景观可蚀性指由地形(如坡度、坡长、坡面曲率)和土壤物理性质(如土壤容重和土壤含水量)等自然因子构成的景观对耕作侵蚀的敏感性[20,67]

图4

图4   影响耕作侵蚀的重要因子

Fig. 4   Influence factors of tillage erosion


3.1 耕作侵蚀力的影响因子

3.1.1 耕作工具

土壤运动主要由耕作工具对土壤的切割作用引起,耕作工具的形状、大小和动力都会影响耕作侵蚀[8,13,18]。研究表明尺寸较小的凿犁相对于铧犁可以有效减少耕作侵蚀,双齿锄、镂空锄和窄锄相对于传统宽锄可以减少土壤耕作传输(表1[68,69],因为耕作工具的形状和尺寸直接影响土壤和耕作工具的接触面积和运动方向,接触面积越大,耕作侵蚀越严重[1,44,69,72]。很多学者发现大型机械耕作引起的耕作侵蚀比非机械化耕作大很多,因为大型机械的耕作深度较大,且引起的土壤运动速度较高[27,47]

表1   使用不同工具耕作产生的耕作侵蚀

Table 1  Tillage erosion caused by different tools

耕作工具动力类型坡度范围/%耕作方向耕作速度/(m/s)耕作深度/m平均耕作位移/m平均土壤传输速率/(kg/m)参考文献
宽锄人力5~46顺坡-0.180.2970.03[69]
窄锄5~44顺坡-0.180.2562.05
镂空锄5~46顺坡-0.180.2562.34
双齿锄5~47顺坡-0.180.2463.13
铧犁畜力7~31顺坡-0.160.3170.54[70]
4~30等高-0.160.2353.06
6~28逆坡-0.150.2452.81
小型旋耕机机械8~31顺坡0.450.100.0811.40[71]
6~30顺坡0.360.100.057.33
7~29等高0.440.100.0811.53
7~29等高0.300.100.056.87
7~31逆坡0.320.100.067.59
6~31逆坡0.280.100.046.29
铧犁机械3~13顺坡1.940.340.3491.54[27]
2~9逆坡1.940.270.2765.85

注:“-”表示无数据

新窗口打开| 下载CSV


3.1.2 耕作操作

耕作引起的土壤位移会随着耕作深度、耕作频率以及机械化耕作速度的增大逐渐增大,控制耕作深度、减小耕作速度和耕作频率可以有效降低耕作侵蚀程度(表1[1,18,70]。顺坡耕作和等高耕作是坡耕地常采用的耕作方向[73]。出于耕作的便宜性和劳动成本考虑,农民普遍采用顺坡方向耕作,这种方式会产生严重的耕作侵蚀[74]。逆坡耕作可以有效防治耕作侵蚀[75],但是耕作难度大,需要消耗大量的劳动力或燃油。相比之下,等高耕作可以较好地协调农业生产投入产出效率和土壤保护之间的矛盾[76]。此外,土壤的运动方向是由耕作方向、工具形状和重力共同决定的,因此耕作方向和土壤运动方向可能存在差异。例如,在不考虑重力因素的情况下,铧犁耕作方向和土壤运动方向不一致[77],而凿犁和锄耕引起土壤运动和耕作方向一致[44,70]。此外,机械化耕作时,耕作方向变化会引起耕作速度和耕作深度的相应变化,从而影响耕作侵蚀强度[4]。所以,在研究耕作侵蚀发生机制和制定耕作侵蚀防治方案时,应该综合考虑各种因子的影响。

耕作田块的形状和面积、地表覆被类型都会影响耕作侵蚀,且由自然和人为因素共同决定。农民会根据坡面的自然条件来选择田块的形状和面积,也会根据当地的自然条件选择适宜的作物类型。田块面积越小、形状越复杂,耕作侵蚀愈加严重[13,78]。坡面植被覆盖会影响土壤入渗,进而影响土壤性质。有研究发现植被覆盖度(尤指多年生农作物)越大,耕作侵蚀越小[79],亦有研究发现二者没有显著关系[80]。这些差异可能与种植作物的类型和所使用的耕作工具、耕作强度有关。

3.1.3 相关政策

土地利用和环境保护相关政策会对土壤侵蚀产生很大影响[5]。退耕还林政策会从区域上直接减少耕作,从而有助于控制耕作侵蚀。Kairis等[81]认为政策可以实现长远有效的选择性干预,是调控耕作侵蚀的重要工具。Lewis[82]认为梯田的引入符合国家生态保护需求,但是梯田(除非水平梯田)可能使耕作侵蚀更加严重,因为地块边界越复杂,耕作引起的地块间土壤传输越严重[12]。而且,不合理的土地梯化会影响机耕和灌溉,从而会阻碍土地集约利用和规模化经营,限制山区农民劳动生产效率的提升[23,78]

3.2 景观可蚀性的影响因子

景观可蚀性是耕作侵蚀预测中的重要参数[13,18]。气候在较大的时空尺度层面影响农业生产方式、土壤状况和植被发育特征,而且不同气候条件下的土壤特性存在很大差异[83],目前这方面的研究较少,但是涉及地形和土壤性质对景观可蚀性影响的研究较多[79,84,85]

