地球科学进展  2018 , 33 (5): 506-516 https://doi.org/10.11867/j.issn.1001-8166.2018.05.0506

研究论文

长江河口区晚新生代以来沉积化学元素分布及物源指示意义

顾家伟

河南教育学院地理系,河南 郑州 450046

Geochemical Finger Prints on China’s Yangtze River Channelization into the Sea and Its Provenance Implications

Gu Jiawei

Department of Geography of He’nan Institute of Education, Zhengzhou 450046, China

中图分类号:  P512.2

文献标识码:  A

文章编号:  1001-8166(2018)05-0506-11

收稿日期: 2017-11-15

修回日期:  2018-03-10

网络出版日期:  2018-05-20

版权声明:  2018 地球科学进展 编辑部 

基金资助:  *河南省科技攻关重点项目“郑州地铁灰尘重金属污染与人体健康风险评价”(编号:152102310093)资助.

作者简介:

First author:Gu Jiawei(1981-),male,Zhengzhou City,He’nan Province,Associate professor. Research areas include Quaternary research in the Yangtze Delta.E-mail:15939018661@163.com

作者简介:顾家伟(1981-),男,江苏宿迁人,副教授,主要从事第四纪地质学研究.E-mail:15939018661@163.com

展开

摘要

通过对长江三角洲平原上海浦东机场孔(PD钻孔)沉积物的化学元素分析,结合判别函数和因子分析等手段,探讨了元素富集规律随时间的演变特征,揭示了该区物源的演化过程。研究结果显示,PD钻孔沉积物可以划分为I~V带:I带(上新世—早更新世早期)主要富集Pb,Th,U,Ba,La和Ce等元素,此时长江三角洲逐渐由区域性台地向沉降盆地转变,较封闭的局地物源控制了该区沉积特征;II带(早更新世早期—早更新世中期)中Fe,K,As和Rb含量增高,表明此时长江中游物质加入进来,镇江峡口被切穿;III带(早更新世末期—中更新世)由Ti,V和Cr等主导,这些元素代表了上游峨眉山玄武岩,也表征该区物源进一步扩展至长江上游;IV~V带(中新世末—更新世—全新世)元素特征与III带类似,但以Br高含量为特征,表明此时该区地势进一步降低,并遭受多次海侵。PD钻孔的地球化学资料很好地揭示了在我国东西地势倒转的大背景下古长江溯源侵蚀,逐级切穿峡口的演化历程。结合测年资料,推断长江贯通东流至现今河口地区的时间不晚于1.0~1.2 Ma(III带底部)。

关键词: 化学元素 ; 河流贯通 ; 上新世—第四纪沉积物 ; 长江

Abstract

This study investigated sediment source to sink relating the channelization of the Yangtze River into the sea. A sediment borehole (PD) on the river coast, penetrating thick Quaternary sediments, to thin sediments of late Pliocene age until the bedrock recorded a change in sediment provenances through time. Geochemical elements and magneto-stratigraphy helped identify five zones. Zone I (the late Pliocene-the Early Pleistocene), characterized by Pb, Th, U, Ba, La, Ce, Nd, Hf, Y, Zr, Nb and Mn, indicated a local sediment provenance. This means that the study area was a localized sub-basin. Zone II (the Early Pleistocene-the mid-stage of Early Pleistocene), with remarkable high Fe, K, As and Rb implied a new sediment provenance joining to the sub-basin from the middle Yangtze reach after the opening of Zhenjiang Gorge. Zone III (the mid-stage of Early Pleistocene-the Middle Pleistocene), featured by Ti, V, Cr, Sr, Sc, Cu, Co, Ni, Mg, Ca, Na and P suggested a further extension of sediment provenance to the upper Yangtze reach, where a large block of the E’mei basalt occurs. This hinted the channelization of the Three Gorges valley linking the upper and middle Yangtze reaches. Zone IV~V (the Middle Pleistocene-the Holocene) showed their geochemical similarity to Zone III. Discrimination ratio f(Cr,Th), f(La) and f(K,La), a new approach developed for tracing sediment provenance, confirmed a basin-wide sediment source through Zone III-V. These together witness a progressive extension of the sediment provenance towards the upper Yangtze reach, corresponding to the long-term tilting effect of the Cenozoic Topographic Reversal of the eastern China continent. The timing of the Yangtze River channelizing into the continental shelf of East Asia appeared at ca. 1.0~1.2 Ma (bottom of Zone III).

Keywords: Elemental composition ; River channelization ; Plio-Quaternary sediments ; The Yangtze River.

0

PDF (9514KB) 元数据 多维度评价 相关文章 收藏文章

本文引用格式 导出 EndNote Ris Bibtex

顾家伟. 长江河口区晚新生代以来沉积化学元素分布及物源指示意义[J]. 地球科学进展, 2018, 33(5): 506-516 https://doi.org/10.11867/j.issn.1001-8166.2018.05.0506

Gu Jiawei. Geochemical Finger Prints on China’s Yangtze River Channelization into the Sea and Its Provenance Implications[J]. Advances in Earth Science, 2018, 33(5): 506-516 https://doi.org/10.11867/j.issn.1001-8166.2018.05.0506

1 引言

当今世界大河流域沉积物“源—汇”研究包涵了众多的地学研究前沿信息,实质在于揭示流域构造地貌环境演化问题[1],其研究方法主要有两大类:一是跟踪上游源区沉积物搬运入海的过程和探索相关机理;二是利用汇区获得的特征沉积物指标反馈跟踪流域盆地物源和重塑地表过程[2]

无论在流域面积、径流以及输沙量等方面长江都是世界著名的大河,其流域面积超过1.8×106 km2(图1),地质地貌条件复杂多样。长江发源于青藏高原,上游金沙江流向朝南,在云南石鼓地区转向东北,继而流入四川盆地,穿过三峡,连接江汉平原和洞庭湖平原两大沉积盆地,流经南京—镇江峡口,进入长江三角洲并最终注入东海(图1)。长江的河流地貌演化研究已逾1个世纪[5,6,7,8],积累了众多研究成果,不同学者也提出了诸多科学假设,主要可以归纳为:①新生代末期我国地势发生的“东西倒转”,即青藏高原的隆升与亚洲东部(江汉盆地、苏北盆地和东海陆架盆地)的断陷演化和边缘海的形成,应该是诱使长江贯通东流的基本前提条件[4]。②现代长江“诞生”前,区域水系为3个各自独立的河流体系[9,10]。上游水系(金沙江水系)和黄陵背斜以西的水系(古川江)组成长江上游体系曾南流入海,但是否经古红河注入南海尚存争议[11,12];中游体系主要由江汉盆地的内流水系组成,与浙闽隆起山地边缘的短距离河流组成的下游体系基本没有连通。③上游云南石鼓的长江“第一湾”和长江三峡被切穿后,方形成今日之长江,但目前学界对长江“第一湾”和三峡的成因争议仍较大[6~8,13,14]

连接四川盆地和江汉—洞庭湖盆地的三峡地区被认为是长江演化过程中最重要的切穿点,历来是学界研究热点,但目前观点相差较大(图2),且多数研究认为三峡切穿时间在早更新世—中更新世[21,22,26,28~30]。这也突显了长江流域地貌演化研究的复杂性,特别是对从下游向上溯源侵蚀逐级切穿各峡口的贯通过程的机制认识不够。另外,学术界在关注于三峡的同时,常常忽视分隔原中游体系和下游体系的镇江峡口(图1a)。

从河口区钻孔沉积物中解密上游特征沉积信号的搬运过程,对探索长江流域地貌演化过程和机理具有十分重要的科学意义。在长江河口第四纪地质和沉积环境长期研究的基础上,本文利用化学元素示踪,重点探究河口区晚新生代以来物源演变,寻找上游特征物源踪迹,旨在为进一步讨论长江盆地演化和贯通东流的过程提供科学依据。

图1   长江流域地质与地貌概图
(a)长江流域源岩分布(据参考文献[3]修改);(b)长江河口区钻孔分布;(c)新生代以来中国现代地貌剖面地形变化;(d)新生代以来中国早第三纪地貌剖面地形变化(据参考文献[4]修改)

Fig.1   Geological and geomorphological details of the Yangtze drainage basin
(a) Source rocks in the Yangtze Basin(modified after reference[3]); (b) The Yangtze Estuary and the sediment boreholes; (c) Cenozoic topographic reversal geomorphologic profile at present in the eastern China coast; (d) Cenozoic topographic reversal geomorphologic profile during the Early Tertiary(modified after reference[4])

