地球科学进展  2018 , 33 (7): 741-750 https://doi.org/10.11867/j.issn.1001-8166.2018.07.0741

综述与评述

地下水依赖型生态系统生态水文研究进展

刘鹄12, 赵文智12*, 李中恺123

1.中国科学院西北生态环境资源研究院,中国生态系统研究网络临泽内陆河流域研究站, 甘肃兰州 730000
2.中国科学院内陆河流域生态水文重点实验室, 甘肃 兰州 730000
3.中国科学院大学资源与环境学院,北京 100049

Ecohydrology of Groundwater Dependent Ecosystems: A Review

Liu Hu12, Zhao Wenzhi12*, Li Zhongkai123

1.Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Linze Inland River Basin Research Station, Chinese Ecosystem Research Network, Lanzhou 730000, China
2.Key Laboratory of Ecohydrology of Inland River Basin, Lanzhou 730000, China
3.College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China

中图分类号:  P641;TV122

文献标识码:  A

文章编号:  1001-8166(2018)07-0741-10

通讯作者:  *通信作者:赵文智(1966-),男,陕西定边人,研究员,主要从事干旱区生态水文学研究.E-mail:zhaowzh@lzb.ac.cn

收稿日期: 2018-01-9

修回日期:  2018-05-15

网络出版日期:  2018-07-20

版权声明:  2018 地球科学进展 编辑部 

基金资助:  *国家自然科学基金重点项目“荒漠绿洲非饱和带土壤水分运移及对地下水补给作用”(编号:41630861)资助.

作者简介:

First author:Liu Hu (1980-), male, Lanzhou City, Gansu Province, Associate professor. Research areas include ecohydrology and hydropedology in water-limited environments. E-mail:lhayz@lzb.ac.cn

作者简介:刘鹄(1980-),男,甘肃兰州人,副研究员,主要从事干旱区生态水文模型研究.E-mail:lhayz@lzb.ac.cn

展开

摘要

地下水依赖型生态系统(GDEs)中植被动态和土壤水盐平衡受地下水影响显著。从地下水与植被、土壤水、地表水和盐分动态关系、气候变化与人类干扰下的GDEs响应、GDEs模型与管理等方面综述了GDEs生态水文研究进展。指出在地下水环境变化后GDEs植被如何响应、GDEs功能是否发生突变、发生突变的生态阈值等是其可持续管理亟待回答的问题,其关键和难点是如何刻画地下水到地表土壤介质中的生态水文过程,加强相应的观测与模拟研究是未来的重要方向。此外,实现GDEs可持续管理还需要明确4个问题:①如何界定GDEs的范围,哪些物种和生境依靠地下水存在?②GDEs可持续发展需要何种地下水条件?③在社会资源有限的情况下如何管理地下水资源;④观测哪些生态参数来体现GDEs管理措施的有效性?

关键词: 地下水依赖 ; 生态水文 ; 盐分动态 ; 气候变化 ; 数学模型

Abstract

Groundwater Dependent Ecosystems (GDEs) are ecosystems that must have access to groundwater to maintain their ecological structure and function. In other words, the vegetation dynamics moisture dynamics, and water-salt balance in GDEs are significantly affected by and directly related to the groundwater. This work reviews the most recent research advances in the ecohydrology of GDEs from: ①the interactions between groundwater and vegetation, ②the interactions between groundwater and soil moisture dynamics in the vadose zone, the interactions between ground and ③surface-water systems, ④the interactions between groundwater and salt accumulation dynamics, ⑤the responses of GDEs to climate changes and human disturbances, and ⑥the ecohydrological modeling works toward sustainable management of GDEs. It is pointed out that several issues need to be taken into account in the managements of GDEs, i.e., how does the vegetation of GDEs response to fluctuations and decreases in the groundwater level, whether there is a catastrophic loss of the functions of GDEs, and what is the threshold value below which such a catastrophe may occur. The key to solving those issues lies in how to delineate the different ecohydrological processes occurred in the soil medium from the top of the ground surface to the water table. Therefore, observation and modeling efforts are needed and will be important research priorities in the future, especially for GDEs in arid environments. We also argued that four more difficulties should be addressed towards sustainable management of GDEs in future: ①how to identify GDEs in the field, and determine which habitats and species are reliant on groundwater for their persistence in the landscape, ②what groundwater regime is required to sustain the existence of GDEs, ③how to manage GDEs with limited social resources, and ④what measures of ecosystem function can be monitored to determine that management is effective?

Keywords: Groundwater dependent ecosystems ; Ecohydrology ; Salt dynamics ; Climate changes ; Mathematic models.

0

PDF (1131KB) 元数据 多维度评价 相关文章 收藏文章

本文引用格式 导出 EndNote Ris Bibtex

刘鹄, 赵文智, 李中恺. 地下水依赖型生态系统生态水文研究进展[J]. 地球科学进展, 2018, 33(7): 741-750 https://doi.org/10.11867/j.issn.1001-8166.2018.07.0741

Liu Hu, Zhao Wenzhi, Li Zhongkai. Ecohydrology of Groundwater Dependent Ecosystems: A Review[J]. Advances in Earth Science, 2018, 33(7): 741-750 https://doi.org/10.11867/j.issn.1001-8166.2018.07.0741

1 引 言

广义的地下水依赖型生态系统(Groundwater Dependent Ecosystems,GDEs)包括:寄宿在地下水环境的生态系统、依赖地下水露出地表部分的生态系统和直接依赖地下水的陆地生态系统[1]。溶洞、泉水、湿地、河流、河口、沼泽等都属于GDEs,但生态水文学意义上的GDEs主要指植被动态和土壤水平衡受地下水影响显著的陆地生态系统,如湿地、河岸林等,其景观组分中部分或全部植被需水由地下水供给,在失去地下水供给时系统结构可能发生改变、功能可能遭受损伤[2]。GDEs具有较高的物种丰富度和极佳的固碳能力,在缓冲暴雨径流、净化污染物等方面具有很高的生态服务价值[1],但其生态—水文功能在历史上长期被忽略[3],至今仍在很多地区面临着人类活动引发的生态风险[4]。地下水是维系GDEs生态服务功能的核心资源,具有供给可靠、容易获取的特点,在工农业生产中具有同等重要的作用[5],经济规模迅速扩大导致GDEs生态用水和生产用水矛盾突出[6]。特别是在干旱区,社会对灌溉农业的高度依赖使得地下水资源被掠夺性开发,引发区域水流模式改变,影响洪水格局和生态过程[7],严重威胁GDEs生态健康和系统稳定性[8],因此通过寻求生产需求和生态保护之间的平衡机制管理GDEs成为生态水文学研究的新趋势之一[5]

关于GDEs的研究最早可追溯到20世纪20年代喜水植物(Phreatophyte)概念的提出[9],20世纪前半期主要是生态学家与水文学家将植物作为地下水环境指示器方面的研究,后半期则是生态学家在喜水植物生境需求方面的工作[10]。近20年来,很多GDEs环境中地下水的开发已经威胁到生态安全[11],其生态、水文过程受到了前所未有的关注[12]。GDEs生态、水文过程的研究一定程度上促进了生态水文学科(Ecohydrology)的产生和发展,而生态水文学理论的不断完善也为GDEs的研究直接提供了方法论依据。国内学者对GDEs生态水文过程的研究起步较晚,目前主要集中在潜流带(Hyporheic zone)水文特征分析以及植被与地下水关系研究方面[13,14]。从已有的文献来看,关于GDEs生态水文过程的研究大致可归纳为:①地下水与植被相互作用;②地下水与土壤水相互作用;③地下水与地表水相互作用;④地下水与盐分动态关系;⑤气候变化与人类干扰下的GDEs响应;⑥生态水文模型和GDEs管理。本文从以上6个方面综述了近年来国内外关于GDEs生态水文的最新研究进展,以期对未来国内GDEs生态水文学研究特别是干旱环境GDEs生态水文研究有所启发。

2 地下水与植被相互作用

GDEs景观中地下水如何影响植被分布、如何确定GDEs植被分布是最基本的科学命题[15]。Meinzer[16]很早就探讨过物种分布与地下水之间的关系,之后还有大量类似的研究[17],但相关的研究主要集中在不同地下水埋深条件下植物的生理、生态特征及群落分布状况,结论多是植被对地下水变化响应的静态统计描述[18],以及基于这种统计描述的植被生态需水和生态地下水位估算[19],如Wang等[20]在额济纳绿洲的研究表明该地区适合植被生长的地下水埋深为1.8~3.5 m;Rhymes等[21]发现物种组成不仅受地下水位控制,还受其波动强度和N素含量影响,类似的结果在丹麦、德国等地均有报道[22,23]。GDEs景观中植被分布体现了区域水文条件的平均状态[10],因此可认为是其生态水文特征的指示器;Meinzer[16]在此认识上提出了部分可量化的特征参数以界定GDEs分布,最新的研究中则利用这些参数结合定量遥感[24]、机器学习[25]等方法确定GDEs范围[26],如Lv等[27]利用遥感影像结合地下水数据评价了植被分布对地下水的响应,Eamus等[28]利用MODIS时间序列数据实现了GDEs动态监测,Peters等[25]利用集成学习模型(Ensemble Learning Based Model)、随机森林(Random Forest)等方法研究了GDEs植被空间格局。

量化植被对地下水的利用程度也是GDEs研究的重要方面[26]。地下水依赖型植被是GDEs的普遍特征[29],植被对地下水的利用程度随埋深减小,在空间上受地形影响,在时间上受季节变化和水位波动控制[30]。干旱环境中植物对地下水的利用能达到蒸腾量的50%,旱季能达到80%[31],植物对地下水的利用涉及2种机制:①地下水通过毛细上升供给根层水分,其利用率取决于地下水位、蒸散强度和土壤水势[32];②根系进入地下水或毛细水上升区获得水分,其利用率取决于深层根系的汲水能力、根系分布特征、土壤质地等[33]。前一种情况的关键变量是地下水位、蒸散发、根际层水势等,但多数土壤在大于2 m的垂向空间上不存在有意义的毛细水流[32];在后一种情况中,植物根系实际长度可能远大于传统意义上的根际层深度并触及地下水,水分提升取决于深层根系的汲水能力、根系分布特征等生理参数[33],因此从生理学的角度研究植物地下水利用特征代表了GDEs研究的一个重要方向[34,35],如Shi等[36]在民勤绿洲的研究发现地下水位可能导致沙枣林最大光合速率、气孔导度等方面的显著差异;陈亚宁等[37]在塔里木河下游发现地下水位影响胡杨脯氨酸累积;张佩等[38]在黑河中游发现多枝柽柳叶片的生理生态指标对地下水位波动表现出明显的响应;Horton等[39]在Arizona河岸林的研究发现保持一定的地下水位才能保证GDEs植物正常的生理活动。

GDEs环境中地下水与植被间的相互作用还涉及养分循环、碳分循环[40]和植被格局对地下水的响应关系。养分在GDEs土壤、水和植物之间进行的迁移转化和能量交换与地下水动态关系密切:地下水不仅控制了养分的垂向分布和交换,还在一定程度上驱动土壤碳库的变化[41]。目前,针对GDEs环境从生态水文学视角开展的养分/碳分循环研究只有部分零散的成果,如Zhang等[42]发展的氮循环模型(Wetland-Denitrification & Decomposition Model)、Frolking等[43]开发的湿地碳动态模型(Peatland Carbon Simulator,PCARS);国内相关研究起步相对更晚,缺少相关的生态水文学观测,在养分、碳分循环模型方面相对滞后[41,44]。地下水对水分动态、养分循环和碳分循环的影响程度直接决定了GDEs植被种群和群落格局,在干旱环境中尤其如此[45],如塔里木河下游随着地下水位下降,植物群落由乔木、灌木、草本群落逐渐演变为乔灌群落,直至单一灌木群落;地下水位抬升后,天然植被如骆驼刺、罗布麻等成片出现,耐旱的乔木、灌木生长也得以恢复[46]。在一定水埋深限度内,物种覆盖度、丰富度与地下水埋深呈负相关[47]: 如苏贝淖滩地在水埋深小于1.6 m的区域内,植物群落总盖度与地下水埋深呈负相关; 但在水埋深大于1.6 m的范围内,植被盖度不受影响[48]

3 地下水与土壤水相互作用

土壤水分是地下水与植被相互作用的重要纽带,GDEs环境中地下水与土壤水联系紧密、相互转化频繁,并和植物、大气形成一个双向、动态的物质、能量连续体(Groundwater-Soil-Plant-Atmosphere-Continuum,GSPAC)[49]。GSPAC系统界面上的水流通量体现了GDEs环境地下水与土壤水分之间的相互作用关系,可通过估算包气带土壤水分收支 (包括入渗、土壤蒸发、植物蒸腾、侧向水流、毛细上升、深层渗漏等)进行量化。土壤水分和地下水时间序列携带了大量的水流信息[50],利用这些高分辨数据,结合Richards方程反解等方法可获得GSPAC中的多种水流动态,如Rahgozar等[51]估算了美国Tampa Bay水库附近GSPAC土壤水分收支;Liu等[52]估算了土壤优先流情况;更复杂的观测手段如包气带监测系统(Vadosezone Monitoring Systems, VMS),可同时实现水分和污染物运移的监测[53]。国内近年来也布设了大量地下水和土壤水分/水势传感器网络,结合无线传输技术,不仅能实现重要水文参数的高频观测,还可进行数据在线收割[54]。利用水分自动观测数据估算GSPAC水流动态已经成为新趋势,但在方法上仍存在一定挑战,如Schelde等[55]对比分析了4种基于土壤水分动态的蒸散发(Evapotranspiration,ET)估算方法,发现获得的水流信息与实际观测的水流数据都存在一定出入;Shah等[56]对比了数据驱动方法(Data-driven Methods, DM)和根系水分提升模型获得的水流关系,发现2种方法结合能提高计算精度。

确定土壤垂向水流动态和地下水关系是理解GDEs植被水分利用格局的关键[6]。地下水蒸散发(ETg)是反映地下水影响水流动态最直接的参数,包括因蒸腾(Tg,从地下水或毛细带吸收消耗的水分)和蒸发(Eg,地下水进入包气带并通过地表散失的水分)消耗的水量。局地尺度上的ETg估算方法可总结为4类:White方法[57]、稳定同位素、水平衡方法和直接测量法[6]。其中White方法利用地下水位高频观测数据估算E Tg[58];稳定同位素方法利用氢、氧同位素丰度估算E Tg[59];水平衡方法利用土壤水分平衡原理估算ETg;直接测量方法则利用观测辅助变量获得ETg信息,如Lysimeter[60]或根系液流[61]。区域尺度上的ETg主要通过各种模型估算,如Baird等[62]利用RIP-ET (Riparian Evapotranspiration Package)、PRE-RIP-ET (Preprocessor for RIP-ET)模块在模块化三维有限差分地下水流动模型(Modular Three-dimensional Finite-difference Groundwater Fbw Model,MODFLOW)环境中估算河岸林ETg;Jiménez-Martínez等[63]利用VISUAL BALAN模型估算西班牙Campo de Cartagena湿地ETg;Ajami等[64]利用ETg曲线耦合MODFLOW估算美国Dry Alkaline流域河岸林ETg等;Soylu等[65]利用Hydrus-1D、IBIS(Integrated Biosphere Simulator)、GE模型(Gardner-Eagleson Model)和桶式水文模型(Bucket Hydrology Model)估算了ETg在不同土壤质地条件下对地下水位响应;Vervoort等[66]对比研究了随机模型和同位素方法估算的ETg结果。

4 地下水与地表水相互作用

理解地下水与地表水相互作用是管理和保护GDEs的必要条件[67],这种关系在局地尺度上可能控制土壤pH值、有机质含量等[68],区域尺度上影响地下水变化与潜在生态后果间的时滞关系[3]。干旱环境中,理解二者间的相互作用关系更是地下水资源管理的前提[69],Kaplan等[70]发现地表水对地下水的影响具有复杂的空间补偿效应;Smith等[71]发现地下水—地表水作用关系影响河道养分动态和生态过程。近年来在GDEs地下水与地表水作用关系方面出现了大量观测实验,为构建复杂的GDEs模型提供了必要的数据支撑,如Aguilera等[72]在西班牙Las Tablas de Daimiel湿地开展的同位素实验;谷洪彪等[73]在柳江盆地开展的地表水与地下水转化关系的氢氧稳定同位素实验;Huang等[74]在黄土高原开展的土壤剖面Cl元素平衡观测等;Krause等[75]利用类似的观测数据分析了不同GDEs景观中的地表水—地下水交换的时空变异;Foglia等[76]基于水平衡模型分析了地下水开发对河道水流的影响。Krause等[12]和Bertrand等[2]先后对内陆环境GDEs中地下水—地表水交互界面上的生物地球化学过程、生态水文过程、二者间的相互作用以及驱动力进行了专门的评述;最新的陆面过程模型(Land Surface Models, LSMs)更是通过不同复杂程度的参数整合了地下水—地表水相互作用关系[65]

5 地下水与盐分动态关系

地下水动态控制土壤盐分动态并影响GDEs植被生产力,导致GDEs景观土壤盐分积累的原因可能有:①与地下水相关,发生在地下水浅埋区,毛细作用将盐分带到根际层;②与地下水无关,出现在排水条件较差、蒸散发强烈的环境;③与灌溉有关,如咸水灌溉导致盐分积聚。干旱区GDEs景观中,地下水是影响盐分动态的主要原因[77]。Runyan等[78]发现改变植被覆盖或土地利用可能影响GDEs植物根际层与地下水的关系,造成土壤盐分消长[79],其影响程度取决于土壤物理特征、地下水位及其变异性、植被对地下水的依赖程度及地下水补排过程[80]。盐分、水分和植被动态相互耦合导致了GDEs地下水管理的复杂性,如Huang等[81]在塔里木河流域发现荒漠区地下水具有补给慢、水位低和高度盐化的特征,但绿洲区和河岸林地下水具有补给快、浅埋、低盐的特征。Runyan等[78]在澳洲Murray-Darling流域的研究发现土壤盐分与植被间的互馈关系存在二元稳定状态:①地下水位深、土壤盐分低、植被稀疏;②无植被覆盖、地下水位浅、土壤盐分高;Anderies[82]在Goulburn-Broken流域的研究也发现了类似的现象,这种二元稳定状态很大程度上限制了干旱区退化GDEs生态修复潜力,如Wang等[20]在额济纳绿洲的研究发现植被恢复潜力较好的区域主要集中在河道两侧地下水位2~4 m、盐分含量小于5%的区域内,而植被退化严重的区域通常也是地下水环境退化严重的区域。

6 气候变化与人类干扰下的GDEs响应

明确气候变化与人类活动干扰下的生态水文响应是未来GDEs可持续管理的基础[83]。气候变化整体上会对GDEs景观造成生态威胁,但影响程度在区域尺度上存在较大异质性[84],取决于气候变化方向和生态系统对地下水的依赖程度[85]。研究表明,气候变化可能影响植物群落结构,改变流域尺度地下水动态[78],造成潜在生态风险,如Barron等[85]在澳大利亚西南部的研究发现:在气候干化情景下,20%的植被将处于高风险状态,这种风险受水文格局、生态系统自身敏感性影响,随地下水开发程度增加而增加。在地下水埋深较浅的环境中,地下水对人类活动干扰和气候变化的响应尤其敏感[86],针对人类活动干扰,Tomlinson等[87]提出了一套理解GDEs响应规律的生态水文学框架;Sommer等[11]评价了地下水位下降对植被造成的损伤进行修复的可行性。近年来在气候变化与人类干扰下的GDEs地下水—地表水相互作用方面也出现了大量研究,如Wilby等[88]指出地下水—地表水相互作用是气候变化下揭示水文与生态过程相互作用的核心问题;Ficklin等[89]利用HYDRUS研究了加利福尼亚州San Joaquin流域灌溉农业影响下的地下水—地表水关系对气候变化的响应;Brolsma等[90]认为未来的干旱区生态水文学模型中需要加强地下水异地补给特征。Jolly等[91]强调未来的GDEs研究中还需要突出气候变化和人类活动干扰下的地下水—盐动态关系,但这方面的研究相对较少。

7 生态水文模型与GDEs管理

地下水和植被在GDEs土壤介质中发生的复杂生态—水文互馈关系需要用模型的方式表达[92],模拟GDEs生态—水文互馈关系的模型包括4类:①饱和—非饱和流模型(Variably Saturated),如基于Richards方程的HYDRUS模型;②饱和流模型,如基于达西定律的MODFLOW;③分布式模型,如ILHM (Integrated Landscape Hydrology Model)、CLM(Common Land Model);④集总模型(Lumped)[6],其中由Laio等[93]发展的随机模型最具代表性,该模型能整合GDEs景观复杂的生态—水文关系,可量化理解地下水波动、毛细水上升、植被水分利用等过程[94]以及水分—盐分—植被关系[78,95]。相对而言,确定性模型只能根据输入条件对变量进行模拟,对刻画变化环境下水流动态响应有天然的局限性;由于水文气象因子的随机性,GDEs水分动态表现出强烈的随机性和非线性特征,从随机过程的角度来诠释GDEs水流动态具有一定的优势。目前,GDEs模型的发展已经到了相对成熟的阶段,计算能力的提高也让模型求解成为可能,但多数模型都会涉及大量无法直接获取的参数,因此在模型参数化和校验方面仍存在挑战[96]。GDEs生态水文研究的出口是GDEs的管理[71],干旱环境GDEs景观中,地下水管理与生态系统功能间存在因果关系[97]:地下水不仅控制植被生产力[98],还影响沙尘天气[99]、动植物生境质量[7]。Eamus等[28]针对GDEs景观提出了一套如何设定地下水开发阈值以维持某个水平生态功能的方法;Murray等[100]提出了一套确定GDEs生态经济价值优先级别的方法;Aldous等[101]将水文—生态关系阈值方法应用到GDEs景观管理决策;Brand等[5]发展了一种空间代替时间的模型并应用到决策系统中以关联地下水位变化情景;Krause等[102]针对湿地景观提出了一套在决策系统中研究GDEs生态风险评估的生态水文学框架。

8 研究展望

在地下水波动和持续下降的情况下,GDEs中的植被如何响应、GDEs功能是否会发生突变、发生突变的生态阈值是什么成为GDEs可持续管理亟待解决的问题,在水分受限(Water-limited)的环境中尤其如此。明确和回答上述科学问题的关键和难点是如何刻画地下水位到根际层上部土壤介质中发生的生态水文过程,受关注程度和观测手段限制,专门针对GDEs景观特别是干旱环境GDEs生态水文过程中的观测实验相对较少,地下水与植被间的相互作用动态关系认识模糊,这些知识缺陷制约了GDEs可持续管理策略的制定。以我国西北干旱区为例,荒漠绿洲是镶嵌于其中的一类特殊GDEs,具有明显的地下水依赖景观[103],如河岸林—湿地、地下水灌溉农田、荒漠—绿洲过渡带等,从地下水到根际层界面的垂向生态水文过程观测手段的局限性导致荒漠绿洲GDEs景观内部,特别是土壤剖面空间上真实的水流信息严重缺失、区域尺度上的水帐无法清算,影响区域水资源管理和生态系统管理的科学决策[104]。因此,加强GDEs研究特别是干旱环境中GDEs生态水文过程的观测与模拟仍然是未来的重要方向。

GDEs生态水文过程长期以来都是生态水文学的重要研究方向,着眼于气候变化应对和自然保护,利用多学科交叉思路和方法、服务国家生态发展战略一直是GDEs生态水文研究的核心理念和基本思路。因此,借鉴地下水生态学、生物地球化学和水文地质学、农业/土壤科学和环境生物学等相关学科方法和技术,发展与完善GDEs生态水文理论与方法体系,为气候变化和人类活动干扰下的脆弱生态系统提供管理和决策依据是GDEs研究的基本方向,但实现GDEs高效可持续管理还需要明确4个核心科学问题:①如何界定GDEs景观的范围,哪些物种和生境依靠地下水存在?②GDEs景观可持续发展需要什么样的地下水条件?③社会资源有限的情况下如何管理地下水资源;④观测哪些生态参数来体现GDEs管理措施的有效性[28]?

The authors have declared that no competing interests exist.


参考文献

[1] Stevens V M, Baguette M.

Importance of habitat quality and landscape connectivity for the persistence of endangered natterjack toads

[J]. Conservation Biology, 2008, 22(5): 1 194-1 204.

DOI      URL      [本文引用: 2]     

[2] Bertrand G, Goldscheider N, Gobat J M, et al.

Review: From multi-scale conceptualization to a classification system for inland groundwater-dependent ecosystems

[J]. Hydrogeology Journal, 2012, 20(1): 5-25.

DOI      URL      [本文引用: 2]     

[3] Nath B, Lillicrap A M, Ellis L C, et al.

Hydrological and chemical connectivity dynamics in a groundwater-dependent ecosystem impacted by acid sulfate soils

[J]. Water Resources Research, 2013, 49(1): 441-457.

DOI      URL      [本文引用: 2]     

[4] Mackay H.

Protection and management of groundwater-dependent ecosystems: Emerging challenges and potential approaches for policy and management

[J]. Australian Journal of Botany, 2006, 54(2): 231-237.

DOI      URL      [本文引用: 1]     

[5] Brand L A, Stromberg J C, Goodrich D C, et al.

Projecting avian response to linked changes in groundwater and riparian floodplain vegetation along a dryland river: A scenario analysis

[J]. Ecohydrology, 2011, 4(1): 130-142.

DOI      URL      [本文引用: 3]     

[6] Orellana F, Verma P, Loheide S P, et al.

Monitoring and modeling water-vegetation interactions in groundwater-dependent ecosystems

[J]. Reviews of Geophysics, 2012, 50(RG3003): 1-24.

[本文引用: 4]     

[7] Merritt D M, Bateman H L.

Linking stream flow and groundwater to avian habitat in a desert riparian system

[J]. Ecological Applications, 2012, 22(7): 1 973-1 988.

DOI      URL      PMID      [本文引用: 2]      摘要

Increasing human populations have resulted in aggressive water development in arid regions. This development typically results in altered stream flow regimes, reduced annual flow volumes, changes in fluvial disturbance regimes, changes in groundwater levels, and subsequent shifts in ecological patterns and processes. Balancing human demands for water with environmental requirements to maintain functioning ecosystems requires quantitative linkages between water in streams and ecosystem attributes. Streams in the Sonoran Desert provide important habitat for vertebrate species, including resident and migratory birds. Habitat structure, food, and nest-building materials, which are concentrated in riparian areas, are provided directly or indirectly by vegetation. We measured riparian vegetation, groundwater and surface water, habitat structure, and bird occurrence along Cherry Creek, a perennial tributary of the Salt River in central Arizona, USA. The purpose of this work was to develop an integrated model of groundwater-vegetation-habitat structure and bird occurrence by: (1) characterizing structural and provisioning attributes of riparian vegetation through developing a bird habitat index (BHI), (2) validating the utility of our BHI through relating it to measured bird community composition, (3) determining the riparian plant species that best explain the variability in BHI, (4) developing predictive models that link important riparian species to fluvial disturbance and groundwater availability along an arid-land stream, and (5) simulating the effects of changes in flow regime and groundwater levels and determining their consequences for riparian bird communities. Riparian forest and shrubland vegetation cover types were correctly classified in 83% of observations as a function of fluvial disturbance and depth to water table. Groundwater decline and decreased magnitude of fluvial disturbance caused significant shifts in riparian cover types from riparian forest to shrublands. Variability in the BHI was best explained by the cover of deciduous riparian tree species, primarily Populus fremontiU Platanus wrightiU and Salix gooddingii. The distributions of these plant species were well explained by the depth to groundwater and magnitude of fluvial disturbance along the stream. Bird species diversity and richness were significantly higher in sites with higher habitat indices. This quantitative linkage between surface and groundwater, plant species composition, habitat complexity, and bird communities has implications for water management and in determining environmental flows.
[8] Vest K R, Elmore A J, Kaste J M, et al.

Estimating total horizontal aeolian flux within shrub-invaded groundwater-dependent meadows using empirical and mechanistic models

[J]. Journal of Geophysical Research-Earth Surface, 2013, 118(2): 1 132-1 146.

DOI      URL      [本文引用: 1]     

[9] Meinzer O E.

The Occurrence of Ground Water in the United States: With A Discussion of Principles

[R]. Washington DC:U.S. Government Printing office, 1923.

[本文引用: 1]     

[10] Lewis J.

The application of ecohydrological groundwater indicators to hydrogeological conceptual models

[J]. Ground Water, 2012, 50(5): 679-689.

DOI      URL      PMID      [本文引用: 2]      摘要

This article reviews the application of ecohydrological indicators to hydrogeological conceptual models for earth-scientists with little or no botanical training. Ecohydrological indicators are plants whose presence or morphology can provide data about the hydrogeological setting. By examining the literature from the fields of ecohydrology, hydrogeology, geobotany, and ecology, this article summarizes what is known about groundwater indicator plants, their potential for providing information about the aquifer, and how this data can be a cost-effective addition to hydrogeological conceptual models. We conclude that the distribution and morphology of ecohydrological groundwater indicator plants can be useful to hydrogeologists in certain circumstances. They are easiest to evaluate in arid and semiarid climates. Ecohydrological groundwater indicators can provide information about the absolute depth to the water table, patterns of groundwater fluctuation, and the mineralization of the aquifer. It is shown that an understanding of the meteorological conditions of a region is often necessary to accurately interpret groundwater indicator plants and that useful data is usually obtained by observing patterns of vegetation behavior rather than interpreting individual plants. The most serious limitations to applying this source of information to hydrogeological conceptual models are the limited data in the literature and the regional nature of many indicator plants. The physical and physiological indications of the plants exist, but little effort has been made to interpret them. This article concludes by outlining several potential lines of research that could further the usefulness of ecohydrological groundwater indicators to the hydrogeological community.
[11] Sommer B, Froend R.

Resilience of phreatophytic vegetation to groundwater drawdown: Is recovery possible under a drying climate?

[J]. Ecohydrology, 2011, 4(1): 67-82.

DOI      URL      [本文引用: 2]     

[12] Krause S, Hannah D M, Sadler J P, et al.

Ecohydrology on the edge: Interactions across the interfaces of wetland, riparian and groundwater-based ecosystems Preface

[J]. Ecohydrology, 2011, 4(4): 477-480.

DOI      URL      [本文引用: 2]     

[13] Yuan Xingzhong, Luo Guyuan.

A brief review for ecological studies on hyporheic zone of stream ecosystem

[J]. Acta Ecologica Sinica, 2003, 23(5): 956-964.

Magsci      [本文引用: 1]     

[袁兴中, 罗固源.

溪流生态系统潜流带生态学研究概述

[J]. 生态学报, 2003, 23(5): 956-964.]

DOI      URL      Magsci      [本文引用: 1]      摘要

最近一、二十年 ,对潜流带研究的逐渐开展已使人们充分认识到潜流带在溪流生态系统结构、功能和生态过程中的重要意义。潜流带是溪流地表水和地下水相互作用的界面 ,占据着在地表水、河道之下的可渗透的沉积缓冲带、侧向的河岸带和地下水之间的中心位置。有关潜流带重要性的近期研究进展增进了我们对溪流生态学的理解 ,大大扩展了水生生物生境的物理空间以及生物相互作用和生产力存在的区域。潜流带生境包含多样化的、丰度很高的动物区系 ,其常常控制着溪流生物生产力和生态过程。潜流带对溪流生态系统的潜在重要性来自于生物学和生物地化活动。潜流带在溪流有机物的分解和水质净化等生态过程中发挥着重要的作用。潜流带是溪流集水区内各种环境特征的综合表征体 ,它能够反映周围景观的环境条件及其变化 ,集水区内的自然或人为干扰 ,都会影响到潜流带的水文循环、理化特征、生境分布、营养结构和基本生态过程。因此 ,对溪流生态系统的综合管理必须包括潜流带。最后对潜流带生态学研究现存的主要问题及未来研究展望提出了几点看法。
[14] J, Wang X S, Zhou Y, et al.

Groundwater-dependent distribution of vegetation in Hailiutu River catchment, a semi-arid region in China

[J]. Ecohydrology, 2013, 6(1): 142-149.

DOI      URL      [本文引用: 1]     

[15] Munch Z, Conrad J.

Remote sensing and GIS based determination of groundwater dependent ecosystems in the Western Cape, South Africa

[J]. Hydrogeology Journal, 2007, 15(1): 19-28.

DOI      URL      [本文引用: 1]     

[16] Meinzer O E.

Plants as indicators of ground water

[J]. Journal of the Washington Academy of Science, 1926, 16(21): 553-564.

DOI      URL      [本文引用: 2]     

[17] Zhu J, Yu J, Wang P, et al.

Interpreting the groundwater attributes influencing the distribution patterns of groundwater-dependent vegetation in northwestern China

[J]. Ecohydrology, 2012, 5(5): 628-636.

DOI      URL      [本文引用: 1]     

[18] Jin Xiaomei.

Quantitative relationship between the desert vegetation and groundwater depth in Ejina Oasis, the Heihe River Basin

[J]. Earth Science Frontiers, 2010, 17(6): 181-186.

[本文引用: 1]     

[金晓媚.

黑河下游额济纳绿洲荒漠植被与地下水位埋深的定量关系

[J]. 地学前缘, 2010,17(6):181-186.]

URL      [本文引用: 1]      摘要

干旱区植被生长与地下水的依存关系是生态水文地质学研究的热点之一。由于降水稀少,中国西北地区植被的生长发育与地下水的关系极为密切,从大尺度上研究地下水变化的生态效应问题对生态环境的保护和恢复具有重要的意义。借助遥感方法,结合地下水观测数据,在区域尺度上定量地研究了我国黑河下游额济纳绿洲荒漠植被发育与地下水埋深的关系。结果表明:适宜植被生长的地下水埋深范围约为2~5 m,当地下水埋深超过5.5 m时,由于植被根系缺水,不能维持冠层正常生长,几乎没有植被发育。
[19] Chen Weitao, Sun Ziyong, Wang Yanxin, et al.

Major scientific issures on water demand studying for groundwater dependent vegetation ecosystems in inland arid regions

[J]. Earth Science — Journal of China University of Geosciences, 2014(9):1 340-1 348.

[本文引用: 1]     

[陈伟涛, 孙自永, 王焰新,.

论内陆干旱区依赖地下水的植被生态需水量研究关键科学问题

[J]. 地球科学——中国地质大学学报, 2014(9):1 340-1 348.]

[本文引用: 1]     

[20] Wang P, Zhang Y, Yu J, et al.

Vegetation dynamics induced by groundwater fluctuations in the lower Heihe River Basin, Northwestern China

[J]. Journal of Plant Ecology, 2011, 4(1/2): 77-90.

DOI      URL      [本文引用: 2]     

[21] Rhymes J, Wallace H, Fenner N, et al.

Evidence for sensitivity of dune wetlands to groundwater nutrients

[J]. The Science of the Total Environment, 2014, 490: 106-113.

DOI      URL      PMID      [本文引用: 1]      摘要

61We studied a dune system surrounded by fertilised agricultural land.61Groundwater nutrients affected vegetation and soils in dune slack wetlands.61Change in vegetation and soil were observed at 0.2mg/L of DIN within groundwater.
[22] Peters J.

Ecohydrology of wetlands: Monitoring and Modelling Interactions between Groundwater, Soil and Vegetation

[D]. Ghent, Belgium:Ghent University, 2008.

[本文引用: 1]     

[23] Baattrup-Pedersen A, Hoffmann C C, Audet J, et al.

Groundwater nitrogen and the distribution of groundwater-dependent vegetation in riparian areas in agricultural catchments

[J]. Ecological Engineering, 2014, 66(1): 111-119.

DOI      URL      [本文引用: 1]     

[24] Howard J, Merrifield M.

Mapping groundwater dependent ecosystems in California

[J]. PLoS ONE, 2010, 5(6): e11249.

DOI      URL      PMID      [本文引用: 1]      摘要

Abstract BACKGROUND: Most groundwater conservation and management efforts focus on protecting groundwater for drinking water and for other human uses with little understanding or focus on the ecosystems that depend on groundwater. However, groundwater plays an integral role in sustaining certain types of aquatic, terrestrial and coastal ecosystems, and their associated landscapes. Our aim was to illuminate the connection between groundwater and surface ecosystems by identifying and mapping the distribution of groundwater dependent ecosystems (GDEs) in California. METHODOLOGY/PRINCIPAL FINDINGS: To locate where groundwater flow sustains ecosystems we identified and mapped groundwater dependent ecosystems using a GIS. We developed an index of groundwater dependency by analyzing geospatial data for three ecosystem types that depend on groundwater: (1) springs and seeps; (2) wetlands and associated vegetation alliances; and (3) stream discharge from groundwater sources (baseflow index). Each variable was summarized at the scale of a small watershed (Hydrologic Unit Code-12; mean size = 9,570 ha; n = 4,621), and then stratified and summarized to 10 regions of relative homogeneity in terms of hydrologic, ecologic and climatic conditions. We found that groundwater dependent ecosystems are widely, although unevenly, distributed across California. Although different types of GDEs are clustered more densely in certain areas of the state, watersheds with multiple types of GDEs are found in both humid (e.g. coastal) and more arid regions. Springs are most densely concentrated in the North Coast and North Lahontan, whereas groundwater dependent wetlands and associated vegetation alliances are concentrated in the North and South Lahontan and Sacramento River hydrologic regions. The percentage of land area where stream discharge is most dependent on groundwater is found in the North Coast, Sacramento River and Tulare Lake regions. GDE clusters are located at the highest percentage in the North Coast (an area of the highest annual rainfall totals), North Lahontan (an arid, high desert climate with low annual rainfall), and Sacramento River hydrologic regions. That GDEs occur in such distinct climatic and hydrologic settings reveals the widespread distribution of these ecosystems. CONCLUSIONS/SIGNIFICANCE: Protection and management of groundwater-dependent ecosystems are hindered by lack of information on their diversity, abundance and location. By developing a methodology that uses existing datasets to locate GDEs, this assessment addresses that knowledge gap. We report here on the application of this method across California, but believe the method can be expanded to regions where spatial data exist.
[25] Peters J, De Baets B, Samson R, et al.

Modelling groundwater-dependent vegetation patterns using ensemble learning

[J]. Hydrology & Earth System Sciences, 2008, 12(2): 603-613.

DOI      URL      [本文引用: 2]      摘要

Vegetation patterns arise from the interplay between intraspecific and interspecific biotic interactions and from different abiotic constraints and interacting driving forces and distributions. In this study, we constructed an ensemble learning model that, based on spatially distributed environmental variables, could model vegetation patterns at the local scale. The study site was an alluvial floodplain with marked hydrologic gradients on which different vegetation types developed. The model was evaluated on accuracy, and could be concluded to perform well. However, model accuracy was remarkably lower for boundary areas between two distinct vegetation types. Subsequent application of the model on a spatially independent data set showed a poor performance that could be linked with the niche concept to conclude that an empirical distribution model, which has been constructed on local observations, is incapable to be applied beyond these boundaries.
[26] Eamus D, Froend R.

Groundwater-dependent ecosystems: The where, what and why of GDEs

[J]. Australian Journal of Botany, 2006, 54(2): 91-96.

DOI      URL      [本文引用: 2]     

[27] Lv J, Wang X S, Zhou Y, et al.

Groundwater-dependent distribution of vegetation in Hailiutu River catchment, a semi-arid region in China

[J]. Ecohydrology, 2013, 6(1): 142-149.

DOI      URL      [本文引用: 1]     

[28] Eamus D, Froend R, Loomes R, et al.

A functional methodology for determining the groundwater regime needed to maintain the health of groundwater-dependent vegetation

[J]. Australian Journal of Botany, 2006, 54(2): 97-114.

DOI      URL      [本文引用: 3]     

[29] Naumburg E, Mata-Gonzalez R, Hunter R G, et al.

Phreatophytic vegetation and groundwater fluctuations: A review of current research and application of ecosystem response modeling with an emphasis on Great Basin vegetation

[J]. Environmental Management, 2005, 35(6): 726-740.

DOI      URL      [本文引用: 1]     

[30] Zencich S J, Froend R H, Turner J V, et al.

Influence of groundwater depth on the seasonal sources of water accessed by Banksia tree species on a shallow, sandy coastal aquifer

[J]. Oecologia, 2002, 131(1): 8-19.

DOI      URL      [本文引用: 1]     

[31] Miller G R, Chen X Y, Rubin Y, et al.

Groundwater uptake by woody vegetation in a semiarid oak savanna

[J]. Water Resources Research, 2010, 46(10): 2 290-2 296.

DOI      URL      [本文引用: 1]      摘要

Groundwater can serve as an important resource for woody vegetation in semiarid landscapes, particularly when soil water is functionally depleted and unavailable to plants. This study examines the uptake of groundwater by deciduous blue oak trees (Quercus douglasii) in a California oak savanna. Here we present a suite of direct and indirect methods that demonstrate its occurrence and quantify its rates. The study site is underlain by a thin soil layer and fractured metavolcanic bedrock. Typical depth to groundwater is approximately 8 m. A variety of water storage and flux measurements were collected from 2005 to 2008, including groundwater levels, soil moisture contents, sap flows, and latent heat fluxes. During the dry season, groundwater uptake rates ranged from 4 to 25 mm monthand approximately 80% of total ET during June, July, and August came from groundwater. Leaf and soil water potentials supported these results, indicating that groundwater uptake was thermodynamically favorable over soil water uptake for key portions of the growing season. These findings strongly suggest that blue oaks should be considered obligate phreatophytes and that groundwater reserves provide a buffer to rapid changes in their hydroclimate, if these assets are not otherwise depleted by prolonged drought or human consumption. While groundwater uptake may provide for short-term protection, it should be viewed not as a mechanism for continued plant growth. It allows the woody vegetation to subsist during the summer but not to flourish.
[32] Vervoort R W, Van Der Zee S.

Simulating the effect of capillary flux on the soil water balance in a stochastic ecohydrological framework

[J]. Water Resources Research, 2008, 44(8): W08425.DOI:10.1029/2008WR06889.

[本文引用: 2]     

[33] Teuling A J, Hupet F, Troch P A, et al.

Climate variability effects on spatial soil moisture dynamics

[J]. Geophysical Research Letters, 2007, 34(6): 125-141.

DOI      URL      [本文引用: 2]      摘要

We investigate the role of interannual climate variability on spatial soil moisture variability dynamics for a field site in Louvain-la-Neuve, Belgium. Observations were made during 3 years under intermediate (1999), wet (2000), and extremely dry conditions (2003). Soil moisture variability dynamics are simulated with a comprehensive model for the period 1989-2003. The results show that climate variability induces non-uniqueness and two distinct hysteresis modes in the yearly relation between the spatial mean soil moisture and its variability. We demonstrate that the direction of hysteresis is related to a yearly climate index that does not require soil moisture observations.
[34] Zhuang L, Chen Y N.

Physiological responses of three contrasting plant species to groundwater level changes in an arid environment

[J]. Journal of Integrative Plant Biology, 2006, 48(5): 520-526.

DOI      URL      [本文引用: 1]     

[35] Li J, Yu B, Zhao C, et al.

Physiological and morphological responses of Tamarix ramosissima and Populus euphratica to altered groundwater availability

[J]. Tree Physiology, 2013, 33(1): 57-68.

DOI      URL      [本文引用: 1]     

[36] Shi Z, Cheng R, Liu S, et al.

Carbon assimilation, 13C and water relations of Elaeagnus angustifolia grown at two groundwater depths in the Minqin desert, China

[J]. Plant Biosystems, 2008, 142(3): 525-532.

DOI      URL      [本文引用: 1]     

[37] Chen Yaning, Chen Yapeng, Li Weihong, et al.

Response of ABA content of Populus euphratica to groundwater depth changes in lower Tarim River

[J]. Chinese Science Bulletin, 2003, 48(9): 958-961.

Magsci      [本文引用: 1]     

[陈亚宁, 陈亚鹏, 李卫红,.

塔里木河下游胡杨脯氨酸累积对地下水位变化的响应

[J]. 科学通报, 2003, 48(9): 958-961.]

Magsci      [本文引用: 1]      摘要

分析了胡杨体内脯氨酸累积过程与地下水位变化的关系. 研究表明, 在干旱胁迫条件下, 胡杨体内脯氨酸累积与地下水位梯度变化存在密切的关系; 胡杨脯氨酸含量随地下水位降低和水分胁迫程度加大而增加; 在地下水位5.14 ~ 3.64和10.16 ~ 9.46 m之间的位置, 胡杨脯氨酸含量的累积有两个明显异常高点. 结合野外样地调查分析, 认为3.5 ~ 4.5 m之间为塔里木河下游胡杨生存的合理地下水位, 4.5 m以下为胡杨正常生长的胁迫水位, 而当地下水位在9 ~ 10 m之间时, 为塔里木河下游胡杨生存(死亡)的临界地下水位.
[38] Zhang Pei, Yuan Guofu, Zhuang Wei, et al.

Ecophysiological responses and adaptation of Tamarix ramosissima to changes in groundwater depth in the Heihe River Basin

[J]. Acta Ecologica Sinica, 2011, 31(22): 6 677-6 687.

[本文引用: 1]     

[张佩, 袁国富, 庄伟, .

黑河中游荒漠绿洲过渡带多枝柽柳对地下水位变化的生理生态响应与适应

[J]. 生态学报, 2011, 31(22): 6 677-6 687.]

URL      [本文引用: 1]      摘要

以黑河中游荒漠绿洲过渡带主要建群种多枝柽柳成年体为研究对象,对野外不同地下水埋深处柽柳叶片生理生态特性进行观测和分析,评价分析多枝柽柳对地下水埋深差异和地下水位季节变化的响应过程和适应机制.结果显示:在相似大气环境条件下,不同地下水埋深之间,多枝柽柳叶片的生理生态指标没有明显差异,但对于地下水位的季节波动,则表现出较为明显的变化和响应;柽柳通过气孔的调节,在更深地下水埋深下,水分条件更差时,保持了稳定的气孔导度和较高的叶片胞间二氧化碳浓度,从而维持相对稳定的碳同化能力及较高水分利用效率,表现出较好的适应能力;在不同地下水埋深下,叶片生理生态指标随地下水位下降的响应特征呈现出明显差异,这种差异暗示了黑河中游荒漠绿洲过渡带多枝柽柳的适宜地下水位在3 m左右.
[39] Horton J L, Kolb T E, Hart S C.

Physiological response to groundwater depth varies among species and with river flow Regulation

[J]. Ecological Applications, 2001, 11(4): 1 046-1 059.

DOI      URL      [本文引用: 1]      摘要

We investigated the physiological response of two native riparian tree species (Populus fremontii and Salix gooddingii) and one exotic species (Tamarix chinensis) to groundwater availability along gradients of depth to groundwater at two rivers in Arizona. Depth to groundwater (DGW) at the dam-regulated Bill Williams River (BWR) was relatively constant and shallow (<4 m). Populus fremontii at BWR did not experience reduced water availability at deeper groundwater depths, as evidenced by high predawn water potential. However, leaf gas exchange of P. fremontii was sensitive to high vapor pressure deficit where surface flow was ephemeral at BWR. Lower predawn water potentials of S. gooddingii at BWR suggested reduced water availability at deeper groundwater depths, but these reductions did not adversely affect net photosynthetic rate. Along the range of depth to groundwater at BWR, all three species suffered little canopy dieback, and dieback was not related to depth to groundwater. Depth to groundwater at the free-flowing Hassayampa River (HRP) was much greater and declined more rapidly in the ephemeral reaches than at BWR. Both P. fremontii and S. gooddingii experienced reduced water availability at deeper groundwater depths at HRP, as evidenced by lower predawn water potential. Both species also experienced reduced leaf gas exchange at deeper groundwater depths. Canopy dieback of all species was higher at HRP than at BWR and increased with increasing DGW, especially when DGW fell below 3 m. There was evidence to support branch sacrifice in these three riparian tree species as a means of improving water status in the surviving shoot. However, branch sacrifice was insufficient to prevent mortality in some of the native trees where DGW fell below 3 m at HRP. In contrast to the native species, T. chinensis showed no change in water availability, leaf gas exchange, or canopy dieback with increasing DGW at either river. Leaf gas exchange was lower and dieback was greater for T. chinensis at HRP where depth to groundwater was greater than at BWR, but there was no mortality at either river. Our results show that deep groundwater is more detrimental to the physiological condition of P. fremontii and S. gooddingii than it is to T. chinensis. Also, the pronounced differences in DGW and tree physiological performance between BWR and HRP suggest that dam regulation can increase water availability to mature trees in some desert riparian ecosystems. Finally, our study also provides estimates of the range of DGW that can maintain healthy, mature P. fremontii and S. gooddingii trees.
[40] Li Jianguo, Wang Wenchao, Pu Lijie, et al.

Coastal reclamation and saltmarsh carbon budget: Advances and prospects

[J]. Advances in Earth Science, 2017, 32(6): 599-614.

[本文引用: 1]     

[李建国, 王文超, 濮励杰, .

滩涂围垦对盐沼湿地碳收支的影响研究进展

[J]. 地球科学进展, 2017, 32(6): 599-614.]

DOI      URL      [本文引用: 1]      摘要

滨海盐沼湿地是全球重要的碳库,也是典型的脆弱生态系统。近年来,随着人口的增加,滨海盐沼湿地围垦开发已经成为缓解区域人口压力,保障粮食安全,促进经济发展的一项重要措施,特别是在发展中国家。围垦活动过程中必然会改变原有生态系统碳循环的路径和模式,进而影响全球的碳收支平衡。通过对大量文献的检索与总结,对国内外3种滨海盐沼湿地类型(红树林盐沼湿地、河口潮滩盐沼湿地和海岸潮滩盐沼湿地)土壤有机碳含量、固碳速率、碳排放速率以及围垦后的变化进行梳理和概括,给出滨海盐沼湿地围垦后土壤碳循环的一般规律与变化趋势,结果表明:①欧美长期滩涂开发形成的认识与滩涂围垦后的生态环境效应演变不适用于东亚发展中国家的短期高强度农业围垦,应注重东亚地区海岸围垦方式下的碳效应研究;②从滩涂湿地有机碳含量及其固碳速率来看,红树林盐沼湿地最高,河口潮滩盐沼湿地次之,海岸潮滩盐沼湿地最低。土壤黏粒、团聚体和埋藏速率对其具有较为明显的正向效应;淹水频率、盐分、地下水位反之。滩涂围垦后土壤有机碳含量呈先降后增的趋势,其转折点在围垦后30年左右,水田耕作对滩涂土壤有机碳富集效果最明显;③滩涂盐沼湿地的主要碳排放方式是CH_4和CO_2,其中CO_2的排放强度和通量都较大,且以红树林盐沼湿地最高。芦苇和互花米草的土壤碳排放强度相比于光滩要大很多。涨潮的过程中湿地碳排放强度要明显低于涨潮前后。滩涂围垦后的土壤碳排放强度要明显高于自然滩涂土壤,特别是围垦后的旱田耕作下的CO_2排放。从监测的结果来看,围垦前滩涂湿地表现为较强的碳汇,而围垦后表现出较为明显的碳源。最后,提出今后研究的重点方向和内容:抓紧开展滨海盐沼湿地碳收支清单的制定;不同围垦方式对滨海盐17
[41] Luan Junwei, Cui Lijuan, Song Hongtao, et al.

Foreign research progress on carbon cycle in wetland ecosystems

[J]. Wetland Science, 2012, 10(2): 235-242.

Magsci      [本文引用: 2]     

[栾军伟, 崔丽娟, 宋洪涛, .

国外湿地生态系统碳循环研究进展

[J]. 湿地科学, 2012, 10(2): 235-242.]

Magsci      [本文引用: 2]      摘要

<p>在全球变化背景下,面对湿地生态系统是否能维持其碳汇功能等问题,在以下几方面进行了讨论:当前湿<br />地生态系统碳源与碳汇评估中存在的问题;湿地碳源与碳汇功能时空格局变异最新研究进展;影响湿地甲烷排<br />放的因素;湿地碳循环过程对全球变暖的响应模式;湿地生态系统碳循环模拟。认为当前对湿地生态系统碳循<br />环认识的局限性,是导致碳循环成为全球变暖互馈机制中不确定性的主要原因之一。针对中国当前湿地生态<br />系统碳循环研究的特点,提出了中国未来湿地生态系统碳循环研究的焦点问题,即如何在气候变化及人类活动<br />双重影响下,维持中国湿地生态系统现有碳储存库的功能,以及如何提高已退化湿地的固碳功能及潜力。</p>
[42] Zhang Y, Li C, Trettin C C, ,et al.

An integrated model of soil. An integrated model of soil, hydrology, vegetation for carbon dynamics in wetland ecosystems

[J]. Global Biogeochemical Cycles, 2002, 16(4): 9-1-9-17.

[本文引用: 1]     

[43] Frolking S, Roulet N T, Moore T R, et al.

Modeling northern peatland decomposition and peat accumulation

[J]. Ecosystems, 2001, 4(5): 479-498.

DOI      URL      [本文引用: 1]      摘要

To test the hypothesis that long-term peat accumulation is related to contemporary carbon flux dynamics, we present the Peat Decomposition Model (PDM), a new model of long-term peat accumulation. Decomposition rates of the deeper peat are directly related to observable decomposition rates of fresh vegetation litter. Plant root effects (subsurface oxygenation and fresh litter inputs) are included. PDM considers two vegetation types, vascular and nonvascular, with different decomposition rates and aboveground and belowground litter input rates. We used PDM to investigate the sensitivities of peat accumulation in bogs and fens to productivity, root:shoot ratio, tissue decomposability, root and water table depths, and climate. Warmer and wetter conditions are more conducive to peat accumulation. Bogs are more sensitive than fens to climate conditions. Cooler and drier conditions lead to the lowest peat accumulation when productivity is more temperature sensitive than decomposition rates. We also compare peat age-depth profiles to field data. With a very general parameterization, PDM fen and bog age-depth profiles were similar to data from the the most recent 5000 years at three bog cores and a fen core in eastern Canada, but they overestimated accumulation at three other bog cores in that region. The model cannot reliably predict the amount of fen peat remaining from the first few millennia of a peatland's development. This discrepancy may relate to nonanalogue, early postglacial climatic and nutrient conditions for rich-fen peat accumulation and to the fate of this fen peat material, which is overlain by a bog as the peatland evolves, a common hydroseral succession in northern peatlands. Because PDM sensitivity tests point to these possible factors, we conclude that the static model represents a framework that shows a consistent relationship between contemporary productivity and fresh-tissue decomposition rates and observed long-term peat accumulation.
[44] An Peijun, Zhang Zhiqiang, Wang Liwei.

Review of Earth critical zone research

[J]. Advances in Earth Science, 2016, 31(12): 1 228-1 234.

[本文引用: 1]     

[安培浚, 张志强, 王立伟.

地球关键带的研究进展

[J].地球科学进展, 2016, 31(12): 1 228-1 234.]

DOI      URL      [本文引用: 1]      摘要

地球关键带(Earth Critical Zone)由美国国家研究理事会于2001年正式提出以来,倍受关注,取得了重要研究进展。总结分析了美国、德国、澳大利亚、法国和中国等国家,以及欧盟等相关国际组织相继开展和部署的地球关键带研究项目及相关研究计划、主要科学问题、未来发展方向等,并结合我国研究现状,提出我国应加强地球关键带结构、形成与演化机制,地球关键带物质迁移转化与多过程耦合作用机制,地球关键带服务功能、演化特点及其对可持续发展的支撑和影响,地球关键带过程及系统的模型模拟4个方面研究,通过积极与国际科技发达国家开展合作和交流,提高国际大型计划的参与度。
[45] Zhao Wenzhi, Zhou Hong, Liu Hu.

Advances in moisture migration in vadose zone of dryland and recharge effects on groundwater dynamics

[J]. Advances in Earth Science, 2017, 32(9): 899-909.

[本文引用: 1]     

[赵文智, 周宏, 刘鹄.

干旱区包气带土壤水分运移及其对地下水补给研究进展

[J]. 地球科学进展, 2017, 32(9): 899-909.]

DOI      URL      [本文引用: 1]      摘要

包气带是指地表到地下水之间垂直剖面中土壤孔隙没有被水充满、水分处于非饱和状态的区域,是地表水进入地下水的通道。包气带土壤水分运移过程不仅影响到地下水补给,而且与相邻景观之间存在水力联系。评述了干旱区包气带土壤水分运移模拟、地球化学示踪技术、地球物理技术在包气带土壤水分运移研究中的应用、影响包气带土壤水分运移及对地下水补给的因素、包气带水分运移对景观间水分交换的影响等方面的研究进展,提出在未来的研究中,应加强包气带土壤水分运移参数的试验观测及数据库建立、加强包气带土壤水分运移及其对地下水补给的研究,应借鉴地球关键带研究的思路,开展包气带土壤水分运移、溶质运移、地下水补给耦合研究。
[46] Chen Yaning, Li Weihong, Xu Hailiang, et al.

The influence of groundwater on vegetation in the lower reaches of Tarim River, China

[J]. Acta Geographica Sinica, 2003, 58(4): 542-549.

[本文引用: 1]     

[陈亚宁, 李卫红, 徐海量,.

塔里木河下游地下水位对植被的影响

[J]. 地理学报, 2003, 58(4):542-549.]

[本文引用: 1]     

[47] Zhao Wenzhi, Liu Hu.

Recent advances in desert vegetation response to groundwater table changes

[J]. Acta Ecologica Sinica, 2006, 26(8): 2 703-2 708.

[本文引用: 1]     

[赵文智, 刘鹄.

荒漠区植被对地下水埋深响应研究进展

[J]. 生态学报, 2006,

26(8): 2 703-2 708]

.

DOI      URL      [本文引用: 1]      摘要

荒漠区植被包括以旱生植物为主的荒漠植被和以中生植物为主的荒漠河岸林。综述了荒漠区植被对地下水埋深在个体、种群、群落以及斑块尺度上响应的研究成果,指出:荒漠区植物对地下水埋深的响应并不是简单的线性关系,而是植物适应气候、土壤、地下水等环境因素综合作用的结果,应在地下水与植被达到平衡态的基础上充分考虑生境土壤异质性、植被可塑性并采用长期定位和控制试验相结合的方法进行综合研究。强调在今后的研究中,加强同位素示踪技术和高光谱遥感技术的应用,开展植物水力提升及其机理研究;加强荒漠区植被对地下水响应机理研究特别是微观尺度(分子水平)和响应过程长期定位研究;重视植被响应地下水位波动和水质变化的研究;强化在景观尺度和生态系统尺度集成研究,以便为管理包括地下水在内的荒漠生态系统提供依据。
[48] Dwire K A, Kauffman J B, Baham J E.

Plant species distribution in relation to water-table depth and soil redox potential in montane riparian meadows

[J]. Wetlands, 2006, 26(1): 131-146.

DOI      URL      [本文引用: 1]     

[49] Famiglietti J S.

The global groundwater crisis

[J]. Nature Climate Change, 2014, 4(11): 945.

DOI      URL      [本文引用: 1]      摘要

Groundwater depletion the world over poses a far greater threat to global water security than is currently acknowledged.
[50] Guderle M, Hildebrandt A.

Using measured soil water contents to estimate evapotranspiration and root water uptake profiles—A comparative study

[J]. Hydrology & Earth System Sciences, 2015, 19(1): 409-425.

[本文引用: 1]     

[51] Rahgozar M, Shah N, Ross M.

Estimation of evapotranspiration and water budget components using concurrent soil moisture and water table monitoring

[J]. Isrn Soil Science, 2012, (1/4): 119-142.

[本文引用: 1]     

[52] Liu H, Lin H.

Frequency and control of subsurface preferential flow: From pedon to catchment scales

[J]. Soil Science Society of America Journal, 2015, 79(2): 362.

DOI      URL      [本文引用: 1]      摘要

ABSTRACT Quantitative assessment of frequency and control of preferential flow (PF) across the landscape has been largely lacking. Previous work evaluated PF occurrence at 10 sites along a hillslope in the Shale Hills Catchment using soil moisture response to 175 precipitation events. We expanded the analysis to include (i) 237 additional events to test the temporal consistency and predictability of PF occurrence and (ii) 25 additional sites to upscale to the entire catchment. The results showed considerable temporal consistence in both frequency and main controls of PF at the hillslope scale, attributed largely to statistical stability of precipitation patterns during the 6.5-yr monitoring and relatively stable subsurface PF paths. Generally, PF tended to occur more often in response to intense rainfalls and favored conditions at dry hilltop or wet valley sites. When upscaling to the catchment, topographic controls became more evident, leading to the identification of a hidden subsurface PF network. Higher frequency of PF occurred at the hilltop (average 46%) and the valley floor (average 41%), while the overall average frequency for swales was 26% and that for planar and convex hillslopes was 18%. Soil-terrain attributes provided a limited estimation (R-2 = 0.43-0.48) of PF occurrence, suggesting complexities involved in PF dynamics. This study confirmed that the initiation and persistence of PF were controlled by interactions among landforms, soils, initial moisture conditions, precipitation, and seasons. Further investigations of these key controls can lead to improved understanding and modeling of PF from pedon to catchment scales.
[53] Turkeltaub T, Kurtzman D, Dahan O.

Real-time monitoring of nitrate transport in the deep vadose zone under a crop field-implications for groundwater protection

[J]. Hydrology & Earth System Sciences Discussions, 2016, 20(8): 3 099-3 108.

[本文引用: 1]     

[54] Jin Rui, Li Xin, Yan Baoping, et al.

Introduction of eco’hydrological wireless sensor network in the Heihe River Basin

[J]. Advances in Earth Science, 2012, 27(9): 993-1 005.

Magsci      [本文引用: 1]     

[晋锐, 李新, 阎保平,.

黑河流域生态水文传感器网络设计

[J]. 地球科学进展, 2012, 27(9):993-1 005.]

DOI      URL      Magsci      [本文引用: 1]      摘要

<p>在黑河上游八宝河流域和中游盈科灌区,以无线传感器网络为纽带,高效集成流域尺度内密集分布的、多源异构传感器的各种气象、水文及生态观测项目,建立自动化、智能化、时空协同的、各观测节点远程可控的生态水文传感器综合观测网络;通过优化地面采样方案,精细观测和准确度量流域尺度内空间异质性较强的关键水文生态要素的时空动态过程、时空变异性和不确定性;研究针对星载/机载遥感真实性检验的地面传感器采样方案,精细验证遥感反演精度,深入挖掘各种遥感手段在流域综合观测中的作用和潜力;全面提高流域水文生态过程的综合观测能力和观测自动化水平。</p>
[55] Schelde K, Ringgaard R, Herbst M, et al.

Comparing evapotranspiration rates estimated from atmospheric flux and TDR soil moisture measurements

[J]. Vadose Zone Journal, 2011, 10(1): 78-83.

DOI      URL      [本文引用: 1]     

[56] Shah N, Ross M, Trout K.

Using soil moisture data to estimate evapotranspiration and development of a physically based root water uptake model

[M]//Evapotranspiration-Remote Sensing and Modeling. InTech, 2012.DOI:10.5772/18040.

[本文引用: 1]     

[57] Mould D, Frahm E, Salzmann T, et al.

Evaluating the use of diurnal groundwater fluctuations for estimating evapotranspiration in wetland environments: Case studies in southeast England and northeast Germany

[J]. Ecohydrology, 2010, 3(3): 294-305.

DOI      URL      [本文引用: 1]     

[58] Mazur M L C, Wiley M J, Wilcox D A.

Estimating evapotranspiration and groundwater flow from water-table fluctuations for a general wetland scenario

[J]. Ecohydrology, 2014, 7(2): 378-390.

DOI      URL     

[59] Jobbagy E G, Nosetto M D, Villagra P E, et al.

Water subsidies from mountains to deserts: Their role in sustaining groundwater-fed oases in a sandy landscape

[J]. Ecological Applications, 2011, 21(3): 678-694.

DOI      URL     

[60] Chen X, Zhang Z C, Zhang X N, et al.

Estimation of groundwater recharge from precipitation and evapotranspiration by lysimeter measurement and soil moisture model

[J]. Journal of Hydrologic Engineering, 2008, 13(5): 333-340.

DOI      URL      [本文引用: 1]     

[61] Brooksbank K, Veneklaas E J, White D A, et al.

The fate of hydraulically redistributed water in a semi-arid zone eucalyptus species

[J]. Tree Physiology, 2011, 31(6): 649-658.

DOI      URL      PMID      [本文引用: 1]      摘要

ABSTRACT Although hydraulic redistribution has been observed for a range of tree species, including Eucalyptus kochii subsp. borealis (C. Gardner) D. Nicolle, there is limited direct evidence that water taken up by deep roots in moist soil is in fact exuded by shallow roots in dry soil. This paper reports an experiment designed to test this hypothesis. Water enriched with deuterium was added to the groundwater via a slotted tube at 4.5 m depth below 5-year-old E. kochii subsp. borealis trees. Nocturnal sap flow increased markedly immediately after deep irrigation, indicating that the trees were using water from this depth. Two weeks later, samples of surface soil and xylem water were found to contain levels of deuterium up to 30% higher than soils and xylem water from a control plot upslope of the main treatment plot. This is strong evidence that trees used groundwater and that efflux of important amounts of hydraulically redistributed water occurred via the roots of E. kochii subsp. borealis.
[62] Baird K J, Stromberg J C, Maddock T.

Linking riparian dynamics and groundwater: An ecohydrologic approach to modeling groundwater and riparian vegetation

[J]. Environmental Management, 2005, 36(4): 551-564.

DOI      URL      [本文引用: 1]     

[63] Jiménez-Martínez J, Candela L, Molinero J, et al.

Groundwater recharge in irrigated semi-arid areas: Quantitative hydrological modelling and sensitivity analysis

[J]. Hydrogeology Journal, 2010, 18(8): 1 811-1 824.

DOI      URL      [本文引用: 1]     

[64] Ajami H, Meixner T, Maddock T, et al.

Impact of land-surface elevation and riparian evapotranspiration seasonality on groundwater budget in MODFLOW models

[J]. Hydrogeology Journal, 2011, 19(6): 1 181-1 188.

DOI      URL      [本文引用: 1]     

[65] Soylu M E, Istanbulluoglu E, Lenters J D, et al.

Quantifying the impact of groundwater depth on evapotranspiration in a semi-arid grassland region

[J]. Hydrology & Earth System Sciences, 2011, 15(3): 787-806.

[本文引用: 2]     

[66] Vervoort R W, van der Zee S E.

Stochastic soil water dynamics of phreatophyte vegetation with dimorphic root systems

[J]. Water Resources Research, 2009, 45(10): W10439.DOI.10.1029/2008WR007245.

URL      [本文引用: 1]      摘要

As the direct uptake of deep groundwater by vegetation may be essential in semiarid regions, we incorporated this process in stochastic root zone water balance models. The direct water uptake by vegetation via deep tap roots is simulated using one additional empirical parameter. This is considered for the case of feedback with root zone saturation and without such feedback. The model that accounts for feedback between shallow root zone saturation and groundwater uptake by deep roots takes up less water if the shallow root zone is wet. The behavior of the models demonstrates that for certain combinations of climate and groundwater depths this feedback becomes important in determining differences in total evapotranspiration (ET). This feedback mechanism also captures hydraulic redistribution processes. The range of relative contributions of groundwater to ET predicted by the models was similar to values derived in isotope studies
[67] Kelly B F J, Timms W A, Andersen M S, et al.

Aquifer heterogeneity and response time: The challenge for groundwater management

[J]. Crop & Pasture Science, 2013, 64(11/12): 1 141-1 154.

DOI      URL      [本文引用: 1]      摘要

Groundwater is an important contributor to irrigation water supplies. The time lag between withdrawal and the subsequent impacts on the river corridor presents a challenge for water management. We highlight aspects of this challenge by examining trends in the groundwater levels and changes in groundwater management goals for the Namoi Catchment, which is within the Murray-Darling Basin, Australia. The first high-volume irrigation bore was installed in the cotton-growing districts in the Namoi Catchment in 1966. The development of high-yielding bores made accessible a vast new water supply, enabling cotton growers to buffer the droughts. Prior to the development of a groundwater resource it is difficult to accurately predict how the water at the point of withdrawal is hydraulically connected to recharge zones and nearby surface-water features. This is due to the heterogeneity of the sediments from which the water is withdrawn. It can take years or decades for the impact of groundwater withdrawal to be transmitted kilometres through the aquifer system. We present the analysis of both historical and new groundwater level and streamflow data to quantify the impacts of extensive groundwater withdrawals on the watertable, hydraulic gradients within the semi-confined aquifers, and the movement of water between rivers and aquifers. The results highlight the need to monitor the impacts of irrigated agriculture at both the regional and local scales, and the need for additional research on how to optimise the conjunctive use of both surface-water and groundwater to sustain irrigated agriculture while minimising the impact on groundwater-dependent ecosystems.
[68] Yuce G.

The vulnerability of groundwater dependent ecosystems: A study on the Porsuk River Basin (Turkey) as a typical example

[M]//Baba A, Howard K W F, Gunduz O, eds. Groundwater and Ecosystems. Netherland: Springer, 2006: 295-310.

[本文引用: 1]     

[69] Lamontagne S, Taylor A R, Cook P G, et al.

Field assessment of surface water-groundwater connectivity in a semi-arid river basin (Murray-Darling, Australia)

[J]. Hydrological Processes, 2014, 28(4): 1 561-1 572.

DOI      URL      [本文引用: 1]     

[70] Kaplan D, Munoz-Carpena R.

Complementary effects of surface water and groundwater on soil moisture dynamics in a degraded coastal floodplain forest

[J]. Journal of Hydrology, 2011, 398(3/4): 221-234.

DOI      URL      [本文引用: 1]     

[71] Smith J W N, Bonell M, Gibert J, et al.

Groundwater-surface water interactions, nutrient fluxes and ecological response in river corridors: Translating science into effective environmental management

[J]. Hydrological Processes, 2008, 22(1): 151-157.

DOI      URL      [本文引用: 2]     

[72] Aguilera H, Castaño S, Moreno L, et al.

Model of hydrological behaviour of the anthropized semiarid wetland of Las Tablas de Daimiel National Park (Spain) based on surface water-groundwater interactions

[J]. Hydrogeology Journal, 2013, 21(3): 623-641.

DOI      URL      [本文引用: 1]     

[73] Gu Hongbiao, Chi Baoming, Wang He, et al.

Relationship between surface water and groundwater in the Liujiang Basin—Hydrochemical constrains

[J]. Advances in Earth Science, 2017, 32(8): 789-799.

[本文引用: 1]     

[谷洪彪, 迟宝明, 王贺, .

柳江盆地地表水与地下水转化关系的氢氧稳定同位素和水化学证据

[J]. 地球科学进展, 2017, 32(8): 789-799.]

DOI      URL      [本文引用: 1]      摘要

地表水与地下水相互作用是水循环研究的重要组成部分,是研究区域水资源量的基础。通过实地水文地质调查和采样,在对水体氢氧稳定同位素和水化学组成测定的基础上,分析了盆地内枯水期河水和地下水的水化学和氢氧同位素组成特征及空间变化规律,旨在揭示河水与地下水的相互转化关系。研究表明:盆地内地下水主要为HCO3-Ca和HCO3-Ca·Mg类型低矿化度水,各区域地下水具有统一联系性,经历了相同或相似的水化学形成作用;河水水化学类型与地下水相同,且水化学成分来源一致。地下水和河水氢氧同位素组成相接近,最终来源主要为大气降水补给。其中河水在径流过程中受蒸发浓缩作用影响,重同位素略富集。受地形地貌、地质及水文地质条件影响,盆地内地下水与河水之间的补给—排泄相互作用关系具有明显的分段性,相互转化频繁。大石河上游区域和东宫河流域总体上表现为河水受两侧地下水补给;大石河下游区域,表现为河水补给两侧地下水。
[74] Huang T, Pang Z.

Estimating groundwater recharge following land-use change using chloride mass balance of soil profiles: A case study at Guyuan and Xifeng in the Loess Plateau of China

[J]. Hydrogeology Journal, 2011, 19(1): 177-186.

DOI      URL      [本文引用: 1]     

[75] Krause S, Hannah D, Fleckenstein J.

Hyporheic hydrology: Interactions at the groundwater-surface water interface

[J]. Hydrological Processes, 2009, 23(15): 2 103-2 107.

DOI      URL      [本文引用: 1]      摘要

.
[76] Foglia L, Mcnally A, Harter T.

Coupling a spatiotemporally distributed soil water budget with stream-depletion functions to inform stakeholder-driven management of groundwater-dependent ecosystems

[J]. Water Resources Research, 2013, 49(11): 7 292-7 310.

DOI      URL      [本文引用: 1]     

[77] Mcfarlane D J, Williamson D R.

An overview of water logging and salinity in southwestern Australia as related to the ‘Ucarro’experimental catchment

[J]. Agricultural Water Management, 2002, 53(1): 5-29.

DOI      URL      [本文引用: 1]     

[78] Runyan C W, D’odorico P.

Ecohydrological feedbacks between salt accumulation and vegetation dynamics: Role of vegetation-groundwater interactions

[J]. Water Resources Research, 2010, 46(11): W11561.DOI:10.1029/2010WR009464

[本文引用: 4]     

[79] Antonellini M, Mollema P N.

Impact of groundwater salinity on vegetation species richness in the coastal pine forests and wetlands of Ravenna, Italy

[J]. Ecological Engineering, 2010, 36(9): 1 201-1 211.

DOI      URL      [本文引用: 1]     

[80] Shah N, Nachabe M, Ross M.

Extinction depth and evapotranspiration from ground water under selected land covers

[J]. Groundwater, 2007, 45(3): 329-338.

DOI      URL      [本文引用: 1]     

[81] Huang T M, Pang Z H, Chen Y N, et al.

Groundwater circulation relative to water quality and vegetation in an arid transitional zone linking oasis, desert and river

[J]. Chinese Science Bulletin, 2013, 58(25): 3 088-3 097.

DOI      URL      [本文引用: 1]     

[82] Anderies J M.

Minimal models and agroecological policy at the regional scale: An application to salinity problems in southeastern Australia

[J]. Regional Environmental Change, 2005, 5(1): 1-17.

DOI      URL      [本文引用: 1]     

[83] Chui T F M, Low S Y, Liong S Y.

An ecohydrological model for studying groundwater-vegetation interactions in wetlands

[J]. Journal of Hydrology, 2011, 409(1/2): 291-304.

DOI      URL      [本文引用: 1]      摘要

Despite their importance to the natural environment, wetlands worldwide face drastic degradation from changes in land use and climatic patterns. To help preservation efforts and guide conservation strategies, a clear understanding of the dynamic relationship between coupled hydrology and vegetation systems in wetlands, and their responses to engineering works and climate change, is needed. An ecohydrological model was developed in this study to address this issue. The model combines a hydrology component based on the Richards equation for characterizing variably saturated groundwater flow, with a vegetation component described by Lotka olterra equations tailored for plant growth. Vegetation is represented by two characteristic wetland herbaceous plant types which differ in their flood and drought resistances. Validation of the model on a study site in the Everglades demonstrated the capability of the model in capturing field-measured water table and transpiration dynamics. The model was next applied on a section of the Nee Soon swamp forest, a tropical wetland in Singapore, for studying the impact of possible drainage works on the groundwater hydrology and native vegetation. Drainage of 10 m downstream of the wetland resulted in a localized zone of influence within half a kilometer from the drainage site with significant adverse impacts on groundwater and biomass levels, indicating a strong need for conservation. Simulated water table lant biomass relationships demonstrated the capability of the model in capturing the time-lag in biomass response to water table changes. To test the significance of taking plant growth into consideration, the performance of the model was compared to one that substituted the vegetation component with a pre-specified evapotranspiration rate. Unlike its revised counterpart, the original ecohydrological model explicitly accounted for the drainage-induced plant biomass decrease and translated the resulting reduced transpiration toll back to the groundwater hydrology for a more accurate soil water balance. This study represents, to our knowledge, the first development of an ecohydrological model for wetland ecosystems that characterizes the coupled relationship between variably-saturated groundwater flow and plant growth dynamics.
[84] Barron O, Silberstein R, Ali R, et al. Climate change effects on water-dependent ecosystems in south-western Australia (Reprinted from J.

Hydrol., vol 434, pg 95-109, 2012)

[J]. Journal of Hydrology, 2012, 475:473-487.

DOI      URL      [本文引用: 1]     

[85] Barron O, Froend R, Hodgson G, et al.

Projected risks to groundwater-dependent terrestrial vegetation caused by changing climate and groundwater abstraction in the Central Perth Basin, Western Australia

[J]. Hydrological Processes, 2014, 28(22): 5 513-5 529.

DOI      URL      [本文引用: 2]     

[86] Gowing J, Parkin G, Forsythe N, et al.

Shallow groundwater in sub-Saharan Africa: Neglected opportunity for sustainable intensification of small-scale agriculture?

[J]. Hydrology & Earth System Sciences Discussions, 2016, 10: 519-549.

[本文引用: 1]     

[87] Tomlinson M, Boulton A J.

Ecology and management of subsurface groundwater dependent ecosystems in Australia—A review

[J]. Marine and Freshwater Research, 2010, 61(8): 936-949.

DOI      URL      [本文引用: 1]     

[88] Wilby R L, Dessai S.

Robust adaptation to climate change

[J]. Weather, 2010, 65(7): 180-185.

DOI      URL      [本文引用: 1]      摘要

Not Available
[89] Ficklin D L, Luedeling E, Zhang M H.

Sensitivity of groundwater recharge under irrigated agriculture to changes in climate, CO2 concentrations and canopy structure

[J]. Agricultural Water Management, 2010, 97(7): 1 039-1 050.

DOI      URL      [本文引用: 1]     

[90] Brolsma R J, Van Vliet M T H, Bierkens M F P.

Climate change impact on a groundwater-influenced hillslope ecosystem

[J]. Water Resources Research, 2010, 46(11): W11503.DOI:10.1029/2009WR008782.

URL      [本文引用: 1]      摘要

This study investigates the effect of climate change on a groundwater-influenced ecosystem on a hill slope consisting of two vegetation types, one adapted to wet and one adapted to dry soil conditions. The individual effects of changes in precipitation, temperature, and atmospheric CO2 concentration are compared to the combined effect of these factors. Change in atmospheric conditions is based on the Netherlands. Projected climate change is obtained from an ensemble of nested global and regional climate models (GCMs and RCMs), representing the Intergovernmental Panel on Climate Change Special Report on Emissions Scenarios A2 scenario for 2100. For each GCM-RCM combination, change factors were determined and transferred to a stochastic weather generator. All projections show higher temperatures and less annual precipitation. Simulations were performed using an ecohydrological model, consisting of a dynamic soil-plant-atmosphere-continuum model that is fully coupled to a variably saturated hydrological model, using the stochastic weather data as input. Model results show that increasing atmospheric CO2 concentration results in higher biomasses because of higher water use efficiency and a decrease in evaporation downslope where vegetation growth is light limited. The change in precipitation regime (drier summers, wetter winters) causes a decreased biomass of especially the dry-adapted species and increased upslope groundwater recharge, resulting in groundwater rise and an upward shift of wet-adapted vegetation. Temperature rise results in decreased biomass because respiration increases stronger than carbon assimilation, while increased transpiration causes drier soils and a prolonged period of water-limited growth. The combined effect is dominated by the increase in temperature and change in precipitation regime, causing decreased biomass throughout. Surprisingly, the effect on groundwater level depends on the degree by which precipitation distribution changes within the year, showing a drop at a small change and a rise when change is larger. This study thus shows that climate change effects on hydrology and vegetation are far from straightforward and call for fully coupled ecohydrological models and upslope-downslope interaction.
[91] Jolly I D, Mcewan K L, Holland K L.

A review of groundwater-surface water interactions in arid/semi-arid wetlands and the consequences of salinity for wetland ecology

[J]. Ecohydrology, 2008, 1(1): 43-58.

DOI      URL      [本文引用: 1]     

[92] Rodriguez-Iturbe I, D’odorico P, Laio F, et al.

Challenges in humid land ecohydrology: Interactions of water table and unsaturated zone with climate, soil, and vegetation

[J]. Water Resources Research, 2007, 43(9): W09301.DOI:10.1029/2007WR006073.

[本文引用: 1]     

[93] Laio F, Tamea S, Ridolfi L, et al. Ecohydrology of groundwater-dependent ecosystems: 1.

Stochastic water table dynamics

[J]. Water Resources Research, 2009, 45(5):W05419.DOI:10.1029/2008WR007292.

[本文引用: 1]     

[94] Pumo D, Tamea S, Noto L V, et al.

Modeling belowground water table fluctuations in the Everglades

[J]. Water Resources Research, 2010, 46(11): W11557. DOI: 10.1029/2009WR008911.

URL      [本文引用: 1]      摘要

Humid lands, such as riparian zones, peatlands, and unsubmerged wetlands, are considered among the most biologically diverse of all ecosystems, providing a bountiful habitat for a large number of plant and animal species. In such ecosystems, the water table dynamics play a key role in major ecohydrological processes. The aim of the present study is to test with field data a recent analytical model for the estimation of the long-term probability distribution of the belowground water table position in groundwater-dependent environments. This model accounts for stochastic rainfall and processes such as infiltration, root water uptake, water flow from/to an external water body, and capillary fluxes. The water table model is tested using field data of groundwater levels recorded in three different sites within the Everglades (Florida, USA). A sensitivity analysis of the model to the soil and vegetation parameters is also carried out. After performing a procedure to determinate appropriate model parameters for the three sites, the steady state probability distribution functions of water table levels predicted by the model are compared to the empirical ones at both the annual and the seasonal time scale. The model is shown capable to reproduce many features of the observed distributions although there exist model predictions which still show some discrepancies with respect to the empirical observations. The potential causes for these discrepancies are also investigated and discussed.
[95] Borgogno F, D'odorico P, Laio F, et al.

Stochastic resonance and coherence resonance in groundwater-dependent plant ecosystems

[J]. Journal of Theoretical Biology, 2012, 293(1): 65-73.

DOI      URL      PMID      [本文引用: 1]      摘要

78 Occurrence of stochastic and coherence resonance in vegetation dynamics. 78 Models of phreatophyte–water table interactions. 78 Noise-induced regular temporal behavior in groundwater-dependent vegetation dynamics. 78 Impact of periodic and stochastic forcings on bistable dynamics. 78 Noised dynamical systems close to Hopf bifurcations.
[96] Vereecken H, Huisman J A, Bogena H, ,et al.

On the value of soil moisture measurements in vadose zone hydrology: A review

[J]. Water Resources Research, 2008, 44(4): W00D06.DOI:10.1029/2008WR006829.

URL      [本文引用: 1]      摘要

We explore and review the value of soil moisture measurements in vadose zone hydrology with a focus on the field and catchment scales. This review is motivated by the increasing ability to measure soil moisture with unprecedented spatial and temporal resolution across scales. We highlight and review the state of the art in using soil moisture measurements for (1) estimation of soil hydraulic properties, (2) quantification of water and energy fluxes, and (3) retrieval of spatial and temporal dynamics of soil moisture profiles. We argue for the urgent need to have access to field monitoring sites and databases that include detailed information about variability of hydrological fluxes and parameters, including their upscaled values. In addition, improved data assimilation methods are needed that fully exploit the information contained in soil moisture data. The development of novel upscaling methods for predicting effective moisture fluxes and disaggregation schemes toward integrating large-scale soil moisture measurements in hydrological models will increase the value of soil moisture measurements. Finally, we recognize a need to develop strategies that combine hydrogeophysical measurement techniques with remote sensing methods.
[97] Mekki I, Jacob F, Marlet S, et al.

Management of groundwater resources in relation to oasis sustainability: The case of the Nefzawa region in Tunisia

[J]. Journal of Environmental Management, 2013, 121(7): 142-151.

[本文引用: 1]     

[98] Brolsma R, Karssenberg D, Bierkens M.Vegetation competition model for water and light limitation.

I: Model description, one-dimensional competition and the influence of groundwater

[J]. Ecological Modelling, 2010, 221(10): 1 348-1 363.

DOI      URL      [本文引用: 1]     

[99] Elmore A, Kaste J, Okin G, et al.

Groundwater influences on atmospheric dust generation in deserts

[J]. Journal of Arid Environments, 2008, 72(10): 1 753-1 765.

DOI      URL      [本文引用: 1]      摘要

Groundwater resources are being overexploited in arid and semi-arid environments globally, which necessitates a deeper understanding of the roles that groundwater plays in earth system processes. Of particular importance is the elucidation of groundwater's effect on the generation of atmospheric dust. While many spatially extensive, highly productive dust sources are influenced to some degree by water resource use, including groundwater pumping and other modifications to shallow groundwater tables (<10 m from the surface), links between near-surface groundwater processes and dust production have only recently been identified. Processes associated with shallow groundwater tables include the vertical movement of salts to the soil surface, the maintenance of near-surface soil moisture, and the support of groundwater-dependent vegetation. Through these processes shallow groundwater dynamics can have both positive and negative feedbacks towards dust generation, and in extreme cases can lead to desertification in semi-arid systems. Here we combine a diverse set of analytical techniques, including remote sensing, ecological evaluation, and fallout radionuclide tracers to characterize groundwater-dependent ecosystems and evaluate the stability of surfaces under variable groundwater conditions. The interdisciplinary approach we describe here is critical to understand the impacts that groundwater management has on earth surface processes.
[100] Murray B R, Hose G C, Eamus D, et al.

Valuation of groundwater-dependent ecosystems: A functional methodology incorporating ecosystem services

[J]. Australian Journal of Botany, 2006, 54(2): 221-229.

DOI      URL      [本文引用: 1]     

[101] Aldous A R, Bach L B.

Hydro-ecology of groundwater-dependent ecosystems: Applying basic science to groundwater management

[J]. Hydrological Sciences Journal, 2014, 59(3/4): 530-544.

DOI      URL      [本文引用: 1]     

[102] Krause S, Heathwaite A L, Miller F, et al.

Groundwater-dependent wetlands in the UK and Ireland: Controls, functioning and assessing the likelihood of damage from human activities

[J]. Water Resources Management, 2007, 21(12): 2 015-2 025.

DOI      URL      [本文引用: 1]     

[103] Thomas F M, Arndt S K, Bruelheide H, et al.

Ecological basis for a sustainable management of the indigenous vegetation in a Central-Asian Desert: Presentation and first results

[J]. Journal of Applied Botany, 2000, 74(5/6): 212-219.

[本文引用: 1]     

[104] Chen Guodong, Xiao Honglang, Xu Zhongmin, et al.

Water issue and its countermeasure in the inland river basins of Northwest China—A case study in Heihe River Basin

[J]. Journal of Glaciology and Geocryology, 2006, 28(3): 407-413.

[本文引用: 1]     

[程国栋, 肖洪浪, 徐中民,.

中国西北内陆河水问题及其应对策略——以黑河流域为例

[J]. 冰川冻土, 2006, 28(3):407-413.]

DOI      URL      [本文引用: 1]      摘要

China is one of the 13 countries that have water scarcity problem according to the statistical data of United Nation.In the inland river basins,which take up 1/3 of the total area in China,with naturally limited water resources and combined with unreasonable utilization,water problems have become critical issues that impact socioeconomic development and ecological protection.Heihe Rive Basin is one of the typical inland river basins in China.Taking it as an example,this article states water,soil,ecological and management problems at basin scale. In the Heihe River Basin,the total water consumption in 1998 was 34.33 10 m,of which 87% were used for agriculture.Meanwhile,oases in the middle reaches consume 68.1% of the total water resources.Population has increased rapidly in the past 50 years which boost the demand of water resources.Although a Water Allocation Plan has been implemented since 1997,production has been improved insignificantly due to lack of scientific approaches.In addition,water yield in the area is much less than the national average level.Therefore,so long as water yield increases through water resources effective utilization at field scale and water is rationally allocated at basin scale,economic development could be sustained and ecological security could be protected within limited water resources.Then,four components are discussed for improving water efficiency in irrigation district,which are transformation of irrigation water into soil water,biological utilization of soil water,crop water efficiency and enterprises setting as market demand.Cases such as improving water holding capacity in upper reaches of the basin,constructing water-saving oasis in the middle reaches and increasing efficiency of environmental flow in the lower reaches are discussed.In the last part of the article,it highlights social aspects of integrated basin water resources management.Social management of water resources consists of supply management and demand management;both technological benefit and allocation benefit should be considered.To construct a social management system of water resources,it involves establishment of an integrated management institute,improvement of related laws and regulations,public participance,mobilization of socioeconomic resources,implement of virtual water strategy,and form a water-saving society.Virtual water strategy has been proved as a successful case.At last,it emphasizes that there are great potential to augment integrated benefit of water,ecology and economy.

/