3.2.1 地形因子

地形因子中的坡度、坡长和坡面曲率是影响耕作侵蚀强度的重要因素。坡度决定了坡面土壤的稳定性,相同耕作条件下,坡度越大坡面物质越容易发生顺坡移动,耕作侵蚀越严重。大部分学者认为耕作侵蚀和坡度存在正线性关系[79,84,85],更有研究发现耕作位移随坡度的增大呈指数型增长趋势[7,68]。耕作过程中的土壤损失发生在凸坡和田块边界的下边,而土壤沉积发生在凹坡和田块边界的上边[36,86]。坡面曲率决定了坡面的起伏状况,所以景观上耕作侵蚀与坡面曲率成正比[84]。此外,土壤性质和坡面曲率高度相关,也是导致耕作侵蚀随坡面曲率变化的原因之一[87]。耕作侵蚀是坡面景观内的土壤输移,坡长越短,耕作侵蚀越强烈[12]。上坡的土壤侵蚀主要由耕作侵蚀造成,并在坡脚处发生沉积,中坡土壤变化很小。因此,坡长越大,整个坡面尺度上的耕作侵蚀越弱[88]。Zhang等[89]发现耕作侵蚀在短坡上占总侵蚀的83%,而在连续的长坡上仅占41%。可见,耕作侵蚀的大小受到坡体长度的强烈制约。

3.2.2 土壤性质

土壤性质是决定土壤初始条件的重要因素[90],土壤含水量、土壤厚度、土壤机械组成、土壤容重、土壤紧实度和土壤抗剪强度等都会影响土壤可蚀性,因此不同土壤条件下耕作侵蚀差异很大[32,36,86]。有研究发现耕作引起的土壤位移与土壤含水量正相关[1],也有些研究发现二者之间弱相关或者不相关[8,91]。一般认为,疏松的土壤,土壤内聚力小,所以易被搬运[86]。锄耕次数越多,土壤紧实度、容重和抗剪强度越小,土壤可蚀性越强,耕作侵蚀越严重[16,73]。然而,有些研究发现土壤位移距离与土壤容重、紧实度之间无显著关系[1,92],亦有研究发现土壤净位移与土壤抗剪强度、土壤紧实度均呈显著正相关[91],这种差异可能源于耕作机具传输土壤方式的不同。此外,耕作引起的土壤净位移与土壤有机质、总氮、有效磷和土壤表层的砾石覆盖率无显著相关性[91,93]。总的来说,土壤的力学性质是影响耕作侵蚀的重要因子,但是在不同耕作工具、耕作方式下二者的关系可能会存在不同。耕作工具和耕作方式的多样性、土壤性质的区域差异性都增加了相关研究的复杂性。相对于地形研究而言,土壤性质对耕作侵蚀影响的研究不够完善。

4 耕作侵蚀研究方法

坡面尺度和景观尺度上的模拟耕作实验是常用的耕作侵蚀研究方法,其具有成本低、周期短、针对性强、实验条件容易控制等优势[63,70,90,94]。短期模拟实验中用于测定耕作侵蚀的方法有示踪法和非示踪法。示踪法的类型较多,根据示踪剂材料可分为物理示踪法[18,26,35]、化学示踪法[32,33,44]、核素示踪法[18,48,95]和磁性示踪法[69,85];根据示踪形式又可分为点示踪法[2,36]和面示踪法[12,18,74,85,96,97]。非示踪法的类型较少,主要有模型法和梯级法[7,98]。2009年,Zhang等[85]首次把磁性示踪剂应用在耕作侵蚀测定中,该方法的精度和碎石示踪方法[26,74]相当,但具有快速便捷的优势,可以节约80%工作量。近期,激光雷达扫描方法[99]和无人机技术(Unmanned Aerial Vehicles,UAV)[100]也都开始应用到耕作侵蚀研究中,Haas等[101]还发明了一种微扰动测定土壤位移的物理示踪方法。耕作侵蚀测定方法不断优化和多元化,为耕作侵蚀研究提供了良好的技术支撑。但是,不同方法的测算精度存在一定差异[7,79],部分学者开始反思耕作侵蚀测定技术的准确性[102]

根据耕作侵蚀研究的时间尺度可将其分为3种类型:短期(1年)、中期(2~100年)和长期(>100年);而根据空间尺度可将其分为坡面尺度、景观尺度和流域尺度。大部分坡面尺度的模拟耕作实验多为短期研究,一般用来研究一种工具单次耕作或者多种工具系统耕作引起的土壤运动,其中耕作方向、深度、速度,以及坡度、坡长、坡面曲率、土壤性质等常作为影响因子进行控制和研究。模拟耕作实验也可以进行长时间尺度的研究,几天时间内模拟多年甚至几十年的耕作[32,33,94]

20世纪90年代初,以137Cs为代表的核素示踪法开始应用于土壤侵蚀测定[96],该方法可以对土壤侵蚀的空间变化、土壤不同层次的形成年代、土壤迁移的空间分配进行研究。基于该技术,构建了多种水蚀和耕作侵蚀综合模型,如MBM(Mass Balance Model)、SPEROS(Spatially Distributed Soil Erosion Models)和RUSLE2/TELEM模型,可用于评估一定时空尺度上的土壤侵蚀和沉积所导致的地形演化[96,103]。核素示踪为中期时间尺度和大空间尺度的耕作侵蚀评估、多种侵蚀综合评估提供了可能,也便于不同区域研究的横向对比,但是该方法时间尺度有限,无法开展短期或长期的土壤侵蚀评估工作。

21世纪以来,耕作侵蚀效应研究和未来预测成为新的研究热点,学者们尝试在时空尺度上对耕作侵蚀研究进行突破[51,103,104],大量模型的应用和新方法的出现把耕作侵蚀研究的时间尺度提升到千年水平。基于STREAM和WaTEM/SEDEM模型建立的LandSoil模型,可以模拟流域内中期时间尺度的农业景观演化[51]。基于多重指标构建的多进程景观演化模型LEMs(Landscape Evolution Models),可以模拟水蚀和耕作侵蚀综合作用下的1~2 500年的地形演变过程[104];由Peeters等[50]构建的WATEM LT模型,可用于重建小流域(103 hm2)1 000~5 000年前的地形;Baartman等[83]将耕作侵蚀明确纳入千年时间尺度和大流域尺度(250 km2)的景观演变模型(LEM LAPSUS)。但是,不同模型的评估结果差异很大,还有待进一步优化提升。

5 结论与展望

通过梳理1942—2018年的耕作侵蚀研究发展脉络,发现该研究始于美国,兴于欧洲,在全球得到迅速发展。相关研究不仅在机械化农业区得到深入发展,而且在非机械化农业区也开展了大量研究工作。中国的耕作侵蚀研究在近20年发展迅速,在示踪技术和耕作侵蚀效应研究方面都处于国际前列。目前表征耕作侵蚀强度的方法多样,在耕作侵蚀机理、模型构建方面已经取得很大进步,构建了较为完整的技术体系,但还有诸多科学问题有待探索、整合和规范。未来对其研究要更多的关注:

(1) 探讨耕作侵蚀和水蚀过程的交互作用

耕作侵蚀和水蚀的相互作用机制有待深入研究。目前耕作侵蚀已经被公认为土壤侵蚀的重要组成,涵盖耕作侵蚀在内多种土壤侵蚀模型得到广泛应用。然而,耕作侵蚀对水蚀影响的研究刚刚展开[16],虽已意识到耕作侵蚀对水蚀的加速作用,但是仍然缺乏定量化评价方法;水蚀对耕作侵蚀的作用规律尚未查明,相关实验研究尚待深入[17,28]。耕作侵蚀和水蚀的占比问题,虽有众多表述,但由于影响因子众多,不同时空尺度的定量化研究尚待补充。

(2) 发展耕作侵蚀多尺度综合研究

耕作侵蚀研究的时间尺度已由短期、中期拓展到长期时间尺度,但是空间尺度仍主要集中于中小尺度。小尺度研究有助于揭示耕作侵蚀发生机制,中、大尺度研究有助于探明侵蚀的空间分布格局及其影响因素。未来研究应借助现代先进科学技术手段,比如3S技术、无人机航拍、雷达数据、三维扫描技术等,以实现宏观尺度耕作侵蚀的评估和预测。不同时空尺度的耕作侵蚀特征存在差异,多种尺度综合研究是推动耕作侵蚀研究系统发展的重要手段,有助于更好地理解和预测在不同时间和空间范围内的侵蚀特征,对于探索针对性的保护性耕作措施至关重要。

(3) 耕作侵蚀模型的构建和检验

测定方法的不断优化和多元化,为耕作侵蚀研究提供了良好的技术支撑,但不同方法得到的结果存在差异。地形因子中的坡度、坡长和坡面曲率研究相对成熟,而土壤性质、植被因素与耕作侵蚀之间的关系尚未查清,相关模型的构建还有待完善。相对于自然因素,人为因素更加复杂多变,为耕作侵蚀的宏观评估增加了难度,鲜有耕作侵蚀模型综合考虑自然因子和人为因子。由于目前应用的数学模型都不能得到精确的结果,构建多因子综合模型、提高耕作侵蚀测算和预测精度仍然是未来研究的重点。

(4) 编制耕作侵蚀防治标准

耕作侵蚀是坡耕地的主要侵蚀过程,会造成土地退化、农业减产,是低成本和可持续农业的巨大威胁。协调耕作侵蚀防治和农业生产效益之间的矛盾是必须要考虑的问题。纵观耕作侵蚀研究,学者们提出了一系列防治耕作侵蚀的技术方法,其中包括保护性耕作措施[16,76,105]、工程措施[20,65,106]、化学措施[107]、生物措施[20]以及行政管理措施[108],但尚未见具体可执行的耕作侵蚀防治标准。防治耕作侵蚀应结合区域土壤性质、地形、环境等方面的特征和具体的耕作制度,因地制宜,提出具有针对性的控制技术和策略。还应扩展视角,考虑多重侵蚀的共同作用,不能仅局限于减少耕作引起的土壤顺坡运动,以实现土壤侵蚀的综合防治。此外,国内相关学者应加强不同土壤侵蚀区(如东北黑土区、西北黄土区、西南紫色土区和华北土石山区)的耕作侵蚀发生规律及其与其他侵蚀形式的交互作用研究,以为全国土壤侵蚀防治策略的制定提供数据和理论支撑。

参考文献

Sharifat K, Kushwaha R L.

Soil translocation by two tillage tools

[J]. Canadian Agricultural Engineering, 1997, 39(2): 77-84.

[本文引用: 6]

Lindstrom M J, Nelson W W, Schumacher T E.

Quantifying tillage erosion rates due to moldboard plowing

[J]. Soil and Tillage Research, 1992, 24(3): 243-255.

[本文引用: 5]

Zhang Jiaqiong, Yang Mingyi, Liu Zhang, et al.

A review of tillage erosion research

[J]. Science of Soil and Water Conservation, 2016, 14(1): 144-150.

[本文引用: 1]

张加琼, 杨明义, 刘章, .

耕作侵蚀研究述评

[J]. 中国水土保持科学, 2016, 14(1): 144-150.

[本文引用: 1]

Tiessen K H D, Mehuys G R, Lobb D A, et al.

Tillage erosion within potato production systems in Atlantic Canada I. Measurement of tillage translocation by implements used in seedbed preparation

[J]. Soil and Tillage Research, 2007, 95(1/2): 308-319.

[本文引用: 2]

Stoorvogel J J, Antle J M, Crissman C C, et al.

The tradeoff analysis model: Integrated bio-physical and economic modeling of agricultural production systems

[J]. Agricultural Systems, 2004, 80(1): 43-66.

[本文引用: 2]

Zhao Pengzhi, Chen Xiangwei, Wang Enheng.

Quantitative assessment of tillage erosion on typical sloping field in black soil area of northeast China

[J]. Transactions of the Chinese Society of Agricultural Engineering, 2016, 32(12): 151-157.

[本文引用: 2]

赵鹏志, 陈祥伟, 王恩姮.

东北黑土区典型坡面耕作侵蚀定量分析

[J]. 农业工程学报, 2016, 32(12): 151-157.

[本文引用: 2]

Turkelboom F, Poesen J, Ohler I, et al.

Assessment of tillage erosion rates on steep slopes in northern Thailand

[J]. Catena, 1997, 29(1): 29-44.

[本文引用: 7]

Rahman S, Chen Y, Lobb D.

Soil movement resulting from sweep type liquid manure injection tools

[J]. Biosystems Engineering, 2005, 91(3): 379-392.

[本文引用: 3]

Wang Zhanli, Shao Ming'an.

Effects of tillage erosion on soil nutrients in loess sloping land of China

[J]. Transactions of the Chinese Society of Agricultural Engineering, 2002, 18(6): 63-67.

[本文引用: 2]

王占礼, 邵明安.

黄土坡地耕作侵蚀对土壤养分影响的研究

[J]. 农业工程学报, 2002, 18 (6): 63-67.

[本文引用: 2]

Su Zheng’an, Zhang Jianhui.

Research progress in tillage erosion and its impacts on soil fertility and crop production

[J]. Transactions of the Chinese Society of Agricultural Engineering, 2007, 23(1): 272-278.

[本文引用: 1]

苏正安, 张建辉.

耕作侵蚀及其对土壤肥力和作物产量的影响研究进展

[J]. 农业工程学报, 2007, 23(1): 272-278.

[本文引用: 1]

Ma Qianhong, Zhang Keli.

Progresses and prospects of the research on soil erosion in Karst area of Southwest China

[J]. Advances in Earth Science, 2018, 33(11): 1 130-1 141.

[本文引用: 2]

马芊红, 张科利.

西南喀斯特地区土壤侵蚀研究进展与展望

[J]. 地球科学进展, 2018, 33(11): 1 130-1 141.

[本文引用: 2]

Guiresse M, Revel J C.

Erosion due to cultivation of calcareous clay soils on hillsides in south-west France. 2. Effect of ploughing down the steepest slope

[J]. Soil and Tillage Research, 1995, 35(3): 157-166.

[本文引用: 5]

Van Oost K, Govers G, de Alba S, et al.

Tillage erosion: A review of controlling factors and implications for soil quality

[J]. Progress in Physical Geography, 2006, 30(4): 443-466.

[本文引用: 5]

Poesen J.

Soil erosion in the Anthropocene: Research needs

[J]. Earth Surface Processes and Landforms, 2018, 43(1): 64-84.

[本文引用: 2]

Wang Y, Zhang J H, Zhang Z H.

Influences of intensive tillage on water-stable aggregate distribution on a steep hillslope

[J]. Soil and Tillage Research, 2015, 151: 82-92.

[本文引用: 3]

Wang Y, Zhang J H, Zhang Z H, et al.

Impact of tillage erosion on water erosion in a hilly landscape

[J]. Science of the Total Environment, 2016, 551: 522-532.

[本文引用: 5]

Deng J F, Jing Y L, Yin D C.

Soil erosion studies should consider the effect of water erosion on tillage erosion

[J]. Journal of Soil and Water Conservation, 2017, 72(2): 38A-

41A

.

[本文引用: 4]

Lobb D A, Kachanoski R G, Miller M H.

Tillage translocation and tillage erosion of shoulder slope landscape positions measured using 137Cs as a tracer

[J]. Canadian Journal of Soil Science, 1995, 75(2): 211-218.

[本文引用: 9]

Zhang J Q, Yang M Y, Deng X X, et al.

The effects of tillage on sheet erosion on sloping fields in the wind-water erosion crisscross region of the Chinese Loess Plateau

[J]. Soil and Tillage Research, 2019, 187: 235-245.

[本文引用: 2]

Tiessen K H D, Sancho F M, Lobb D A, et al.

Assessment of tillage translocation and erosion by the disk plow on steepland Andisols in Costa Rica

[J]. Journal of Soil and Water Conservation, 2010, 65(5): 316-328.

[本文引用: 4]

Papendick R I, Miller D E.

Conservation tillage in the Pacific Northwest

[J]. Journal of Soil and Water Conservation, 1977, 32: 40-56.

[本文引用: 2]

Kachanoski R G, Rolston D E, de Jong E.

Spatial variability of a cultivated soil as affected by past and present microtopography

[J]. Soil Science Society of America Journal, 1985, 49 (5): 1 082-1 087.

[本文引用: 3]

Li Shengfa, Li Xiubin.

Economic characteristics and the mechanism of farmland marginalization in mountainous areas of China

[J]. Acta Geographica Sinica, 2018, 73(5): 803-817.

[本文引用: 2]

李升发, 李秀彬.

中国山区耕地利用边际化表现及其机理

[J]. 地理学报, 2018, 73 (5): 803-817.

[本文引用: 2]

Long Hualou, Qu Yi, Tu Shuangshuang, et al.

Land use transitions under urbanization and their environmental effects in the farming areas of China: Research progress and prospect

[J]. Advances in Earth Science, 2018, 33(5): 455-463.

[本文引用: 1]

龙花楼, 曲艺, 屠爽爽, .

城镇化背景下中国农区土地利用转型及其环境效应研究:进展与展望

[J]. 地球科学进展, 2018, 33(5): 455-463.

[本文引用: 1]

Zhang Chunlai, Song Changqing, Wang Zhenting, et al.

Review and prospect of the study on soil wind erosion process

[J]. Advances in Earth Science, 2018, 33(1): 27-41.

[本文引用: 1]

张春来, 宋长青, 王振亭, .

土壤风蚀过程研究回顾与展望

[J]. 地球科学进展, 2018, 33(1): 27-41.

[本文引用: 1]

Zhang J H, Lobb D A, Li Y, et al.

Assessment of tillage translocation and tillage erosion by hoeing on the steep land in hilly areas of Sichuan, China

[J]. Soil and Tillage Research, 2004, 75(2): 99-107.

[本文引用: 3]

Zhao P, Li S, Wang E, et al.

Tillage erosion and its effect on spatial variations of soil organic carbon in the black soil region of China

[J]. Soil and Tillage Research, 2018, 178: 72-81.

[本文引用: 3]

Deng J, Ma C.

Will the exisitence of channels generated by water affect the amount of soil movement by tillage?

[J]. Fresenius Environmental Bulletin, 2019, 28(8): 6 027-6 034.

[本文引用: 2]

FAO.

Soil Erosion: The Greatest Challenge for Sustainable Soil Management

[M]. Rome: Food and Agriculture Organization of the United Nations, 2019.

[本文引用: 1]

Mech S J, Free G R.

Movement of soil during tillage operations

[J]. Agricultural Engineering, 1942, 23: 379-382.

[本文引用: 1]

de Jong E, Begg C B M, Kachanoski R G.

Estimates of soil erosion and deposition for some Saskatchewan soils

[J]. Canadian Journal of Soil Science, 1983, 63(3): 607-617.

[本文引用: 1]

Sibbesen E, Andersen C E.

Soil movement in long-term field experiments as a result of cultivations. II. How to estimate the two-dimensional movement of substances accumulating in the soil

[J]. Experimental Agriculture, 1985, 21(2): 109-117.

[本文引用: 5]

Sibbesen E, Andersen C E, Andersen S, et al.

Soil movement in long-term field experiments as a result of cultivations. I. A model for approximating soil movement in one horizontal dimension by repeated tillage

[J]. Experimental Agriculture, 1985, 21(2): 101-107.

[本文引用: 4]

Verity G E, Anderson D W.

Soil erosion effects on soil quality and yield

[J]. Canadian Journal of Soil Science, 1990, 70 (3): 471-484.

[本文引用: 2]

Lindstrom M J, Nelson W W, Schumacher T E, et al.

Soil movement by tillage as affected by slope

[J]. Soil and Tillage Research, 1990, 17 (3/4): 255-264.

[本文引用: 3]

Govers G, Vandaele K, Desmet P, et al.

The role of tillage in soil redistribution on hillslopes

[J]. European Journal of Soil Science, 1994, 45(4): 469-478.

[本文引用: 5]

Govers G, Quine T A, Desmet P J J, et al.

The relative contribution of soil tillage and overland flow erosion to soil redistribution on agricultural land

[J]. Earth Surface Processes and Landforms, 1996, 21(10): 929-946.

[本文引用: 2]

Wang Zhanli.

Progress in the project of tillage erosion

[J]. Bulletin of Soil and Water Conservation, 2001, 21(1): 34-34.

[本文引用: 1]

王占礼.

耕作侵蚀研究项目进展

[J]. 水土保持通报, 2001, 21(1): 34-34.

[本文引用: 1]

Quine T A, Govers G, Poesen J, et al.

Fine-earth translocation by tillage in stony soils in the Guadalentin, south-east Spain: An investigation using caesium-134

[J]. Soil and Tillage Research, 1999, 51(3/4): 279-301.

[本文引用: 1]

Van Muysen W, Govers G, Van Oost K.

Identification of important factors in the process of tillage erosion: The case of mouldboard tillage

[J]. Soil and Tillage Research, 2002, 65(1): 77-93.

[本文引用: 1]

Lindstrom M J, Schumacher J A, Schumacher T E.

TEP: A tillage erosion prediction model to calculate soil translocation rates from tillage

[J]. Journal of Soil and Water Conservation, 2000, 55(1): 105-108.

[本文引用: 1]

De Alba S, Lindstrom M, Schumacher T E, et al.

Soil landscape evolution due to soil redistribution by tillage: A new conceptual model of soil catena evolution in agricultural landscapes

[J]. Catena, 2004, 58(1): 77-100.

[本文引用: 1]

Van Oost K, Govers G, Van Muysen W, et al.

Modeling translocation and dispersion of soil constituents by tillage on sloping land

[J]. Soil Science Society of America Journal, 2000, 64(5): 1 733-1 739.

[本文引用: 1]

Lobb D A, Kachanoski R G, Miller M H.

Tillage translocation and tillage erosion in the complex upland landscapes of southwestern Ontario, Canada

[J]. Soil and Tillage Research, 1999, 51(3/4): 189-209.

[本文引用: 4]

Lobb D A, Quine T A, Govers G, et al.

Comparison of methods used to calculate tillage translocation using plot-tracers

[J]. Journal of Soil and Water Conservation,2001,56(4): 321-328.

[本文引用: 1]

Bazzoffi P.

Integrated photogrammetric-celerimetric analysis to detect soil translocation due to land levelling

[C]// Presented at the 12th International Soil Conservation Organisation Conference. Beijing, China, 2002: 302-307.

[本文引用: 1]

Olson K R, Jones R L, Gennadiyev A N, et al.

Accelerated soil erosion of a Mississippian mound at Cahokia site in Illinois

[J]. Soil Science Society of America Journal, 2002, 66(6): 1 911-1 921.

[本文引用: 2]

Schimmack W, Auerswald K, Bunzl K.

Estimation of soil erosion and deposition rates at an agricultural site in Bavaria, Germany, as derived from fallout radiocesium and plutonium as tracers

[J]. Naturwissenschaften, 2002, 89(1): 43-46.

[本文引用: 2]

Ni S J, Zhang J H.

Variation of chemical properties as affected by soil erosion on hillslopes and terraces

[J]. European Journal of Soil Science, 2007, 58(6): 1 285-1 292.

[本文引用: 1]

Peeters I, Rommens T, Verstraeten G, et al.

Reconstructing ancient topography through erosion modelling

[J]. Geomorphology, 2006, 78(3/4): 250-264.

[本文引用: 2]

David M, Follain S, Ciampalini R, et al.

Simulation of medium-term soil redistributions for different land use and landscape design scenarios within a vineyard landscape in Mediterranean France

[J]. Geomorphology, 2014, 214: 10-21.

[本文引用: 3]

Van Oost K, Govers G, Desmet P.

Evaluating the effects of changes in landscape structure on soil erosion by water and tillage

[J]. Landscape Ecology, 2000, 15(6): 577-589.

[本文引用: 1]

Li S, Lobb D A, Lindstrom M J, et al.

Tillage and water erosion on different landscapes in the northern North American Great Plains evaluated using 137Cs technique and soil erosion models

[J]. Catena, 2007, 70(3): 493-505.

[本文引用: 1]

Berhe A A, Barnes R T, Six J, et al.

Role of soil Erosion in biogeochemical cycling of essential elements: Carbon, nitrogen, and phosphorus

[J]. Annual Review of Earth and Planetary Sciences, 2018, 46: 521-548.

[本文引用: 1]

Zhao Pengzhi, Chen Xiangwei, Wang Enheng.

Responses of accumulation-loss patterns for soil organic carbon and its fractions to tillage and water erosion in black soil area

[J]. Chinese Journal of Applied Ecology, 2017, 28(11): 3 634-3 642.

[本文引用: 1]

赵鹏志, 陈祥伟, 王恩姮.

黑土坡耕地有机碳及其组分累积—损耗格局对耕作侵蚀与水蚀的响应

[J]. 应用生态学报, 2017, 28(11): 3 634-3 642.

[本文引用: 1]

Doetterl S, Berhe A A, Nadeu E, et al.

Erosion, deposition and soil carbon: A review of process-level controls, experimental tools and models to address C cycling in dynamic landscapes

[J]. Earth-Science Reviews, 2016, 154: 102-122.

[本文引用: 2]

Li X, McCarty G W, Karlen D L, et al.

Topographic metric predictions of soil redistribution and organic carbon in Iowa cropland fields

[J]. Catena, 2018, 160: 222-232.

[本文引用: 2]

Zhang J H, Ni S J, Su Z A.

Dual roles of tillage erosion in lateral SOC movement in the landscape

[J]. European Journal of Soil Science, 2012, 63(2): 165-176.

[本文引用: 2]

Gollany H T, Polumsky R W.

Simulating soil organic carbon responses to cropping intensity, tillage, and climate change in Pacific northwest dryland

[J]. Journal of Environmental Quality, 2018, 47 (4): 625-634.

[本文引用: 2]

Ju Li, Li Fucheng.

Effects of rotary tillage on vertical distribution patterns of SOC and total nitrogen in purple soil

[J]. Research of Soil and Water Conservation, 2019, 26(6): 7-13.

[本文引用: 1]

巨莉, 李富程.

旋耕机耕作对紫色土碳氮垂直分布过程的影响

[J]. 水土保持研究, 2019, 26 (5): 7-13.

[本文引用: 1]

Nie X J, Zhang H B, Su Y Y.

Soil carbon and nitrogen fraction dynamics affected by tillage erosion

[J]. Scientific Reports, 2019, 9(1): 16 601.

[本文引用: 1]

Vandenbygaart A J, Kroetsch D, Gregorich E G, et al.

Soil C erosion and burial in cropland

[J]. Global Change Biology, 2012, 18(4): 1 441-1 452.

[本文引用: 1]

Su Z A, Zhang J H, Xiong D H, et al.

Assessment of soil erosion by compensatory hoeing tillage in a purple soil

[J]. Journal of Mountain Science, 2012, 9 (1): 59-66.

[本文引用: 2]

Zhang J H, Wang Y, Zhang Z H.

Effect of terrace forms on water and tillage erosion on a hilly landscape in the Yangtze River Basin, China

[J]. Geomorphology, 2014, 216: 114-124.

[本文引用: 1]

Subhatu A, Speranza C I, Zeleke G, et al.

Interrelationships between terrace development, topography, soil erosion, and soil dislocation by tillage in Minchet Catchment, Ethiopian Highlands

[J]. Land Degradation & Development, 2018, 29(10): 3 584-3 594.

[本文引用: 2]

Zhang J H, Li F C, Wang Y, et al.

Soil organic carbon stock and distribution in cultivated land converted to grassland in a subtropical region of China

[J]. Environmental Management, 2014, 53(2): 274-283.

[本文引用: 1]

Lobb D A, Kachanoski R G.

Modelling tillage erosion in the topographically complex landscapes of southwestern Ontario, Canada

[J]. Soil and Tillage Research,1999,51(3/4): 261-277.

[本文引用: 1]

Jia L Z, Zhang J H, Zhang Z H, et al.

Assessment of gravelly soil redistribution caused by a two-tooth harrow in mountainous landscapes of the Yunnan-Guizhou Plateau, China

[J]. Soil and Tillage Research, 2017, 168: 11-19.

[本文引用: 2]

Li F C, Jiang R T, Ju L.

Influences of tillage operations on soil translocation over sloping land by hoeing tillage

[J]. Archives of Agronomy and Soil Science, 2018, 64(3): 430-440.

[本文引用: 4]

Li Fucheng, Hua Xiaoye, Zhao Li, et al.

Effect of tillage direction on tillage erosion by Ox-draw ploughing on slope land in purple soil regions

[J]. Journal of Soil and Water Conservation, 2015, 29(6): 35-40.

[本文引用: 4]

李富程, 花小叶, 赵丽, .

紫色土坡地犁耕方向对耕作侵蚀的影响

[J]. 水土保持学报, 2015, 29(6): 35-40.

[本文引用: 4]

Li Fucheng, Hua Xiaoye, Wang Bin.

Rate and pattern of tillage erosion by rotary cultivator on the steep land of purple soil

[J]. Science of Soil and Water Conservation, 2016, 14(1): 71-78.

[本文引用: 1]

李富程, 花小叶, 王彬.

紫色土坡地旋耕机耕作侵蚀特征

[J]. 中国水土保持科学, 2016, 14 (1): 71-78.

[本文引用: 1]

Zhang J H, Jia L Z, Zhang Z H, et al.

Effect of the soil-implement contact area on soil translocation under hoeing tillage

[J]. Soil and Tillage Research, 2018, 183: 42-50.

[本文引用: 1]

Heckrath G, Halekoh U, Djurhuus J, et al.

The effect of tillage direction on soil redistribution by mouldboard ploughing on complex slopes

[J]. Soil and Tillage Research, 2006, 88 (1/2): 225-241.

[本文引用: 2]

Zhang J H, Frielinghaus M, Tian G, et al.

Ridge and contour tillage effects on soil erosion from steep hillslopes in the Sichuan Basin, China

[J]. Journal of Soil and Water Conservation, 2004, 59(6): 277-284.

[本文引用: 3]

Zhang J H, Li F C.

Soil redistribution and organic carbon accumulation under long-term (29 years) upslope tillage systems

[J]. Soil Use and Management, 2013, 29(3): 365-373.

[本文引用: 1]

Xu H C, Jia L Z, Zhang J H, et al.

Combined effects of tillage direction and slope gradient on soil translocation by hoeing

[J]. Catena, 2019, 175: 421-429.

[本文引用: 2]

De Alba S.

Modeling the effects of complex topography and patterns of tillage on soil translocation by tillage with mouldboard plough

[J]. Journal of Soil and Water Conservation, 2001, 56(4): 335-345.

[本文引用: 1]

Zadorova T, Penizek V, Zizala D, et al.

Influence of former lynchets on soil cover structure and soil organic carbon storage in agricultural land, Central Czechia

[J]. Soil Use and Management, 2018, 34(1): 60-71.

[本文引用: 2]

Dupin B, de Rouw A, Phantahvong K B, et al.

Assessment of tillage erosion rates on steep slopes in northern Laos

[J]. Soil and Tillage Research, 2009, 103(1): 119-126.

[本文引用: 4]

Wildemeersch J C J, Vermang J, Cornelis W M, et al.

Tillage erosion and controlling factors in traditional farming systems in Pinar del Río, Cuba

[J]. Catena, 2014, 121: 344-353.

[本文引用: 1]

Kairis O, Kosmas C, Karavitis C, et al.

Evaluation and selection of indicators for land degradation and desertification monitoring: Types of degradation, causes, and implications for management

[J]. Environmental Management, 2014, 54(5): 971-982.

[本文引用: 1]

Lewis L A.

Terracing and accelerated soil loss on rwandian steeplands: A preliminary investigation of the implications of human activities affecting soil movement

[J]. Land Degradation & Development, 1992, 3(4): 241-246.

[本文引用: 1]

Baartman J E M, Temme A J A M, Schoorl J M, et al.

Did tillage erosion play a role in millennial scale landscape development?

[J]. Earth Surface Processes and Landforms, 2012, 37(15): 1 615-1 626.

[本文引用: 2]

Li S, Lobb D A, Lindstrom M J.

Tillage translocation and tillage erosion in cereal-based production in Manitoba, Canada

[J]. Soil and Tillage Research, 2007, 94(1): 164-182.

[本文引用: 3]

Zhang J H, Su Z A, Nie X J.

An investigation of soil translocation and erosion by conservation hoeing tillage on steep lands using a magnetic tracer

[J]. Soil and Tillage Research, 2009, 105(2): 177-183.

[本文引用: 5]

Van Muysen W, Govers G, Bergkamp G, et al.

Measurement and modelling of the effects of initial soil conditions and slope gradient on soil translocation by tillage

[J]. Soil and Tillage Research, 1999, 51(3/4): 303-316.

[本文引用: 3]

Quine T A, Zhang Y S.

An investigation of spatial variation in soil erosion, soil properties, and crop production within an agricultural field in Devon, United Kingdom

[J]. Journal of Soil and Water Conservation, 2002, 57(1): 55-65.

[本文引用: 1]

Junge B, Mabit L, Dercon G, et al.

First use of the 137Cs technique in Nigeria for estimating medium-term soil redistribution rates on cultivated farmland

[J]. Soil and Tillage Research, 2010, 110(2): 211-220.

[本文引用: 1]

Zhang J H, Quine T A, Ni S J, et al.

Stocks and dynamics of SOC in relation to soil redistribution by water and tillage erosion

[J]. Global Change Biology, 2006, 12(10): 1 834-1 841.

[本文引用: 1]

Dercon G, Govers G, Poesen J, et al.

Animal-powered tillage erosion assessment in the southern Andes region of Ecuador

[J]. Geomorphology, 2007, 87(1): 4-15.

[本文引用: 2]

Li Fucheng, Hua Xiaoye, Jiang Rentao, et al.

Effects of soil properties on tillage erosion on hillslopes of purple soil

[J]. Bulletin of Soil and Water Conservation, 2016, 36(4): 152-157.

[本文引用: 3]

李富程, 花小叶, 江仁涛, .

紫色土坡地土壤性质对耕作侵蚀的影响

[J]. 水土保持通报, 2016, 36(4): 152-157.

[本文引用: 3]

Montgomery J A, McCool D K, Busacca A J, et al.

Quantifying tillage translocation and deposition rates due to moldboard plowing in the Palouse region of the Pacific Northwest, USA

[J]. Soil and Tillage Research, 1999, 51 (3/4): 175-187.

[本文引用: 1]

Nyssen J, Haile M, Poesen J, et al.

Removal of rock fragments and its effect on soil loss and crop yield, Tigray, Ethiopia

[J]. Soil Use and Management, 2001, 17(3): 179-187.

[本文引用: 1]

Li Y, Tian G, Lindstrom M J, et al.

Variation of surface soil quality parameters by intensive donkey-drawn tillage on steep slope

[J]. Soil Science Society of America Journal, 2004, 68(3): 907-913.

[本文引用: 2]

Wang Y, Zhang J H, Li F C.

Using Cesium-137 to investigate soil quality under conservation tillage on steep lands

[J]. Journal of Soil and Water Conservation, 2014, 69(5): 439-448.

[本文引用: 1]

Quine T A, Walling D E, Zhang X. The role of tillage in soil redistribution within terraced fields on the loess plateau,

China: An investigation using Caesium-137

[C]// Presented at the Proceeing of the Warsaw Symposium. Warsaw, Poland, 1993: 149-155.

[本文引用: 3]

Su Zheng’an, Li Yan, Xiong Donghong, et al.

Effect of soil erosion in slope cultivated land of Longmenshan earthquake zone on lateral movement of soil organism carbon

[J]. Transactions of the Chinese Society of Agricultural Engineering, 2016, 32(3): 118-124.

[本文引用: 1]

苏正安, 李艳, 熊东红, .

龙门山地震带坡耕地土壤侵蚀对有机碳迁移的影响

[J]. 农业工程学报, 2016, 32(3): 118-124.

[本文引用: 1]

Su Zheng'an, Zhang Jianhui.

Impacts of soil redistribution by tillage on soil water infiltration

[J]. Journal of Soil and Water Conservation, 2010, 24(3):194-198.

[本文引用: 1]

苏正安, 张建辉.

耕作导致的土壤再分布对土壤水分入渗的影响

[J]. 水土保持学报, 2010, 24(3): 194-198.

[本文引用: 1]

Meijer A D, Heitman J L, White J G, et al.

Measuring erosion in long-term tillage plots using ground-based lidar

[J]. Soil and Tillage Research, 2013, 126: 1-10.

[本文引用: 1]

Pineux N, Lisein J, Swerts G, et al.

Can DEM time series produced by UAV be used to quantify diffuse erosion in an agricultural watershed?

[J]. Geomorphology, 2017, 280: 122-136.

[本文引用: 1]

Haas J, Fenner P T, Schack-Kirchner H, et al.

Quantifying soil movement by forest vehicles with corpuscular metal tracers

[J]. Soil and Tillage Research, 2018, 181: 19-28.

[本文引用: 1]

Fiener P, Wilken F, Aldana-Jague E, et al.

Uncertainties in assessing tillage erosion—How appropriate are our measuring techniques?

[J]. Geomorphology, 2018, 304: 214-225.

[本文引用: 1]

Van Oost K, Van Muysen W, Govers G, et al.

From water to tillage erosion dominated landform evolution

[J]. Geomorphology, 2005, 72(1/4): 193-203.

[本文引用: 2]

Temme A, Claessens L, Veldkamp A, et al.

Evaluating choices in multi-process landscape evolution models

[J]. Geomorphology, 2011, 125(2): 271-281.

[本文引用: 2]

Bogunovic I, Pereira P, Kisic I, et al.

Tillage management impacts on soil compaction, erosion and crop yield in Stagnosols (Croatia)

[J]. Catena, 2018, 160: 376-384.

[本文引用: 1]

Nie Xiaojun, Xu Xiaotao.

Research progress in tillage erosion effects on agricultural sloping landscape

[J]. Research of Soil and Water Conservation, 2010, 17(5):254-260.

[本文引用: 1]

聂小军, 徐小涛.

耕作侵蚀对农田坡地景观影响的研究进展

[J]. 水土保持研究, 2010, 17(5): 254-260.

[本文引用: 1]

Wang Yong, Li Fucheng, Wang Xuan, et al.

Impacts of Polyacrylamide (PAM) on tillage translocation and soil structural stability on purple soil slope

[J]. Journal of Soil and Water Conservation, 2017, 31(4): 51-56.

[本文引用: 1]

王勇, 李富程, 汪璇, .

聚丙烯酰胺对紫色土坡地耕作位移及土壤结构的影响

[J]. 水土保持学报, 2017, 31(4): 51-56.

[本文引用: 1]

Rymshaw E, Walter M F, Van Wambeke A.

Processes of soil movement on steep cultivated hill slopes in the Venezuelan Andes

[J]. Soil and Tillage Research, 1997, 44(3/4): 265-272.

[本文引用: 1]

/