2 长江流域与河口区地质概况

2.1 长江流域

长江流域主要坐落在中生代燕山期造山运动形成的扬子克拉通上,整个流域地层发育齐全,自太古界至第四系均有出露[23](图1)。上游青藏高原和云贵高原源区以变质砂页岩、碳酸盐岩、中酸性和基性火成岩为主,尤其是新生代的岩浆活动非常强烈[9,12]。值得一提的是,上游以峨眉山玄武岩最为典型[41],出露面积广(约60×104 km2),它也是我国惟一的玄武岩省[42],对长江物源贡献显著,并且是长江流域V-Ti磁铁矿的主要来源[43]。前人研究显示峨眉山玄武岩磁铁矿中Ti,V和Cr含量分别大于6%,0.3%和0.05%,远高于一般磁铁矿的含量(<1%,<0.1%,<0.02%)[43],此外峨眉山玄武岩Sc的含量也较高[44]

图2   长江三峡贯通年代总结 (通过参考文献[1,12,15~40]总结获得)

Fig.2   Channelization time of the Three Gorges summarized from the previous studies (summarized from references[1,12,15~40])

长江中游和下游主要为古生代沉积岩和第四纪松散沉积物,特别是酸性—中酸性花岗岩和前寒武纪古老变质岩等广泛出露[23,41],而宁镇山脉主要是以中、古生代碳酸岩和花岗岩为主,局部可见一些碎屑岩[41]。前人研究显示,中酸性火成岩中富含Th-U(放射性元素)[23,43],以及La,Ce,Nd,Zr,Hf,Y和Nb等稀土元素[45,46]。另外,研究还发现长江中游的汉江水系沉积物富集Fe,K和As[47],从而明显区别于干流沉积物。

由此可见,虽然长江流域宽广,但在上游、中游和下游还是存在明显的特征物源区,如上游的峨眉山玄武岩,中游和下游地区酸性—中酸性花岗岩对长江沉积物的贡献较大,而汉江水系沉积物也异于长江干流物质。为此,本文总结了长江上游、中游、下游物源判断的特征元素(表1)。

表1   长江上游、中游、下游物源判断的特征元素

Table 1   Diagnostic geochemical element of the upper, middle and lower Yangtze reaches

区域特征元素参考文献
上游地区峨眉山玄武岩Ti, V, Cr, Sc[23,44]
中游地区汉江Fe, As, K[47]
中游扬子克拉Th, U, REE[23,44]
下游地区下游扬子克拉通Th, U, REE[23,44]

新窗口打开

2.2 长江河口地质背景与年代地层

近30年来,长江河口地区实施了大量的晚新生代—第四纪钻孔[48],它们所揭示的本区第四纪地层分布很具规律,横向对比性强。本文选择了河口区7个有代表性的晚新生代—第四纪钻孔(图1图3),据此简述本区地层特征。

长江河口区基岩以上的松散沉积物主要为第四系堆积物,厚50~300 m,下部见晚第三系沉积物,厚20~100 m(局部缺失)。沉积物分布为西薄东厚,覆盖在由元古代变质岩系和中生代中酸性岩浆岩组成的扬子古板块上(图3)。早第三系地层普遍缺失, 取而代之的是一层古风化壳[49]。晚新生代以来,本区由下而上普遍发育5层砂层(也为含水层),代表了河流沉积,它们被4层在空间上不连续分布的硬土层分隔,在区域上非常有特点[50]。河口区第四纪地层一般厚度小于300 m。其中,下更新统地层最厚,120~150 m;中更新统较薄,小于50 m;上更新统70~80 m,全新统地层一般在20~50 m(图3)。近来的研究表明本区晚第三系—早更新世为山涧盆地冲积环境,早更新世晚期—中更新世过渡为辫状河流、曲流河沉积体系,到了晚更新世演变成滨、浅海相沉积,全新世为三角洲沉积[50]

图3   长江三角洲磁性地层对比图(据参考文献[49]修改)
灰色部分表示钻孔底部较低的磁化率区域

Fig.3   Generalized Plio-Quaternary magneto-stratigraphy of the Yangtze Delta (modified after reference[49])
Gray bar marks lower magnetic susceptibility in the bottom of cores

需要指出的是,长江三角洲地区年代地层大部分建立在古地磁测试的基础上[48,49,50]。采用松山—高斯极性转变事件(M/G)划分上新世(Plio)与早更新世(Q1),布容—松山期(B/M)的转换面为早(Q1)、中更新世(Q2)的界线,布莱克事件(Blake)划分出中(Q2)、晚更新世(Q3),以及哥德堡事件(Gothenburg)为晚更新世(Q3)与全新世(Q4)的界面(图3)。此外,晚第四纪地层划分还有大量光释光、14C年龄的支持[48]。古地磁测年除了20世纪80~90年代的大量钻孔外,近些年又完成了许多钻孔[50];测试工作在南京地质矿产研究所古地磁实验室完成,仪器为美国Schonstedt公司“DSM-2”型数字旋转磁力仪,“ GSD-5”交变退磁仪和“HKB-1”高精度磁化率仪。尽管当前随着科技的发展有了较为先进的超导磁力仪,但过去大量的年代地层测试仍可以从万年分辨率尺度为本文“源—汇”研究提供可靠的科学依据。

3 研究材料与方法

本文选取了研究最为深入且具有代表性的上海浦东机场孔(PD钻孔,图1b,图3)。该孔深354.5 m,穿透了河口区的整个第四纪沉积地层,直达上新统地层和中生代玄武基岩。该孔的古地磁测年、沉积物粒度等资料已由前期研究发表[50],不再赘述。

PD钻孔以0.5~1 m的间距连续取样,获得348个样品,低温烘干(< 40 ℃,72 h),用玛瑙研钵研磨成粉末样,并过180目(<88 μm)尼龙网筛。取过筛后的粉末样10 g,采用压片法分析元素含量,实验在中国科学院地球环境研究所进行,仪器型号为Axios advanced(PW4400)。实验共分析31个元素,包括Ti,V,Cr,Sc,Sr,Cu,Co,Ni,Mg,Ca,Na,P,Fe,K,Rb,As,Pb,Th,U,Ba,Si,Zn,La,Ce,Nd,Zr,Hf,Y,Nb,Mn和Br。实验还一同分析了26个标准样(GSS-8国家标准),对28个重复样进行质量控制,相对偏差都在4%以内,分析结果可信。另外,为了进一步减弱粒度对元素富集的影响,所有元素进行Al归一化处理后绘图[23](图4)。

在前人工作的基础上并结合特征元素(表1),本文选取并计算了判别函数f(Cr,Th)和f(K,La), 计算方式为f(a,b)=(a/b)不同取样深度/(a/b)表层-1。ab代表不同特征元素。另外,尽管稀土元素在沉积物中含量较低,但较其他常微量元素对物源变化更为敏感,而且很大程度上继承了母岩的物源信息[46]。La是稀土中含量最高的元素,因此本文也计算了判别函数f(La)=(La)不同取样深度/(La)表层-1。由计算公式可知,3个判别函数值越趋近于零,表明物源越接近现代长江沉积物,物源区越大,反之亦然。由于特征元素的选取主要考虑到它们在不同母岩中富集程度的差异,或者化学性质的相近性,以及在搬运堆积过程中迁移同步性的特性[44,51]。因此,可以认为,控制判别函数的变化主要是沉积物物源,气候和沉积环境等变化因素影响较小。另外,3个判别函数均用10点滑动平均处理,以突显变化趋势。

图4   PD钻孔沉积物Q型聚类与化学元素分布
(a)包括Ti,V,Cr等元素;(b)包括Th和U等元素和判别函数,所有元素Al归一化处理;垂直虚线为全孔平均值;判别函数粗实线为10点平均;I~V带为TILIA软件聚类分析结果

Fig.4   Q-type cluster plot of PD bore and its geochemical distribution
(a) Consists of Ti, V, Cr and other elemental distribution; (b) Consists of Th, U and other elemental distribution, and three discrimination ratios; All elements are normalized by Al; The vertical dashed line denotes the mean values; Bold lines in discrimination ratios are ten points moving average; Five zones of I~V are established by cluster analysis of TILIA

本研究对所有钻孔样品进行Q型聚类分析(软件TILIA 3.0),以协助划分地层框架。此外,本文还对代表上游物源的特征元素Ti,Cr,V,Sc和下游物源的Th和U 等元素(表1),以及所有样品的元素载荷分别进行R型因子分析(软件SPSS.19),以做进一步物源判别。

4 研究结果

4.1 化学元素和判别函数垂向分布

对全孔样品的Q型聚类分析结果显示,PD钻孔可以划分为5带(图4, I~V):

I带(上新世晚期—早更新世早期):该带Pb,Th,U,Ba,La,Ce,Nd,Hf,Y,Zr,Nb和Mn富集。Ti的含量较II带也稍高。判别函数f(Cr,Th)显示负值,f(K,La)虽然在少数样品中显示正值且存在一定波动,但从滑动平均后的趋势判断,f(K,La)总体上仍显示负值;f(La)显示为正值(图4)。

II带(早更新世早期):Pb,Th,U 和Mn等元素基本继承了I带的富集特征。Fe,K,Rb和As等元素含量显著增加。判别函数f(Cr,Th)仍为负值,f(La)贴近于零,但f(K,La)开始显示正值(图4)。

III带(早更新世早期—中更新世):该带中Ti,V,Cr,Sr,Sc,Cu,Co,Ni,Mg,Ca,Na和P含量显著增加。此外,判别函数f(Cr,Th)值突然增高并趋近于零,f(La)和f(K,La)变化不显著,也接近于零(图4)。

IV带(中更新世—晚更新世):该带元素分布规律大体继承了III带特征,其中Mg,Ca和Na含量进一步增加。3个判别函数f(Cr,Th),f(La)和f(K,La)较III带更加趋近于零。另外值得注意的是,该带Br由之前的零含量,突然猛增,明显区别于I~III带(图4)。

V带(晚更新世末期—全新世):该带大部元素虽含量发生小幅震荡,但总体分布特征较为稳定,与IV带类似。判别函数值也十分平缓,基本在零附近徘徊(图4)。

结合元素垂向分布和样品聚类分析结果看,I带明显区别于II~V带。III带与IV带十分接近,并与II带连接。V带与II~IV带均有一定联系,但与I带差别最大(图4)。

4.2 因子分析

本文对I~V带中6个特征元素进行了R型因子分析(图5),提取出2个主因子,平均共同度为79.7%,表明这2个主因子可以主导解释元素的变化规律。图中显示Ti-V-Cr-Sc在因子1上载荷最高,而Th-U在因子2上载荷最高(图5a)。另外,本文还对全孔样品的6个元素在因子1和因子2上的载荷进一步统计分析。结果表明PD样品分为2簇,I~II带样品位于因子1的负轴上,而III~V带样品位于因子1的正轴上(图5b)。

图5   PD钻孔沉积物特征元素因子分析与样品载荷散点图
(a)6个特征元素的因子分析;(b)PD钻孔样品特征元素的载荷散点图

Fig.5   Factor analysis for the diagnostic elements and the loading distribution of samples in the PD core
(a) Factor analysis for the diagnostic elements of Ti,V,Cr,Sc, Th and U in PD core; (b) The loading of the diagnostic elements of PD core on F1 and F2

5 讨论与结论

长江河口以及北翼苏北平原,是地质历史时期长江东流的主要通道(图1)。前人在这片区域进行了大量研究,但对于长江地质地貌演化以及长江何时贯通东流这一科学问题仍然争论很大,本文利用PD钻孔的地化元素并结合前期发表的重矿物资料[1]进行综合分析,希望能为这一问题的深入认识提供一些借鉴。

5.1 元素分布规律:对流域物源的指示意义

I带中高度富集的Pb,Th,U,Ba以及稀土元素(La,Ce,Nd,Hf,Y,Zr和Nb)指示了局地的中酸性物源[44,48] (图4)。前期发表的PD钻孔重矿物资料也揭示了I带中锆石等矿物组合与中酸性火成岩的关系[1]。I带较高含量的Ti可能与PD钻孔附近基底玄武岩的大量分布有关[50],而其后含量逐渐下降也表明I带中上部物源受基底玄武岩的影响开始明显减少,中酸性物源逐渐主导。I带元素富集特征表明上新世末期长江河口地区仍然是一个局地的封闭物源,主要来自浙闽隆起边缘的邻近山地[40,48],镇江峡口可能尚未切穿(图1)。我们前期研究[50]也显示本区上新世以隆起高地为主,地表经历了强烈的风化剥蚀过程,山间河流广布,沉积环境主要为构造沉降控制的山涧冲、洪积特征。

II带的富集元素较I带有明显增加(图4),特别是高含量的Fe,K,Rb和As可能指示了来自中游汉江流域的物源(表1图4)。这表明,随着长江口外浙闽隆起带下沉[48,50],本区物源逐也逐渐开放,开始接受中游的物质。该孔重矿物资料显示,II带出现了十字石、蓝晶石、透辉石等一些来自变质岩系的矿物,也证明了新物源加入[1],我们认为此时镇江峡口已被切穿。

III带中Ti,V,Cr,Sc,Cu和Co等重金属元素含量明显升高(图4),而这些元素主要产自上游铁镁质原岩,特别是四川西南部的峨眉山玄武岩[23,42,44](表1)。重矿物资料显示,该带首次鉴定出了来自上游峨眉山拉斑玄武岩的紫苏辉石[1]。另外,自III带向上直到孔顶,钻孔样品的磁化率明显增高(图3),这也寓意来自上游峨眉山玄武岩铁镁质物源的加入,从而主导了沉积物的磁性特征[23]。实际上,不仅在长江口众多钻孔中出现磁化率猛增的现象,江汉平原周老孔和苏北平原兴化孔也记录了类似特征[29,30]。以上种种证据均表明长江上游新物源此时已经影响到河口区,三峡口已被切穿。

相较于III带,IV~V带中的元素变化较类似,含量更趋近于平均值(图4)。重矿物资料也显示[1],IV带矿物种类繁多且分布连续,如中酸性岩体的榍石、电气石和金红石等,以及来自变质岩系的蓝晶石和十字石等,另外来自上游峨眉山拉斑玄武岩的紫苏辉石开始连续出现。这表明此时长江口已经接纳来自全流域的物源。

5.2 判别函数

判别函数f(Cr,Th),f(K, La)和f(La)是判别沉积物物源的重要手段(请参见3研究方法)。I带中的f(Cr,Th),f(K, La)和f(La)数值远离零值(图4b),表明此时物源明显有别于现代长江物质。II带中f(K,La)开始显示正值,以及f(La)接近于零(图4b),表明镇江口切穿后中游物质的加入。III~V带中所有判别函数小幅震荡中贴近于零(图4b),暗示了三峡口切穿后,本区开始逐渐接纳来自全流域的物源,物源区已十分接近现今长江;而III~V带中各判别函数总体平缓,无大波动,也表明三峡贯通后物源供应较为稳定。

5.3 Mn和Br: 对河口地势演化的指示意义

Mn是变价金属(+2,+3和+4价),低价Mn在酸性还原环境中一般呈离子态容易迁移带走,而中性或碱性的氧化环境下常常形成高价Mn而沉淀富集[44,51];Br是一种典型的海洋源元素,在陆源碎屑中含量极低[44,51]。本研究中,I~II带Mn含量较高,指示了当时强氧化环境,我们前期研究也表明本区在上新世—早更新世以隆起高地为主,地表经历了强风化剥蚀过程,风化壳广泛分布[50]。随着上新世末期长江口外浙闽隆起带下沉,本区物源逐渐向邻近山地扩展。随着构造沉降的进一步加剧,以及长江口不断被充填,本区逐步演化成冲积平原沉积环境,甚至在中更新世末期开始遭受海侵,IV~V带中Br含量的猛增也证实了这点,前人大量研究中也记录到了本区自中更新世以来的多次海侵事件[23,48,50]

可见,Mn和Br含量的此消彼长,预示了河口地区地势由高到低的演化过程。我们前期对长江口沉降史分析也表明[52],该区进入早更新世以来沉降速度逐级加快,这一部分是本身构造沉降,一部分也与不断接纳中上游物质造成的压实沉降有关。不可否认,正是由于这种“高—低”的地势演变,不断诱使原本只偏居东部的短距离小河流(古长江下游体系)[9]逐渐向上溯源侵蚀,接连切穿镇江口和三峡口,连接原本互相独立的古汉江(中游体系)、古川江和古金沙江(上游体系)等河流[53,54],形成如今贯穿我国东西的世界大河(图6)。

图6   PD钻孔物源演化模式图

Fig.6   Sketch map of PD core provenance evolution

5.4 长江贯通东流的时间和地点问题

PD钻孔因子分析表明,6个特征元素在因子1和因子2上呈现2团(图5a),元素分布也表征了不同的物源区,其中Ti-V-Cr-Sc代表了上游物质,Th-U代表中游—下游物质(表1)。特征元素载荷散点分布也显示,样品总体分为2簇:I~II带和III~V带(图5b)。通过前面的讨论,可以得知I~II带主要由中游—下游物源主导,而III~V带上游物源开始加入进来(图6)。结合PD钻孔及相邻钻孔的年代资料[49,50](图3),推断长江贯通东流至现今河口地区的时间不晚于1.0~1.2 Ma(III带底部)。最近,Yue等[40]对长江三角洲崇明岛LQ24孔进行的磁铁矿和Cr2O3相关分析结果也佐证了我们的结论。

值得一提的是,作为长江贯通后必经之路的江汉—洞庭平原的相关研究也多支持这一观点。张玉芬等[30]通过对江汉平原周老孔沉积物磁化率分析,认为三峡贯通时间为1.17~1.12 Ma。Li等[20]对三峡最老阶地的ESR测年结果也得出了类似结果(>1.16 Ma)。当然,我们也注意到本文观点与河口北翼的苏北兴化孔(>2.32~2.13 Ma[29])和泰州ZKJ-39孔(>2.1 Ma[40])的研究结果相差较大。我们前期对苏北和长江三角洲沉降史对比分析表明[52],上新世时苏北沉降要明显早于也快于长江三角洲,直到早更新世开始长江三角洲才后来居上,这暗示此间如果长江贯通,那么古长江可能最先在苏北入海或湖盆,而后长江三角洲沉降速率间歇式加快[52],诱使古长江河道逐渐南偏,沉积中心随之南移,因此本文PD钻孔记录的上游信号要晚于苏北盆地,它是长江上游物质影响到现今河口地区的时间的一个最晚下限。

实际上,长江中下游沉积盆地多个钻孔,如江汉平原周老孔[30]、苏北平原兴化孔[29]和泰州ZKJ-39孔[40]、长江口区的DY03孔[33]和LQ-24孔[40],以及本文PD钻孔都记录到了沉积物磁性特征从某一深度向上突然增强并一直持续到孔顶的现象(类似图3中灰色区域磁化率向上的突变),这应该是长江贯通东流后上游峨眉山铁镁质玄武岩物源影响到中下游的明确信号。这个信号如此强烈,以至于在不同钻孔的地层中都可以被轻易识别,但不同研究者对这条地层界限的测年结果相差较大,有的甚至是矛盾的,如苏北盆地兴化孔、长江口区PD-99[21] 和DY03孔[33]的测年结果要早于江汉盆地周老孔[30];即使同为长江口区的PD-99[21]、DY03孔[33]与SG7孔[49]、LQ-24孔[40]和本文PD孔的分析结果也难以弥合。因此,在现今物源分析方法越来越多样化的同时[55],如何对比和统一不同测年手段(古地磁、热释光/光释光和ESR等)的分析结果,并发掘新的准确度和精度更高的测年方法可能更为重要。

The authors have declared that no competing interests exist.


参考文献

[1] Chen Jing, Wang Zhanghua, Chen Zhongyuan, et al.

Diagnostic heavy minerals in Plio-Pleistocene sediments of the Yangtze Coast, China with special reference to the Yangtze River connection into the sea

[J]. Geomorphology, 2009, 113: 129-136.

DOI      URL      [本文引用: 6]      摘要

This present study revealed five heavy mineral zones in the Yangtze coastal borehole sediments. Ilmenite, garnet and zircon suite of Zone I of the Pliocene characterizes the derivation of basaltic bedrock and local andesitic–granitic rocks. Indicative limonite in the Zone I sediments formed as alluvial fan facies shows strong chemical weathering. The assemblage of amphibole, straurolite, kyanite and idocrase of metamorphic derivation, together with a few zircon and tourmaline of andesitic–granitic origin in Zone II, represents the extension of sediment sources to the lower and middle Yangtze basin in Early Pleistocene as the study area subsided. Also, the braided to meandering riverine facies demonstrates a longer distance sediment transport. Few heavy minerals remained in Zone III of Mid-Pleistocene, when mottled thicker stiff mud occurred as the lacustrine facies, suggesting a quasi-coastal floodplain with lower capability of sediment transport. Heavy minerals appeared significant and continuous in Zone IV of Late Pleistocene, when changing to the shallow marine facies, inferring much extended sediment sources to the upper Yangtze. Hypersthene, identified primarily in Zone IV, was closely associated with the Er-Mei Mountain tholeiite basalt of the upper Yangtze. Heavy minerals of Zone V remained almost the same as IV during Holocene, when the modern delta evolved. The heavy minerals suggested the timing of the Yangtze connection to the sea at ca 0.1202Ma BP.
[2] Clift P D, Shimizu N, Layne G D, et al.

Development of the Indus Fan and its significance for the erosional history of the Western Himalaya and Karakoram

[J]. Geological Society of America, 2001, 113(8): 1 039-1 051.

DOI      URL      [本文引用: 1]      摘要

Correlation of new multichannel seismic profiles across the upper Indus Fan and Murray Ridge with a dated industrial well on the Pakistan shelf demonstrates that similar to 40% of the Indus Fan predates the middle Miocene, and similar to 35% predates uplift of the Murray Ridge (early Miocene, similar to 22 Ma). The Arabian Sea, in addition to the Makran accretionary complex, was therefore an important repository of sediment from the Indus River system during the Paleogene. Channel and levee complexes are most pronounced after the early Miocene, coincident with an increase in sedimentation rates. Middle Eocene sandstones from Deep Sea Drilling Project Site 224 an the Owen Ridge yield K-feldspars whose Pb isotopic composition, measured by in situ ion microprobe methods, indicates an origin in, or north of, the Indus suture zone. This observation requires that India-Asia collision had occurred by this time and that an Indus River system, feeding material from the suture zone into the basin, was active soon after collision. Pleistocene provenance was similar to that during the Eocene, albeit with greater contribution from the Karakoram. A mass balance of the erosional record on land with deposition in the fan and associated basins suggests that only similar to 40% of the Neogene sediment in the fan is derived from the Indian plate.
[3] Changjiang River Water Resources Commission. Atlas of Changjiang River Basin[M]. Beijing:Sinomaps Press, 1999.

[本文引用: 1]     

[长江水利委员会. 长江流域地图集[M]. 北京:中国地图出版社,1999.]

[本文引用: 1]     

[4] Wang Pingxian.

Neogene stratigraphy and paleoenvironments of China

[J]. Palaeogeography, Palaeoclimatolology, Palaeoecology, 1990, 77(3/4): 315-334.

DOI      URL      [本文引用: 2]      摘要

Neogene deposits are widely distributed in north and west China, whereas in southeast China they are confined to isolated basins. The Neogene in China is predominated by non-marine facies and marine deposits are limited to the Leizhou Peninsula, some islands and continental shelves, although Miocene brackish-water deposits were encountered in Xinjiang, northwest China, and a very brief marine transgression took place in north China near the end of the Pliocene. Non-marine Neogene deposits in China are largely fluvial and lacustrine in origin and composed of mudstones, sandstones and conglomerates with local occurrences of lignites and diatomites. The maximum thickness may exceed 2000 m (e.g. the Qaidam Basin). A rich fauna and flora have been found in many localities and the most famous are the Middle Miocene diatomites at Shanwang, Shandong Province, with unusually well preserved vertebrate and plant fossils. A total of 7 mammal stages have been distinguished in China (5 in the Miocene, 2 in the Pliocene) and tentatively correlated with the European stages. A major realignment of climatic zones occurred before the Paleogene/Neogene boundary, when the Paleogene climatic zones, with a NW-trending broad arid zone across the whole of China, was eliminated and the arid zone moved to northwest China, presumably indicating the onset of the monsoon circulation system. During the last few years, the marine Neogene has been intensively studied in the Leizhou Peninsula and the three major sedimentary basins off the south China coast: the Beibu Gulf (Gulf of Tonkin) Basin, the Zhujiangkou (Pearl River mouth) Basin and the Yinggehai Basin. This sequence is over 3000 m thick, ranges from the Oligocene to the Pleistocene and consists of grey mudstones, sandstones and conglomerates, interbedded with biogenic deposits such as reef limestones and sandy chalk. At least 6 foraminiferal assemblages can be recognized in the three basins: the Psudohastigerina micra assemblage from the Oligocene, the Globigerina ciperoensis-Cassigerinella chipolensis assemblage from the Lower Miocene, the Globoratalia siakensis-Orbulina suturalis assemblage from the Middle Miocene, the Globigerina nepenthes-Globorotalia acostaensis assemblage from the Upper Miocene and/or Lower Plicoene, the Globorotalia tosaensis- Globigerinoides extremus assemblage from the Upper Pliocene and the Globorotalia truncatulinoides assemblage from the Quaternary. The nannofossil succession and larger foraminiferal faunas confirm the ages. The tropical nature of the Neogene faunas is revealed by the occurrences of large foraminifers and warm-water species of other groups. The transgression cycles are controlled by tectonic processes during the Oligocene and Early Miocene, but later by eustatic movements.
[5] Li Siguang.

Geology of the gorge district of the Yangtze (from Ichang to Tzekuei) with special reference to the development of the gorges

[J]. Bulletin of the Geological Society of China, 1924, 3(3/4): 351-391.

[本文引用: 1]     

[李四光.

峡东地质及长江之历史

[J]. 中国地质学会志, 1924, 3(3/4): 351-391.]

[本文引用: 1]     

[6] Shen Yuchang, Yang Yichou.

New research on the problem of river capture of Ching Sha Chiang (the upper Yangtze), Western Yunnan, China

[J]. Acta Geographica Sinica, 1963, 29(2): 87-108.

[本文引用: 2]     

[沈玉昌, 杨逸畴.

滇西金沙江袭夺问题的新探讨

[J]. 地理学报, 1963, 29(2): 87-108.]

[本文引用: 2]     

[7] Ren Meie, Bao Haosheng, Han Tongchun.

Geomorphology of the Jinsha River valley and it s river capture in northwestern Yunnan

[J]. Acta Geographica Sinica, 1959, 25(2): 135-155.

[本文引用: 1]     

[任美锷, 包浩生, 韩同春.

云南西北部金沙江河谷地貌与河流袭夺问题

[J]. 地理学报, 1959, 25(2): 135-155.]

[本文引用: 1]     

[8] Zhao Cheng.

River capture and origin of the Yangtze Gorges

[J]. Journal Changchun University of Earth Sciences, 1996, 26(4) : 428-433.

[本文引用: 2]     

[赵诚.

长江三峡河流袭夺与河流起源

[J]. 长春地质学院学报, 1996, 26(4): 428-433.]

[本文引用: 2]     

[9] Wang Hongzhen.Altas of the Palaeogeography of China[M]. Beijing: Cartographic Publishing House, 1985.

[本文引用: 3]     

[王鸿祯. 中国古地理图集[M]. 北京: 地图出版社, 1985.]

[本文引用: 3]     

[10] Yang Dayuan.Study on the Changjiang River[M]. Nanjing: Hohai University Press, 2004.

[本文引用: 1]     

[杨达源. 长江研究[M]. 南京: 河海大学出版社, 2004.]

[本文引用: 1]     

[11] Brookfiled M E.

The evolution of the great river systems of southern Asia during the Cenozoic India-Asia collision: Rivers draining southwards

[J]. Geomorphology, 1998, 22: 285-312.

DOI      URL      [本文引用: 1]      摘要

During uplift of the Tibetan plateau and surrounding ranges, tectonic processes have interacted with climatic change and with local random effects (such as landslides) to determine the development of the major river systems of Asia. Rivers draining southward have three distinctive patterns that are controlled by different tectonic and climatic regimes. In central and southern Afghanistan, the rivers have moderate gradients and fan out from northeastern sources to disappear into arid depressions. Anti-clockwise rotation of southern Afghanistan, caused by differential compression and right-lateral shear, cut the rivers on the north, while increasingly arid conditions developed on the south as arc accretion in the Makran separated sources from the coastal rains. In Tibet and southeast Asia, the rivers are widely separated and have low gradients on the Tibetan plateau, higher gradients as they turn southwards into close and parallel gorges, before they fan out southeast to enter different seas. Differential shear and clockwise rotation between the compressing Tibetan plateau and Southeast Asia determined the great sigmoidal bends of this river system which was accompanied by increasing aridity, with truncation of river systems in the north and river capture in the south. In the Himalaya and southern Tibet, the main rivers have steep gradients where they cut across the Himalayan range and occasionally truncate former rivers with low gradients on the Tibetan plateau to the north. Southward thrusting and massive frontal erosion of the Himalaya caused progressive truncation of longitudinal rivers on the plateau, accompanied by river capture, and glacial and landslide diversions on the south. The drainage history of southern Asia can be reconstructed by restoring the gross movements of the plates and the tectonic displacement, uplift, and erosion of individual tectonic units. Most important changes in drainage took place in Pliocene to Quaternary times.
[12] Clark M K, Schoenbohm L M, Royden L H, ,et al. Surface uplift. Surface uplift, tectonics,erosion of eastern Tibet from large-scale drainage patterns[J]. Tectonics, 2004,

23: TC1006

.DOI: 10.1029/ 2002TC001402.

[本文引用: 2]     

[13] Xu Zhonglu, Li Xingjian.

Discussion on the genesis of the Hongwen-Diannan valley and the piracy of the Jinsha River in Northwestern Yunnan

[J]. Acta Geographica Sinica, 1982, 37(3): 325-333.

[本文引用: 1]     

[许仲路, 李行健.

滇西北丽江鸿文村—剑川甸南纵谷成因与金沙江袭夺问题之探讨

[J]. 地理学报, 1982, 37(3): 325-333.]

[本文引用: 1]     

[14] He Haosheng, He Kezhao, Zhu Xiangmin.

Study on the piracy of the Jinshajiang River

[J]. Modern Geology, 1989, 3(2): 319-330.

[本文引用: 1]     

[何浩生, 何科昭, 朱祥民.

滇西北金沙江河流袭夺的研究——兼与任美锷先生商榷

[J]. 现代地质, 1989, 3(2): 319-330.]

[本文引用: 1]     

[15] Yang Dayuan.

The origin and evolution of the Three Gorges of the Changjiang Yangzte River

[J]. Journal of Nangjing University(Natural Sciences Edition), 1988, 24(3): 466-474

[杨达源.

长江三峡的起源与演变

[J]. 南京大学学报:自然科学版, 1988, 24(3): 466-474.]

[16] Zhang Yechun.

Formation of the Yangtze Gorges and its significance

[J]. Jounal of Northwest Normal University(Natural Science), 1995, 31(2): 52-56.

[张叶春.

长江三峡贯通的时代及意义

[J]. 西北师范大学学报:自然科学版, 1995, 31(2): 52-56.]

[17] Zhao Cheng.

River capture and origin of the Yangtze Gorges

[J]. Journal of Changchun University of Earth Sciences, 1996, 26(4): 428-433.

[赵诚.

长江三峡河流袭夺与河流起源

[J]. 长春地质学院学报, 1996, 26(4): 428-433.]

[18] Gong Shuyi, Chen Guojin.

Evolution of Quaternary rivers and lakes in the middle reach of the Yangtze River and its effect on environment

[J]. Earth ScienceJournal of China University of Geosciences, 1997, 22(2): 199-203.

[龚树毅, 陈国金.

长江中游地区第四纪河湖演变及其对环境的影响

[J]. 地球科学——中国地质大学学报, 1997, 22(2): 199-203.]

DOI      URL      摘要

第四纪以来,区内长江水系的演化和变迁经过了4个阶段,形成了丰富的资源,同时也是区内主要环境地质问题产生的根本原因,未来演变的趋势是湖群的进一步衰亡和荆江河段地上河继续抬升,这对区内环境潜伏着巨大威胁。
[19] Tang Guizhi, Tao Ming.

Discussion on relationship between the middle Pleistocene glaciation and formation of the Yangtze Gorges

[J]. Geology and Mineral Resources of South China, 1997,(4): 9-18.

[唐贵智, 陶明.

论长江三峡形成与中更新世大姑冰期的关系

[J]. 华南地质与矿产, 1997,(4): 9-18.]

[20] Li Jijun, Xie Shiyou, Kuang Mingsheng.

Geomorphic evolution of the Yangtze Gorges and the time of their formation

[J]. Geomorphology, 2001, 41: 125-135.

DOI      URL      [本文引用: 1]      摘要

The Three Gorges of the Yangtze link its upper rocky valley to downstream alluvial sections. A series of stepped landforms exist in the Three Gorges area, the Sichuan Basin upstream and the Jianghan Basin downstream. These landforms are characterized by two planation surfaces, one erosional surface, and up to seven terraces. The higher planation surface (named the Exi Surface, ~1800–2000 m a.s.l.) and the lower planation surface (1200–1500 m) were probably formed in the Tertiary (prior to 3.4–3.6 Ma B.P.). No correlation seems to exist between the drainage networks of earlier period with the present Yangtze system. It is suggested that the erosional surface found in the study area at 800–1200 m in elevation above sea level was formed in Late Pliocene of Early Pleistocene. During this period following the last planation event, the ancestral Yangtze might have begun to adjust its drainage network. The seven terraces, well developed along the eastern Sichuan Basin and the Three Gorges, date from Early to Late Pleistocene (1.16–0.01 Ma B.P). The chronostratigraphic evidence and diagnostic sediments are generally comparable in time and space from the Sichuan Basin, through the Three Gorges, to the Jianghan Basin. Therefore, the present study proposes that the Three Gorges were cut not later than the initiation of the earliest terrace. The fluvial landforms in the Yangtze Gorges are characterized also by valley-in-valley cross-sections, i.e. an older U-shaped valley cut by a younger V-shaped valley. A tectonic rise accompanied by a rapid downcutting of the river channels predominated in the region.
[21] Fan Daidu, Li Congxian, Yokoyama Ketal, et al.

Monazite age spectra in the Late Cenozoic strata of the Changjiang delta and its implication on the Changjiang run-through time

[J]. Science in China (Series D), 2005,48(10): 1 718-1 727.

[本文引用: 3]     

[范代读, 李从先, Yokoyama K, .

长江三角洲晚新生代地层独居石年龄与长江贯通时间研究

[J]. 中国科学:D辑, 2004, 34(11): 1 015-1 022.]

[本文引用: 3]     

[22] Xiang Fang, Zhu Lidong, Wang Chengshan, et al.

Terrace age correlation and its significance in research of Yangtze Three Gorges, China

[J]. Journal of Chengdu University of Technology (Science and Technology Edition), 2005, 32(2): 162-166.

[本文引用: 1]     

[向芳, 朱利东, 王成善, .

长江三峡阶地的年代对比法及其意义

[J]. 成都理工大学学报:自然科学版, 2005, 32(2): 162-166.]

[本文引用: 1]     

[23] Yang Shouye, Li Congxian, Yokoyama K.

Elemental compositions and monazite age patterns of core sediments in the Changjiang Delta: Implications for sediment provenance and development history of the Changjiang River

[J]. Earth and Planetary Science Letters, 2006, 245: 762-776.

DOI      URL      [本文引用: 7]      摘要

Core from a continuous borehole in the Changjiang Delta to a depth of 318.702m dated back to the Pliocene (>3.5802Ma) and was selected for geochemical measurements and determinations of Th–U–Pb ages of monazite, in order to investigate the changing sediment provenance and development history of the Changjiang River. Geochemical proxies including fractionation parameters of rare earth elements (cerium and europium anomalies) and elemental ratios Cr/Th, Nb/Co and Th/Co suggest that the Pliocene and Quaternary sediments have remarkably different provenances. Six peak ages of monazite grains dated at <25, 50–200, 200–400, 400–550, 800–1000, and 1800–200002Ma are consistent with the main tectonic and magmatic events in the Yangtze Craton. The data imply that the Pliocene sediments were mostly derived from proximal and more silicic sources whereas the Quaternary sediments were sourced from distal and more basic provenances, including the Emeishan basalt province in the upper Changjiang valley. We propose that during the Pliocene the “paleo-Changjiang” or its eastern equivalent was a locally small river draining today's lower Changjiang valley, whereas during the early Pleistocene not later than 1.1802Ma it changed its drainage pattern and developed into a large river that originated from the eastern Tibetan Plateau. This time matches well with many previous studies based upon geomorphologic, geographic and tectonic observations in the Jinshajiang valley and the Three Gorges.
[24] Xiang Fang, Zhu Lidong, Wang Chengshan, et al.

Character of basaltic gravels in Quaternary sediments in Yichang area and its relationship with formation of Yangtze Three Gorges

[J]. Journal of Earth Sciences and Environment, 2006, 28(2): 4-10.

[向芳, 朱利东, 王成善, .

宜昌地区第四纪沉积物中玄武岩砾石特征及其与长江三峡贯通的关系

[J]地球科学与环境学报, 2006, 28(2): 4-10.]

DOI      URL      摘要

通过对宜昌地区第四纪沉积物中峨眉山玄武岩砾石的寻找和研究,可以确定三峡以西物质搬运至宜昌地区的时间,从而为长江三峡贯通时间的确定提供参考。在详细研究宜昌地区第四纪沉积物的沉积特征和沉积相基础上,分析不同沉积环境、不同时代沉积物中玄武岩质砾石的岩石学、稀土及微量元素特征,从而发现0.7Ma以前云池组和善溪窑组的扇三角洲及湖相沉积物中,不存在来自三峡西侧的峨眉山玄武岩,而在0.7 Ma以后的阶地沉积及现代河床中却可以找到该玄武岩砾石。结果表明,在0.7 Ma以前不存在贯通三峡的长江。
[25] Xie Shiyou, Yuan Daoxian, Wang Jianli, et al.

Features of the planation surface in the surrounding area of the Three Gorges of Yangtze

[J]. Carsologica Sinica, 2006, 25(1): 40-45.

[谢世友, 袁道先, 王建力, .

长江三峡地区夷平面分布特征及其形成年代

[J]. 中国岩溶, 2006, 25(1): 40-45.]

DOI      URL      摘要

通过野外路线考察,典型地区填图,地质、地形图判读,航片、卫片验证、核对及前人资料分析和年代学方法,对长江三块地区的地貌进行了研究。结果表明:该区现代河谷之上存在两级夷平面和一级剥夷面。高夷平面分布高度为海拔1700-2000m,完成于老第三纪末;低夷平面分布高度为海拔1200-1500m,完成于上新世末;剥夷面分布高度海拔为800~1200m,形成年代为3.4~1.8MaB.P.。高夷平面在地貌上表现为宽浅的坳谷洼地与低矮的缓丘相结合,呈现一派波状起伏的老年期地貌景观;低夷平面多表现为高大的岩溶丘陵与大型洼地相组合的岩溶台面,洼地两侧多有水平溶洞发育;剥夷面可以岩溶盆地、山问盆地、岩溶台面、河谷盆地、岩溶洼地及河流宽谷等多种地貌形式存在,没有大范围可比性。
[26] Xiang Fang, Zhu Lidong, Wang Changshan, et al.

Quaternary sediment in the Yichang area: Implications for the formation of the 3-Gorges of the Yangtze River

[J]. Geomorphology, 2007, 85: 249-258.

DOI      URL      [本文引用: 1]      摘要

Sediment data from the Yichang area in the Jianghan Basin of Hubei Province in China suggest deposition in a lacustrine environment prior to 0.7502Ma, B.P., followed by incision of the Yangtze River. The earliest Quaternary Yunchi Formation accumulated in an alluvial fan to fan-delta environment. The subsequent Shanxiyao Formation was deposited in an environment that changed from fan-delta to lacustrine. The distribution of sedimentary facies suggests the presence of a lake in the Yichang area prior to 0.7502Ma, B.P. The lack of sediments contemporaneous with the Yunchi and Shanxiyao Formations in other areas of the Jianghan Basin, suggests that this ancient lake was limited to the Yichang area. This lake predates the present Yangtze River in the Yichang area and the Jianghan basin. Provenance studies of gravels in the Yunchi and Shanxiyao Formations, as well as gravels in terraces and the channel of the Yangtze River indicate a variety of sediment sources, but suggest that no material from the area west of the Three Gorges had been carried into the Yichang area prior to 0.7502Ma, B.P. The Yangtze River cut through Three Gorges area only after 0.7502Ma, B.P.
[27] Ma Yongfa, Li Chang’an, Wang Qiuliang, et al.

Statistics of gravels from a Bore in Zhoulao Town, Jianghan Plain and Its Relationship with cut-through of the Yangtze Three Gorges, China

[J]. Geological Science and Technology Information, 2007, 26(2): 40-44.

[马永法, 李长安, 王秋良, .

江汉平原周老镇钻孔砾石统计及其与长江三峡贯通的关系

[J]. 地质科技情报, 2007, 26(2): 40-44.]

DOI      URL      摘要

对江汉平原周老镇钻孔砾石层砾石的粒度和砾态进行统计和分析的结果表明:砾石的风化程度普遍较高,砾石的扁度、球度、磨圆度、砾态参数(F/ψ)和各轴分选系数均符合河流相沉积物的特征。通过分析砾石粒度和砾态的变化曲线,可将其划分为3个阶段。阶段Ⅰ和Ⅱ的平均砾径、中值砾径、扁度、球度和砾态参数(F/ψ)相差不大,而阶段Ⅲ与阶段Ⅰ、Ⅱ相差很大,阶段Ⅲ的水动力条件、沉积物比阶段Ⅰ、Ⅱ显著增强并混杂了远源物质。结合周老镇钻孔岩性及钻孔砾石含量和江汉平原第四系岩相剖面特征判断,在阶段Ⅲ109.5-117.0m(0.97~1.12Ma.B.P.)处钻孔的沉积环境发生了重大改变,江汉平原水系发生了重要调整,可能是长江贯通三峡。
[28] Clift P D, Long H V, Hinton R, et al.

Evolving East Asian river systems reconstructed by trace element and Pb and Nd isotope variations in modern and ancient Red River-song Hong sediments

[J]. Geochemistry, Geophysics, Geosystems, 2008, 9: Q04039, doi:10.1029/2007GC001867.

URL      [本文引用: 1]      摘要

[1] Rivers in east Asia have been recognized as having unusual geometries, suggestive of drainage reorganization linked to Tibetan Plateau surface uplift. In this study we applied a series of major and trace element proxies, together with bulk Nd and single K-feldspar grain Pb isotope ion probe isotope analyses, to understand the sediment budget of the modern Red River. We also investigate how this may have evolved during the Cenozoic. We show that while most of the modern sediment is generated by physical erosion in the upper reaches in Yunnan there is significant additional flux from the Song Lo, draining Cathaysia and the SW Yangtze Block. Nd isotope data suggest that 40% of the modern delta sediment comes from the Song Lo. Carbonates in the Song Lo basin make this a major control on the Red River Sr budget. Erosion is not a simple function of monsoon precipitation. Active rock uplift is also required to drive strong erosion. Single grain Pb data show a connection in the Eocene between the middle Yangtze and the Red River, and probably with rivers draining the Songpan Garze terrane. However, the isotope data do not support a former connection with the upper Yangtze, Mekong, or Salween rivers. Drainage capture appears to have occurred throughout the Cenozoic, consistent with surface uplift propagating gradually to the southeast. The middle Yangtze was lost from the Red River prior to 24 Ma, while the connection to the Songpan Garze was cut prior to 12 Ma. The Song Lo joined the Red River after 9 Ma. Bulk sample Pb analyses have limited provenance use compared to single grain data, and detailed provenance is only possible with a matrix of different proxies.
[29] Shu Qiang, Zhang Maoheng, Zhao Zhijun, et al.

Sedimentary record from the XH-1 core in north Jiangsu Basin and its implication on the Yangtze River run-through time

[J]. Journal of Stratigraphy, 2008, 32(3): 308-314.

[本文引用: 3]     

[舒强, 张茂恒, 赵志军, .

苏北盆地XH-1钻孔晚新生代沉积记录特征及其与长江贯通时间的关联

[J].地层学杂志, 2008, 32(3): 308-314.]

[本文引用: 3]     

[30] Zhang Yufen, Li Chang’an, Wang Qiuliang, et al.

Magnetism parameters characteristics of drilling deposits in Jianghan Plain and indication for forming of the Yangtze River Three Gorges

[J]. Chinese Science Bulletin, 2008, 53(5): 584-590.

Magsci      [本文引用: 5]     

[张玉芬, 李长安, 王秋良, .

江汉平原沉积物磁学特征及对长江三峡贯通的指示

[J]. 科学通报, 2008, 53(5): 577-582.]

URL      Magsci      [本文引用: 5]      摘要

长江三峡何时贯通是研究长江形成的关键问题之一, 也是目前长江研究中争议最大的热点问题之一. 为了解决这一世纪难题, 采取目前国际共识的从源到汇的物质追踪的研究思路和方法, 对采自于江汉平原沉积中心的2个钻孔中的沉积物的岩性特征、磁学参数及磁性矿物特征进行了分析研究. 结果显示: 在孔深约110 m附近的岩芯中粗颗粒成分和稳定磁性矿物成分的含量均明显增高, 同时沉积物磁化率、饱和等温剩磁、非磁滞剩磁磁化率值也突然增高, 这些均表明在井深110 m附近江汉平原水系曾发生过重要调整, 江汉平原的沉积环境和物质成分均发生了重大改变. 该层位可能就是长江三峡贯通的层位, 其贯通时间古地磁测年表明约在1. 17~1. 12 Ma之间.
[31] Wang Qiuliang, Hu Sihui, Li Chang’an, et al.

Heavy mineral characteristics of gravel layers in the Zhoulao Town borehole

[J]. Geology in China, 2009, 36(4): 874-884.

[王秋良, 胡思辉, 李长安, .

周老镇钻孔砾石层重矿物特征及地质意义

[J]. 中国地质, 2009, 36(4): 874-884.]

[32] Kong P, Granger D E, Wu F Y, et al.

Cosmogenic nuclide burial ages and provenance of the Xigeda paleo-lake: Implications for evolution of the Middle Yangtze River

[J]. Earth and Planetary Science Letters, 2009, 278(1/2): 131-141.

DOI      URL      摘要

Hundred-meter-thick lacustrine sediments are widespread along the Middle Yangtze River. The distribution of these sediments suggests that an event blocked the river, forming a lake stretching 16002km from east to west and 11002km north to south, with a depth of ≥ 50002m. Using the cosmogenic nuclides 10Be and 26Al we have dated the time of burial of the lacustrine sediments and fluvial gravels beneath the sediments. Our results indicate a deposition age for these sediments between 1.34 and 1.5802Ma. Studies of zircon U–Pb age distributions within lacustrine sediments and fluvial sands related to the paleo-lake formation show diverse provenances from the upper Yangtze River and Yalong River, a major tributary of the Yangtze River. These deposits contain geologic fingerprints that allow identification of the source region of the lacustrine deposits and fluvial sands. Our results support the reversal of the Middle Yangtze River before the paleo-lake formation. We hypothesize that the geologic event that dammed the originally southward flow was the lateral movement of Chenghai fault in the Dali fault system initiated in early Quaternary. Water eventually cut through the spillway and flowed to the east.
[33] Huang Xiangtong, Zheng Hongbo, Yang Shouye.

Investigation of sedimentary geochemistry of core DY03 in the Yangtze Delta: Implication to tracing provenance

[J]. Quaternary Sciences, 2009, 29(2): 299-307.

[本文引用: 3]     

[黄湘通, 郑洪波, 杨守业.

长江三角洲DY03孔沉积物元素地球化学及其物源示踪意义

[J]. 第四纪地质, 2009, 29(2): 299-307.]

[本文引用: 3]     

[34] Wang Jietao, Li Chang’an, Yang Yong, et al.

The LA-ICPMS U-Pb detrital Zircon geochronology and provenance study of sedimentary core in Zhoulao Town, the Jianghan Plain, China

[J]. Quaternary Sciences, 2009, 29(2): 343-351.

[王节涛, 李长安, 杨勇, .

江汉平原周老孔中碎屑锆石LA-ICPMS定年及物源示踪第四纪研究

[J]. 2009, 29(2): 343-351.]

URL      摘要

碎屑锆石物源示踪是当今国际上研究大河演化的重要手段.通过对湖 北省监利县周老镇钻孔中砂样Gsh6(86.76~88.58m)和Gsh10(126.22~128.42m)的碎屑锆石原位U-Pb年龄进行分析,并 与周围可能源区的岩石年龄进行对比,发现Gsh6的U-Pb年龄主要可以分为11个年龄峰 值:>3.0Ga,2490~2386Ma,2006~1784Ma,838~723Ma,654~625Ma,453~415Ma,257Ma,235Ma,212Ma,166Ma 和3.0Ga,2543~2273Ma,1979~1535Ma,835~723Ma,638Ma,451~423Ma,235Ma和 212Ma.Gsh6比Gsh10多的3个年龄峰值表明长江流域面积逐渐扩大,其中257Ma的年龄峰值的出现表明峨眉山玄武岩已成为长江的源 区,14.8±0.4Ma和 16.5±0.3Ma锆石的出现,预示着长江源头已到达青藏高原.分析认为,Gsh6 样沉积时(大约800kaB.P.),长江三峡已经贯通.
[35] Li Ting, Li Chang’an, Kang Chunguo, et al.

Sedimentary environment and geomorphological significance of the gravel bed in Yichang

[J]. Geology in China, 2010, 37(2): 438-445.

[李庭, 李长安, 康春国, .

宜昌砾石层的沉积环境及地貌意义

[J].中国地质, 2010, 37(2): 438-445.]

DOI      URL      摘要

宜昌砾石层上覆中更新世网纹红土,下伏白垩纪红层,共有22个岩性层组成,总厚超过100 m.通过对宜昌地区剖面出露砾石层的沉积相分析表明,善溪窑和云池剖面由下至上出现冲积扇扇中一扇根亚相:李家院剖面与上述两剖面间有沉积间断,由下至上 出现冲积扇扇端一扇中亚相.粒度分析也证明了该砾石层中的砂体属冲积扇中的辫状水道沉积,与沉积相分析所得结论一致.研究认为,宜昌砾石层具有典型的冲积 扇沉积环境特征,主要为冲积扇扇顶部分.该冲积扇在宜昌东南地区如此大规模的发育,显示其形成时具有强大的水动力条件,通过对其形成的地貌环境意义进行探 讨,初步认为,该冲积扇为长江三峡贯通的产物.据前人研究推断,宜昌砾石层的形成时代应该在1.08~0.73 Ma B.P.,三峡贯通应在1.0 Ma B.P.之前.
[36] Jia Juntao, Zheng Hongbo, Huang Xiangtong.

Detrital zircon U-Pb ages of late Cenozoic sediments from the Yangtze delta: Implication for the evolution of the Yangtze River

[J]. Chinese Science Bulletin, 2010, 55(4/5): 350-358.

[贾军涛, 郑洪波, 黄湘通.

长江三角洲晚新生代沉积物碎屑锆石U-Pb年龄及其对长江贯通的指示

[J].科学通报, 2010, 55(4/5): 350-358.]

DOI      URL      摘要

对长江三角洲DY03孔3.6Ma以来的沉积物碎屑锆石样品利用LA-ICP-MS进行了U-Pb年龄测定.结果表明,DY03孔189.8~215.8m之间(磁性地层年龄3.2~3.5Ma)沉积物碎屑锆石年龄以100~150Ma占优势,沉积物主要来自长江下游地区的白垩纪岩体,物源区比较局限;189.8m(~3.2Ma)以上沉积物碎屑锆石年龄呈现多峰态分布的特征,主要分布于100~300,350~550,600~1000,1400~2000和2200~2800Ma,表明沉积物源区显著扩大.从DY03孔3.2Ma以来沉积物碎屑锆石中识别出大量来自长江上游的年龄信息,表明当时长江沉积物已开始影响到三角洲地区.考虑到古长江在上新世以前有可能没有流经现在的长江三角洲,而是流向苏北盆地,长江贯通的时限应不晚于3.2Ma.
[37] Richardson N J, Densmore A L, Seward D, et al.

Did incision of the Three Gorges begin in the Eocene?

[J]. Geology, 2010, 38: 551-554.

DOI      URL      摘要

Like the other large river systems that drain the area of the India-Asia collision, the Yangtze River was assembled through a series of Cenozoic capture events. These events are important for orogenic erosion and sediment delivery, but their timing remains largely unknown. Here we identify enhanced cooling in the Three Gorges region in central China, a key capture site during basin development, beginning at 40鈥45 Ma. This event is not visible in regional thermochronological data, but is near-contemporaneous with the onset of widespread denudation in the Sichuan Basin, just upstream of the Three Gorges. While we cannot rule out alternative explanations, the simplest mechanism that links these events is progressive capture of the middle Yangtze River by the lower Yangtze and the onset of incision in the Three Gorges. This model agrees with independent mid-Cenozoic estimates for the timing of middle Yangtze River diversion and capture, and provides a plausible outlet for large volumes of erosional detritus from the Sichuan Basin.
[38] Zheng Hongbo, Clift P D, Wang Ping, et al.

Pre-Miocene birth of the Yangtze River

[J]. PNAS, 2013, 110(19): 7 556-7 561.

DOI      URL     

[39] Zheng Hongbo.

Birth of the Yangtze River: Age and tectonic-geomorphic implications

[J]. National Science Review, 2015, 2(4): 438-453.

DOI      URL      摘要

Large river systems are an integral and essential component of Earth dynamics. he development of large river systems in Asia is closely linked to the evolving topography driven by both near-ield and far-ield efects of the interplay among Indian, Eurasian and Paciic plates. Plate tectonics together with climatic changes during the Cenozoic is therefore believed to have determined the evolution of Asian large rivers,yet the age of the Yangtze, the largest in Asia, has been strongly debated over a century, with estimates ranging from 40鈥45 Ma to a more recent initiation postdating 750 ka. In this paper, I atempt to review the competing views about the age of the Yangtze, and evaluate the estimated pre-Miocene birth of the river based on the provenance of the luvial sediments from the lower reaches. I further present new geological evidence from the upper stream in southeastern Tibetan Plateau to show the existence of a possible southward paleo-Jinshajiang during the Paleogene, and exploit when and how it might deviated eastward to give birth to the modern Yangtze River. I propose that the present Yangtze River system formed in response to the continental-scale gradient driven by upliting Tibetan Plateau and regional extension throughout eastern China, synchronous with surface uplit in southeastern Tibet and strengthening of Asian summer monsoon.
[40] Yue Wei, Liu James T, Zhang Dan, et al.

Magnetite with anomalously high Cr2O3 as a fingerprint to trace upper Yangtze sediments to the sea

[J]. Geomophology, 2016, 268: 14-20.

DOI      URL      [本文引用: 6]      摘要

This paper examines geochemical properties of detrital magnetite, in order to link sediments in a Plio-Quaternary core taken in the delta area to their sources in the Yangtze River basin. A total of 40 sediment samples were collected from both the main river channel/tributaries and a sediment core from the Yangtze delta. The geochemical compositions of detrital magnetite in these sediments were analyzed by electron microprobe, including FeO, TiO 2 , CoO, MgO, Cr 2 O 3 , MnO, ZnO, Al 2 O 3 and V 2 O 3 . The results revealed that the detrital magnetite grains with anomalously high Cr 2 O 3 occurred exclusively in the upper reaches of the Yangtze (upstream of the Three Gorges Dam), where the E'mei Basalt block is located. This type of magnetite could therefore be considered a unique sediment proxy of the upper river basin to help identify sediment source in the delta area. Our analysis found such magnetite grains with high Cr 2 O 3 occurring throughout the core depth above 186.502m, in contrast to the extremely low Cr 2 O 3 below this depth. The boundary between high and low Cr 2 O 3 in magnetite grains of the core sediments was dated by paleomagnetism at ca. ~021.2–1.002Ma, signifying that the linkage between the Yangtze River course and the sea was before ~021.2–1.002Ma. This demonstrates that the sediment provenance of the Yangtze delta has experienced a change from local to distal Yangtze River, which took place with the uplift of the Tibetan plateau and coastal subsidence during the Plio-Quaternary.
[41] China Geological Survey (CGS). Geological Map of China (1∶ 2 500 000)[M]. Beijing: China Geological Map Press, 2004.

[本文引用: 3]     

[中国地质调查局(CGS). 中国地质全图(1:2 500 000)[M]. 北京: 中国地质地图出版社, 2004]

[本文引用: 3]     

[42] Zhang Zhaochong, Wang Fusheng.

Sr, Nd and Pb isotopic characteristics of Emeishan Basalt Province and discussion on their source region

[J]. Earth ScienceJournal of China University of Geosciences, 2003, 28(4): 432-439.

[本文引用: 2]     

[张招崇, 王福生.

峨眉山玄武岩Sr、Nd、Pb同位素特征及其物源探讨

[J]. 地球科学——中国地质大学学报, 2003, 28(4): 432-439.]

DOI      URL      [本文引用: 2]      摘要

选择峨眉山玄武岩区2个出露最全的云南永胜大迪里剖面和宾川上仓剖面进行了Sr、Nd、Pb同位素地球化学研究。结果表明,少数样品的Pb同位素与Hanan和Graharn定义的C组分相似,而大多数样品则不在C组分范围之内,说明除地幔柱物质外,有岩石圈物质的加入。在多元同位素图解上,峨眉山玄武岩位于EMⅠ、EMⅡ和DMM三端元之间,表明其源区可以由地幔柱、富集的岩石圈地幔和地壳不同程度的混合来解释。结合已有的微量元素资料分析,其中的地壳组分主要为下地壳,而早期玄武质岩浆在上升过程中由于通道不畅通,有较多的上地壳组分的混染。岩石圈地幔的富集作用可能与地幔柱释放出的小体积富Na、P而贫K的流体交代作用有关。粗面岩的同位素组成和玄武岩接近,说明粗面岩是玄武质岩浆分离结晶作用形成的。
[43] Lei Wenda, