地球科学进展, 2019, 34(12): 1243-1251 DOI: 10.11867/j.issn.1001-8166.2019.12.1243

深水珊瑚研究进展

冷水珊瑚测年与大洋中—深层水碳储库

黄恩清,, 孔乐, 田军

同济大学海洋地质国家重点实验室,上海 200092

Dating Methods of Cold-water Corals and Their Application in Reconstructing Carbon-reservoir Ages of Intermediate and Deep Oceans

Huang Enqing,, Kong Le, Tian Jun

State Key Laboratory of Marine Geology, Tongji University, Shanghai 200092,China

收稿日期: 2019-11-19   修回日期: 2019-12-01   网络出版日期: 2020-01-17

基金资助: 同济大学海洋地质国家重点实验室自主项目.  MG20190101

Received: 2019-11-19   Revised: 2019-12-01   Online: 2020-01-17

作者简介 About authors

黄恩清(1984-),男,福建福清人,副教授,主要从事古海洋和古气候学研究.E-mail:ehuang@tongji.edu.cn

HuangEnqing(1984-),male,FuqingCity,FujianProvince,Associateprofessor.Researchareasincludepaleoceanographyandpaleoclimatology.E-mail:ehuang@tongji.edu.cn

摘要

冷水珊瑚古环境应用研究的首要问题是建立精确的年龄模式。目前常用的珊瑚定年技术包括U/Th,AMS 14C和210Pb测年,其中前两种方法尤为重要。不同冷水珊瑚属种适用不同的定年方法。高镁方解石质的竹节柳珊瑚可用AMS 14C和210Pb测试方法定年。竹节柳珊瑚具有清晰的生长纹层,厘定其年龄模式后,可以成为中—深层大洋环境演变的高分辨率记录载体。文石质石珊瑚同时适用于U/Th和AMS 14C测年方法,在古海洋研究中有特殊价值。由于u/Th测年可以提供样品的绝对年龄,因此进一步计算可获得中—深层大洋的碳储库年龄,这为探究轨道和千年时间尺度上大洋—大气碳交换这一重大学术问题提供了可靠资料。冷水珊瑚测年数据发现末次冰消期时,赤道大西洋和南大洋中层水的碳储库年龄在Heinrich Stadial 1事件结束前后突然大幅度减小,很可能表示深部大洋一部分无机碳转移进入了大气圈,或者代表Heinrich Stadial 1事件前后大西洋中层水分别主要受南半球和北半球潜沉水团的影响。

关键词: 冷水珊瑚 ; U/Th测年 ; 放射性碳测年 ; 南海 ; 末次冰消期 ; 碳循环

Abstract

Establishing a precise chorology is a critical issue when employing cold-water coral as paleoenvironmental archives. Currently, U-Th, 14C and 210Pb dating techniques are the most frequently used methods. The high-magnesium calcite skeleton of bamboo coral has clear growth bands, which is appropriate for 14C and 210Pb dating methods and holds a great potential to be high-resolution archives of mid-to-deep ocean evolution. Aragonitic stony coral is appropriate for both U-Th and 14C dating methods, which is valuable in paleoceanographic research. Because the U-Th method can provide the absolute chronology of coral samples, it can further be used to calculate the 14C age of ocean carbon reservoirs. Therefore, U-Th and 14C dating results of stony coral are currently the most reliable data for exploring the evolution of ocean carbon reservoirs through the Last Glacial Maximum to the present. It has been found that the 14C ventilation ages of intermediate water masses of the equatorial Atlantic and Southern Ocean significantly decreased at the end of the Heinrich Stadial 1. This suggests a massive carbon transfer from deep oceans to the atmosphere, or the Atlantic intermediate depths were ventilated by the southern- and the northern-sourced water masses, respectively, before and after the Heinrich Stadial 1.

Keywords: Cold-water corals ; U-Th Dating ; Radiocarbon Dating ; South China Sea ; Last Deglaciation ; Carbon Cycle.

PDF (4678KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

黄恩清, 孔乐, 田军. 冷水珊瑚测年与大洋中—深层水碳储库. 地球科学进展[J], 2019, 34(12): 1243-1251 DOI:10.11867/j.issn.1001-8166.2019.12.1243

Huang Enqing, Kong Le, Tian Jun. Dating Methods of Cold-water Corals and Their Application in Reconstructing Carbon-reservoir Ages of Intermediate and Deep Oceans. Advances in Earth Science[J], 2019, 34(12): 1243-1251 DOI:10.11867/j.issn.1001-8166.2019.12.1243

Dating methods of cold-water corals and their application in reconstructing carbon-reservoir ages of intermediate and deep oceans[J].Advances in Earth Science,2019,34(12):1243-1251.DOI:10.11867/j.issn.1001-8166.2019.12.1243

1 引 言

近20年以来,冷水珊瑚成为获取中—深层大洋古环境信息的新载体。目前应用于古环境重建的冷水珊瑚属种主要分为两类,一类是文石质的石珊瑚(图1,例如Enallopsammia sp.Lophelia sp.Desmophyllum),其生长寿命可达数百年。石珊瑚的碳酸盐骨骼在深部海水压力和化学条件下可以保存超过10万年(图1)[1,2]。另一类是有机质含量较高,具备清晰生长纹层的柳珊瑚,例如黑珊瑚(Leiopathes sp.)和金柳珊瑚(Gerardia sp.),其生长寿命更长,可以找到数千年的活体样品。柳珊瑚遗体不耐保存,几乎没有发现化石样品(图1)。

图1

图1   冷水珊瑚不同属种的寿命(蓝色)以及不同定年技术的测年范围(褐色)[1]

Fig.1   Lifespan of several types of cold-water coral (blue), and the relative age span of different dating techniques used in chronology studies (dark brown)[1]


竹节柳珊瑚(bamboo coral)也是柳珊瑚的重要一种,它由高镁方解石质的骨骼和珊瑚角蛋白质结节交替联结而成,可以呈单枝的鞭状或者分叉的扇状,其生长寿命数十到数百年,可采集到距今数百年甚至数千年的骨骼样品(图1)。一般而言,石珊瑚适用U/Th和AMS 14C测年方法,柳珊瑚适用AMS 14C和210Pb测年方法。U/Th、AMS 14C以及210Pb的测年范围分别为0~60万年、0~5万年和0~100年(图1)[3,4,5,6,7,8]

本文介绍定年技术在不同冷水珊瑚属种上的应用;阐述了利用文石质石珊瑚的U/Th和AMS 14C测年数据反演中—深层大洋碳储库年龄演化的进展,进而探讨轨道—千年时间尺度上全球碳循环等重大学术问题。

2 冷水珊瑚定年技术

2.1 U/Th测年

不同冷水珊瑚属种的238U含量不同。文石质石珊瑚中238U含量为3×10-6~6×10-6。竹节柳珊瑚238U浓度通常在ppb级别(10-9)[2,3,4],远低于浅水珊瑚和文石质冷水珊瑚,因此U/Th测年方法不适用于竹节柳珊瑚样品。对2018年“深海勇士”号载人深潜器在南海西沙获取的珊瑚样品进行初步定年测试,证实竹节柳珊瑚的238U含量比石珊瑚的238U含量低2个数量级,与全球别的地区呈现一致的规律(图2,表1)。

图2

图2   南海西沙海区冷水珊瑚照片

(a),(b)为竹节柳珊瑚骨骼样品;(c),(d)为石珊瑚骨骼样品;其中竹节柳珊瑚样品包含碳酸盐骨骼(白色)和蛋白质结节(黑色)两个部分

Fig.2   Photos of cold-water coral from Xisha, South China Sea

(a)~(d) are bamboo and stony coral, respectively. Fossil of bamboo coral comprises of two components, the carbonate internodes(white) and the gorgonin nodes(black)


Table 1   U/Th14C dating results of cold-water corals from Xisha, South China Sea

珊瑚编号品种经度/°E纬度/°N水深/m取样位置238U/(×10-9,±2σ)230Th年龄/(a BP,±2σ)AMS 14C年龄/(a BP,±1σ)
SY067-9-3竹节柳珊瑚110.710716.57241 338径向生长轴外缘58.8±0.118 876±3 470-
径向生长轴中心25.6±0.11 010±237-
SY068-7-2竹节柳珊瑚111.054016.7546693.9径向生长轴外缘68.3±0.23 081±275-
径向生长轴中心64.5±0.12 359±201-
径向生长轴中心47.8±0.19 387±3 148-
SY075-16-2石珊瑚110.629815.3121577径向生长轴外缘3 602.5±62.7762±1421 885±20
径向生长轴中心3 799.7±8.5718±441 995±20
SY076-9石珊瑚110.713216.57261 294径向生长轴外缘3 830.7±5.56 154±945 025±35
径向生长轴中心5 098.1±9.38 823±2875 695±35

注:竹节柳珊瑚的238U含量比石珊瑚低2个数量级;衰变常数λ230=1.55125×10-10,λ234=2.82206×10-6,λ238=9.1705×10-6,δ234U= ([234U/238U]activity-1)×1000;校正的230Th年龄假定了初始230Th/232Th原子比为地壳平均值(4.4±2.2)×10-6230Th年龄误差为±2σ; AMS 14C年龄未经碳储库校正,误差为±1σ;其中竹节柳珊瑚AMS 14C年龄尚在测试中;“-”表示无数据

新窗口打开| 下载CSV


测试U/Th之前需要对冷水珊瑚样品进行预处理。通常先刮去表皮,去除有机质、碎屑颗粒、铁锰质外壳及生物造成的污染等[1,3]。样品经溶解、共沉淀和分离提纯等化学处理后,运用Neptune多接收器电感耦合等离子质谱仪(MC-ICP-MS)进行U/Th年代测试。不同于浅水珊瑚,冷水珊瑚U/Th测年结果需要校正。一般来说,海洋表层溶解的230Th/232Th含量非常低,为5×10-6~10×10-6[9,10],所以初始230Th含量对浅水珊瑚定年结果影响很小,但深水溶解的230Th/232Th明显比表层高[11,12],并且全球大洋存在不均一性。太平洋地区含量尤其高,最高值甚至超过700×10-6[13]。目前质谱仪的极限测量误差小于1‰,初始230Th校正就成了测量误差的主要来源。因此若要获得准确的测年结果,需要校正周围海水的230Th/232Th值[3]。另外,过去36万年来海水中的234U/238U变化值小于1.5%[14],因此常用该比值来评价冷水珊瑚的成岩效应。然而冷水珊瑚个体内234U/238U分布并不均匀,同位素衰变过程也会造成234U原子重组,单个珊瑚234U/238U变化可达2%[15]。这些因素都使得冷水珊瑚U/Th测年精度离极限误差较大。

2.2 AMS14C测年

AMS 14C测年适用于绝大多数种类的碳酸盐样品,其精度主要取决于碳储库年龄的校正。对于直接与大气进行碳交换的样品,目前已经有较准确的校正曲线,例如IntCal13[16,17],可以将14C年龄转换成日历年龄。但表层和深部大洋碳储库年龄变化还是个未解之谜。如果在同地区和同水深发现石珊瑚和软珊瑚样品,可以通过石珊瑚U/Th和AMS 14C年龄获得中—深层水碳储库的年龄,继而应用到软珊瑚AMS 14C年龄的校正中。

对于近现代软珊瑚样品,可以通过识别核爆信号建立年龄模式。20世纪60年代,人类核试验造成大气Δ14C浓度上升约200‰,核爆Δ14C信号在大西洋以及太平洋中—上层海水样品中已经被广泛发现,甚至在马里亚纳海沟[18]样品中也记录了核爆信号。由于核爆信号混合进入大洋内部需要时间,并且会被储量庞大的海洋碳储库稀释,因此海洋表层记录的核爆Δ14C信号振幅远大于大洋内部。

沿着珊瑚生长方向进行密集样品采集和AMS 14C定年,就可以识别核爆信号,继而建立时间标尺(图3)。对于竹节柳珊瑚样品,由于碳酸盐骨骼建造材料主要来自中—深层海水,珊瑚角蛋白结节建造材料主要来自表层大洋掉落的颗粒有机碳[24],因此其碳酸盐骨骼和角蛋白结节存在AMS 14C年龄差值。相应的,核爆信号在碳酸盐骨骼中比在角蛋白结节中微弱许多,出现时间也要滞后20多年(图3)。

图3

图3   冷水珊瑚记录的核爆信号[19,20,21,22,23]

其中同一个竹节柳珊瑚样品的碳酸盐骨骼和蛋白质结节AMS 14C年龄出现较明显的偏差

Fig.3   Recognize the 14C bomb signal in cold-water coral samples[19,20,21,22,23]

Note the apparent offset between 14C ages of carbonate skeleton and gorgonin nodes belonging to a same bamboo coral sample


虽然软珊瑚具有清晰的生长纹层,但是这种纹层并非年或者季节纹层,并且当中可能存在生长间断,因此不能单独利用纹层计数方法建立年龄模式。但是通过结合AMS 14C和纹层计数手段,可以比较准确地估算软珊瑚的生长速率。例如发现竹节柳珊瑚的生长速率从每年几微米至每年几百微米不等[25],平均为12~160 μm/a [26]

2.3 210Pb测年

由于只适用于近现代100多年来的样品,210Pb定年技术在冷水珊瑚中的应用并不广泛。珊瑚生长过程中,会从海水中吸收210Pb和226Ra并进入碳酸盐骨骼。直接从海水中吸附的210Pb即为过剩210Pb,其半衰期为22.3 a[2]226Ra衰变也会产生210Pb,但由于其半衰期长达1 622 a,在百年时间尺度上可以认为这部分210Pb保持不变。因此冷水珊瑚骨骼中的210Pb活度主要由过剩210Pb决定。

分析时通常沿着珊瑚径向生长轴方向用微钻取一系列样品,之后对测出的210Pb活度进行指数拟合,因此该方法最适合计算整枝珊瑚的平均生长速率[6,7,19]。该方法的准确性依赖于3个假设前提:珊瑚骨骼为封闭系统,即不与海水发生210Pb交换;珊瑚生长速率相对稳定;海水中过剩210Pb活度在整个珊瑚生长周期保持恒定。

3 冷水珊瑚与中—深层水碳储库年龄重建

3.1 大气CO2冰期旋回与大洋储碳—释碳过程假说

晚第四纪大气CO2浓度在冰期旋回尺度上存在约90×10-6幅度的波动[27]。由于中—深层海洋的溶解无机碳储库是大气的60余倍,海洋碳储库的微小变化都会剧烈影响大气温室气体水平,因此揭示大气CO2冰期旋回机理需要了解大洋碳储库的演变历史。一般认为,冰期时深部大洋通风速率减弱,与大气平均交换速率下降,大洋内部沉淀了大量呼吸作用形成的老碳,深部水团的δ13C和∆14C值负偏[28],推测冰期大洋老碳库可能存在于太平洋、大西洋和南大洋的深部。

1 南海西沙海区冷水珊瑚的U/ThAMS 14C测年结果

末次冰消期时,大气CO2浓度呈现两阶段的上升:Heinrich Stadial 1时期(HS1,17.5~14.5 ka BP)上升了约50×10-6,新仙女木时期(12.7~11.6 ka BP)上升了约25×10-6(图4)[29,30]。虽然可能有多种因素导致冰消期时CO2浓度上升[28,31,32],但普遍认为HS1时期CO2主要来自大洋内部的转移[33,34,35]。由于南大洋层结结构的破坏以及上升流作用加强[36,37,38],冰期时大洋老碳库可能通过释气作用向大气排放CO2[39,40],并通过亚南极模态水和南极中层水向中低纬温跃层输出了δ13C和Δ14C值负偏的水团[41]

图4

图4   0~25 ka BP期间大气CO2浓度及大气Δ14C水平以及变化

(a)大气CO2浓度 [29,30],在冰消期的Heinrich Stadial 1和新仙女木时期出现CO2浓度的上升;(b)重建的大气Δ14C[17]和模拟的大气Δ14C[32]波动历史比较;其中模拟大气Δ14C水平来自模型BICYCLE的输出结果,假定海洋—大气碳交换速率不变,利用宇宙射线速率波动进行估算;可以看出,重建和模拟结果并不吻合,说明海洋—大气碳交换速率出现过巨大波动

Fig.4   Atmospheric CO2 and Δ14C changes between 25 and 0 ka BP

(a) Reconstructed atmospheric CO2 concentrations[29,30], which rose in two stages over the last deglaciation: A first 50×10-6 rise during Heinrich Stadial 1 and a later 25×10-6 rise during the Younger Dryas(YD) interval; (b) A comparison of reconstructed and simulated atmospheric Δ14C changes[17,32]. The model output is from the BICYCLE model, which was forced by changing production rates of cosmic rays and a constant carbon exchange rate between the atmosphere and the ocean. The offset between the reconstruction and the simulation suggests a significant change in the carbon exchange rate between the atmosphere and the ocean in the past


冰消期大洋释碳观点得到大气Δ14C重建记录的支持。HS1时期大气Δ14C水平下降了约190‰(图4)[42,43,44],由于14C生产速率变化只能解释约40‰的下降,另外约150‰的下降很可能就来自大洋老碳库的稀释作用(图4)[42]。大洋深部的碳转移很可能还影响到了中层水团的Δ14C值。例如发现在东北太平洋[45]、阿拉伯海北部[46]以及亚极地北大西洋地区[47],HS1时期中层水Δ14C值比大气小300‰~500‰。在赤道东太平洋,这种Δ14C差值甚至可以达到800‰~900‰[48]。当然,目前也有一系列的证据反对大洋内部释碳假说。在更靠近深部老碳水释放源区的南大西洋和南太平洋,中层水Δ14C值在HS1时期并没有出现明显的负偏[49,50,51,52,53]。这可能说明深部大洋碳转移路径存在别的方式,不一定要通过亚南极模态水和南极中层水向北输出来完成。

总之,CO2冰期旋回机制是尚未解决的学术问题,定量地揭示这一问题可提升人类对全球碳循环的认识水平。解开大气CO2浓度变化机理的关键在于海洋碳储库变化,是否存在冰期深海老碳库以及冰消期大洋老碳的转移和释放?冷水珊瑚是解答这些问题可靠的地质材料。

3.2 利用冷水珊瑚重建大洋中—深层水碳储库年龄演变

目前重建中—深层大洋碳储库年龄演变主要依靠2个方法:一是对海洋沉积物中浮游和底栖有孔虫分别进行14C定年。假设表层大洋与大气的14C年龄差值恒定不变,就可以进一步计算出深部大洋的碳储库年龄。这种方法的优点是样品容易获得,目前已获得较多数据并发表成果,然而缺陷十分明显。首先,沉积物中浮游有孔虫可以有侧向运移和垂向沉降两个来源,而底栖有孔虫主要是原地来源,此外生物扰动等也会破坏样品的来源属性,因此研究材料本身会引入误差。其次,表层浮游有孔虫大多数属种不抗溶解,在沉降和埋葬过程中,浮游有孔虫会失去部分壳体。在低沉积速率站位,这种状况尤其严重,而底栖有孔虫基本不存在溶解问题。这种差异性溶解会导致同一层位浮游和底栖有孔虫14C年龄出现偏差,最终会影响对深部大洋碳储库年龄的计算[54]。此外,大洋碳储库年龄计算是假设表层大洋与大气的14C年龄差值恒定的基础上。众多研究表明,大气CO2浓度、洋流等都会改变表层海洋碳储库年龄[55,56],在同一站位,末次盛冰期以来其表层海洋碳储库年龄变化范围可达数百到数千年[55]。因此如果不能准确估算表层海洋碳储库年龄,计算深层碳储库年龄将有巨大误差,甚至误差远超过真实信号。

利用南大洋有孔虫样品进行深层海水碳库重建时就遇到过上述问题。在南大西洋洋中脊的东西两侧各有1个站位:MD07-3076(44.1°S,414.2°W,3 770 m)和TNO57-21(441.1°S,7.8°E,4 981 m,图5)。MD07-3076站位作者将古气候记录与冰芯记录进行对比调谐,估算出末次盛冰期时该站位表层大洋碳储库年龄变化范围为1 500~2 500 a,继而得到深层大洋与大气Δ14C差值为400‰~500‰(图5)[36]。作者假设TNO57-21站位末次冰期以来表层大洋碳储库年龄保持在600 a,得到的深层大洋与大气Δ14C差值仅为200‰~340‰(图5)[59]。末次冰期以来,这两个站位应该受到相同深部水团的影响,却得到差异巨大的估算结果,问题就出在对表层大洋碳储库年龄的估测上。按照TNO57-21站位的计算方法,冰期时南大洋深部并不存在“老碳库”。因此精确重建大洋碳储库演化历史很难仅依靠有孔虫材料。

图5

图5   根据冷水珊瑚和有孔虫重建的2.5万年以来中深层海洋碳储库年龄变化

(a)冷水珊瑚和深海沉积物站位图,背景为工业革命之前的海水Δ14C值[57];(b),(c)冷水珊瑚估算的赤道大西洋和德雷克海峡中—深层海水ΔΔ14C值变化[37,58];(d),(e)有孔虫估算的南大洋深部水团ΔΔ14C值变化[36,59];(f)重建的大气Δ14C波动历史[17];ΔΔ14C表示海水与大气Δ14C值的差值;注意Heinrich Stadial 1事件结束时(约1.46万年前),不同深度海水ΔΔ14C值均出现大幅度下降

Fig.5   Changes of intermediate-deep ocean carbon reservoirs ages between 25 and 0 ka BP, derived from cold-water coral and foraminifera

(a) Geographic locations and water depths of coral samples and sediment cores, plotted against the pre-industrial distribution of seawater Δ14C values[57]; (b),(c) Reconstructed intermediate-deep ocean ΔΔ14C values in the equatorial tropical Atlantic and the Drake Strait, derived from cold-water coral samples[37,58]; (d),(e) Reconstructed ΔΔ14C values of the deep Southern Ocean, derived from foraminiferal samples[36,59]; (f) Reconstructed atmospheric Δ14C changes[17]; ΔΔ14C indicates the Δ14C value offset between the contemporary ocean and atmosphere; Note a significant decline of ΔΔ14C values at different water depths occurred at the end of the Heinrich Stadial 1 (about 14.6 ka BP)


另一种是利用同一个石珊瑚样品的U/Th和AMS 14C定年数据,其中U/Th数据可以直接给出样品的日历年龄。这种方法几乎可以避免上述有孔虫材料带来的所有问题,既不存在样品来源不一、生物扰动、差异性溶解等影响,更不需要进行表层大洋碳储库年龄的校正,因此是目前重建海洋碳储库年龄演化的最可靠方法。例如利用赤道大西洋和南大洋德雷克海峡的冷水珊瑚样品,发现1 000~2 000 m深度的大洋Δ14C值在末次盛冰期和HS1时期比较负偏,HS1期结束时(约1.46万年前)Δ14C值突然发生大幅度正偏移(图5)[37,58]。这可能说明了HS1时期确实有大量的深部老碳转移到大洋中层水体和大气中[37];或者大西洋经向翻转流结构发生过巨大改变,HS1前后大西洋中层水分别主要受南半球和北半球潜沉水团的影响[58]。利用石珊瑚进行这类研究需要对大批量样品进行定年工作,才有可能建立起时间序列上的海洋碳储库演变历史。需要指出的是,目前发现的石珊瑚主要分布在2 000 m以上的海水中,而2 000 m之下的深海才是海洋碳储库的主体。因此,利用石珊瑚进行深海碳储库年龄演化研究也受到样品深度分布的限制。

4 展 望

过去20多年深潜航次调查已经确认冷水珊瑚在世界大洋广泛分布。文石质石珊瑚样品大多分布在2 000 m以上的海底,而柳珊瑚生活的水深可以达到3 000~4 000 m。随着调查航次的持续进行和新探测技术的发展,冷水珊瑚会在更多海底和水深处被发现。因此冷水珊瑚将崛起成为研究大洋深部环境演化的重要信息载体。U/Th和AMS14C测年技术对冷水珊瑚年龄的精确测定,为古环境研究应用提供可靠的年龄数据,将在大洋碳储库年龄演化研究中发挥重要作用。

参考文献

Robinson L F, Adkins J F, Frank N, et al.

The geochemistry of deep-sea coral skeletons: A review of vital effects and applications for paleoceanography

[J]. Deep-Sea Research Part II: Topical Studies in Oceanography, 2014, 99:184-198.

[本文引用: 4]

Roark E B, Guilderson T, Dunbar R B, et al.

Extreme longevity in proteinaceous deep-sea corals

[J]. Proceedings of the National Academy of Sciences, 2009, 106(13): 5 204-5 208.

[本文引用: 3]

Cheng H, Adkins J, Edwards R L, et al.

U-Th dating of deep-sea corals

[J]. Geochimica et Cosmochimica Acta, 2000, 64(14): 2 401-2 416.

[本文引用: 4]

Lomitschka M, Mangini A.

Precise Th/U-dating of small and heavily coated samples of deep-sea corals

[J]. Earth and Planetary Science Letters, 1999, 170(4):391-401.

[本文引用: 2]

Burke A, Robinson L F, McNichol A, et al.

Reconnaissance dating: A new radiocarbon method applied to assessing the temporal distribution of Southern Ocean deep-sea corals

[J]. Deep Sea Research Part I: Oceanographic Research Papers, 2010, 57(11):1 510-1 520.

[本文引用: 1]

Adkins J F, Henderson G M, Wang S-L, et al.

Growth rates of the deep-sea scleractinia Desmophyllum cristagalli and Enallopsammia rostrate

[J]. Earth and Planetary Science Letters, 2004, 227(3/4):481-490.

[本文引用: 2]

Andrews A H, Stone R P, Lundstrom C C, et al.

Growth rate and age determination of bamboo corals from the northeastern Pacific Ocean using refined 210Pb dating

[J]. Marine Ecology Progress Series, 2009, 397:173-185.

[本文引用: 2]

Sabatier P, J-L Reyss, Hall-Spencer J M, et al.

210Pb-226Ra chronology reveals rapid growth rate of Madrepora oculata and Lophelia pertusa on world’s largest cold-water coral reef

[J]. Biogeosciences, 2012, 9(3):1 253-1 265.

[本文引用: 1]

Cochran J K, Livingston H D, Hirschberg D J, et al.

Natural and anthropogenic radionuclide distributions in the northwest Atlantic Ocean

[J]. Earth and Planetary Science Letters, 1987,84(2/3):135-152.

[本文引用: 1]

Guo L, Santschi P, Baskaran M, et al.

Distribution of dissolved and particulate 230Th and 232Th in seawater from the Gulf of Mexico and off Cape Hatteras as measured by SIMS

[J]. Earth and Planetary Science Letters,1995, 133(1/2):117-128.

[本文引用: 1]

Nozaki Y, Yang H-S, Yamada M.

Scavenging of thorium in the ocean

[J]. Journal of Geophysical Research, 1987, 92(C1): 772-778.

[本文引用: 1]

Roy-Barman M, Chen J H, Wasserburg G J.

230Th-232Th systematics in the central Pacific Ocean: The sources and fates of thorium

[J]. Earth and Planetary Science Letters, 1996,139(3/4): 351-363.

[本文引用: 1]

Moore W S.

The thorium isotope content of ocean water

[J]. Earth and Planetary Science Letters, 1981, 53(3): 419-426.

[本文引用: 1]

Henderson G M.

Seawater 234U/238U during the last 800 thousand years

[J]. Earth and Planetary Science Letters, 2002, 199(1/2): 97-110.

[本文引用: 1]

Robinson L F, Adkins J F, Fernandez D P, et al.

Primary U-distribution in scleractinian corals and its implications for U-series dating

[J]. Geochemistry, Geophysics, Geosystems, 2006,7(5). DOI: 10.01029/02005GC001138.

[本文引用: 1]

Reimer P J, Baillie M G L, Bard E, et al.

Intcal09 and Marine09 radiocarbon age calibration curves, 0-50,000 years cal BP

[J]. Radiocarbon, 2009, 51: 1 111-1 150.

[本文引用: 1]

Reimer P J, Bard E, Bayliss A, et al.

IntCal13 and Marine13 radiocarbon age calibration curves 0-50,000 years cal BP

[J]. Radiocarbon, 2013, 55(4): 1 869-1 887.

[本文引用: 5]

Wang N, Shen C D, Sun W D, et al.

Penetration of bomb 14C into the deepest ocean trench

[J]. Geophysical Research Letters, 2019, 46(10): 5 413-5 419.

[本文引用: 1]

Prouty N G, Roark E B, Andrews A H, et al. Age,

growth rates and paleoclimate studies in deep-Sea corals of the United States

[M]//Hourigan T F, Etnoyer P J, Cairns S D. The State of Deep-Sea Coral and Sponge Ecosystems of the United States. Silver Spring, 2017: 298-308.

[本文引用: 3]

Sherwood O A, Scott D B, Risk M J.

Radiocarbon evidence for annual growth rings in a deep sea octocoral (Primnoa resedaeformis)

[J]. Marine Ecology Progress Series, 2005, 301:129-134.

[本文引用: 2]

Andrews A H, Cordes E E, Mahoney M M, et al.

Age, growth and radiometric age validation of a deep-sea, habitat-forming gorgonian (Primnoa resedaeformis) from the Gulf of Alaska

[J]. Hydrobiologia, 2002, 471(1):101-110.

[本文引用: 2]

Roark E B, Guilderson T P, Dunbar R B, et al.

Radiocarbon-based ages and growth rates of Hawaiian deep-sea corals

[J]. Marine Ecology Progress Series, 2006, 327:1-14.

[本文引用: 2]

Parrish F A, Roark E B.

Growth validation of gold coral Gerardia sp. in the Hawaiian Archipelago

[J]. Marine Ecology Progress Series, 2009, 397:163-172.

[本文引用: 2]

Roark E B, Guilderson T P, Flood-Page S, et al.

Radiocarbon-based ages and growth rates of bamboo corals from the Gulf of Alaska

[J]. Geophysical Research Letters, 2005, 32(4). DOI:10.1029/2004GL021919.

[本文引用: 1]

Hill T M, Spero H J, Guilderson T, et al.

Temperature and vital effect controls on bamboo coral (Isididae) isotope geochemistry: A test of the ‘lines method’

[J]. Geochemistry, Geophysics, Geosystems, 2011, 12(4). DOI:10.1029/2010GC003443.

[本文引用: 1]

Saenger C, Watkins J M.

A refined method for calculating paleotemperatures from linear correlations in bamboo coral carbon and oxygen isotopes

[J]. Paleoceanography, 2016, 31(6): 789-799.

[本文引用: 1]

Petit R, Jouzel J, Raynaud D, et al.

Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica

[J]. Nature,1999, 399(6 735): 429-436.

[本文引用: 1]

Sigman D, Hain M P, Haug G H.

The polar ocean and glacial cycles in atmospheric CO2 concentration

[J]. Nature, 2010, 446(7 302): 47-55.

[本文引用: 2]

Monnin E, Indermuhle A, Dallenbach A, et al.

Atmospheric CO2 concentrations over the last glacial termination

[J]. Science, 2001, 291(5 501): 112-114.

[本文引用: 3]

Lemieux-Dudon B, Blayo E, J-R Petit, et al.

Consistent dating for Antarctic and Greenland ice cores

[J]. Quaternary Science Reviews, 2010, 29(19/20): 8-20.

[本文引用: 3]

Sigman D M, Boyle E A.

Glacial/interglacial variations in atmospheric carbon dioxide

[J]. Nature, 2000, 407(6 806): 859-869.

[本文引用: 1]

Köhler P, Fischer H, Munhoven G, et al.

Quantitative interpretation of atmospheric carbon records over the last glacial termination

[J]. Global Biogeochemical Cycles, 2005, 19(4). DOI:10.1029/2004GB002345.

[本文引用: 3]

Toggweiler J R.

Variation of atmospheric CO2 by ventilation of the ocean's deepest water

[J]. Paleoceanography, 1999, 14(5): 571-588.

[本文引用: 1]

Toggweiler J R, Russell J L, Carson S R.

Midlatitude westerlies, atmospheric CO2, and climate change during the ice ages

[J]. Paleoceanography, 2006, 21(2). DOI:10.1029/2005PA00-1154.

[本文引用: 1]

Tschumi T, Joos F, Gehlen M, et al.

Deep ocean ventilation, carbon isotopes, marine sedimentation and the deglacial CO2 rise

[J]. Climate of the Past, 2011, 7(3): 771-800.

[本文引用: 1]

Skinner L C, Fallon S, Waelbroeck C, et al.

Ventilation of the deep southern ocean and deglacial CO2 rise

[J]. Science, 2010, 328(5 982): 1 147-1 151.

[本文引用: 4]

Burke A, Robinson L F.

The Southern Ocean’s role in carbon exchange during the last deglaciation

[J]. Science, 2012, 335(6 068): 557-561.

[本文引用: 5]

Anderson R F, Ali S, Bradtmiller L I, et al.

Wind driven upwelling in the Southern Ocean and the deglacial rise in atmospheric CO2

[J]. Science, 2009, 323(5 920):1 443-1 446.

[本文引用: 1]

Smith H J, Fischer H, Whalen M, et al.

Dual modes of the carbon cycle since the Last Glacial Maximum

[J]. Nature, 1999, 400(6 741): 248-250.

[本文引用: 1]

Schmitt J, Schneider R, Elsig J, et al.

Carbon isotope constraints on the deglacial CO2 rise from ice cores

[J]. Science, 2012, 336(6 082): 711-714.

[本文引用: 1]

Spero H J, Lea D W.

The cause of carbon isotope minimum events on glacial terminations

[J]. Science, 2002, 296(5 567): 522-525.

[本文引用: 1]

Broecker W S, Barker S.

A 190‰ drop in atmosphere’s Δ14C during the “Mystery Interval” (17.5-14.5 kyr)

[J]. Earth and Planetary Science Letters, 2007, 256(1):90-99.

[本文引用: 2]

Southon J, Noronha A L, Cheng H, et al.

A high-resolution record of atmospheric 14C based on Hulu Cave speleothem H82

[J]. Quaternary Science Reviews, 2012, 33:32-41.

[本文引用: 1]

Cheng H, Edwards R L, Southon J, et al.

Atmosphere 14C/12C changes during the last glacial period from Hulu Cave

[J]. Science, 2018, 362(6 420): 1 293-1 297.

[本文引用: 1]

Marchitto T M, Lehman S J, Ortiz J D, et al.

Marine radiocarbon evidence for the mechanism of deglacial atmospheric CO2 rise

[J]. Science, 2007, 316(5 830):1 456-1 440.

[本文引用: 1]

Bryan S P, Marchitto T M, Lehman S J.

The release of 14C-depleted carbon from the deep ocean during the last deglaciation: Evidence from the Arabian Sea

[J]. Earth and Planetary Science Letters, 2010, 298(1): 244-254.

[本文引用: 1]

Thornalley D J R, Barker S, Broecker W, et al.

The deglacial evolution of north Atlantic deep convection

[J]. Science, 2011, 331(6 014): 202-205.

[本文引用: 1]

Stott L, Southon J, Timmermann A, et al.

Radiocarbon age anomaly at intermediate water depth in the Pacific Ocean during the last deglaciation

[J]. Paleoceanography, 2009, 24(2). DOI:10.1029/2008PA001690.

[本文引用: 1]

De Pol-Holz R, Keigwin L D, Southon J, et al.

No signature of abyssal carbon in intermediate waters off Chile during deglaciation

[J]. Nature Geoscience, 2010, 3(3): 192-195.

[本文引用: 1]

Mangini A, Godoy J M, Godoy M L, et al.

Deep-sea corals off Brazil verify a poorly ventilated Southern Pacific Ocean during H2, H1 and the younger Dryas

[J]. Earth and Planetary Science Letters, 2010, 293(3/4):269-276.

[本文引用: 1]

Rose K A, Sikes E L, Guilderson T P, et al.

Upper-ocean-to-atmosphere radiocarbon offsets imply fast deglacial carbon dioxide release

[J]. Nature, 2010, 466(7 310): 1 093-1 097.

[本文引用: 1]

Cléroux C, deMenocal P, Guilderson T.

Deglacial radiocarbon history of tropical Atlantic thermocline waters: Absence of CO2 reservoir purging signal

[J]. Quaternary Science Reviews, 2011, 30(15): 1 875-1 882.

[本文引用: 1]

Sortor R N, Lund D C.

No evidence for a deglacial intermediate water Δ14C anomaly in the SW Atlantic

[J]. Earth and Planetary Science Letters, 2011, 310(1): 65-72.

[本文引用: 1]

Barker S, Broecker W, Clark E, et al.

Radiocarbon age offsets of foraminifera resulting from differential dissolution and fragmentation within the sedimentary bioturbated zone

[J]. Paleoceanography, 2007, 22(2). DOI:10.1029/2006PA001354.

[本文引用: 1]

Sarnthein M, Grootes P M, Kennett J P, et al.

^ 1^ 4C reservoir ages show deglacial changes in ocean currents and carbon cycle

[J]. Geophysical Monograph-American Geophysical Union, 2007, 173: 175.

[本文引用: 2]

Franke J, Paul A, Schulz M.

Modeling variations of marine reservoir ages during the last 45000 years

[J]. Climate of the Past, 2008, 4(1): 125-136.

[本文引用: 1]

Key R M, Kozyr A, Sabine C L, et al.

A global ocean carbon climatology: Results from Global Data Analysis Project (GLODAP)

[J]. Global Biogeochemical Cycles, 2004,18(4). DOI:10.1029/2004GB002247.

[本文引用: 2]

Chen T Y, Robinson L F, Burke A, et al.

Synchronous centennial abrupt events in the ocean and atmosphere during the last deglaciation

[J]. Science, 2015, 349(6 255): 1 537-1 540.

[本文引用: 4]

Barker S, Knorr G, Vautravers M J, et al.

Extreme deepening of the Atlantic overturning circulation during deglaciation

[J]. Nature Geosciences, 2010, 3(8):567-571.

[本文引用: 3]

/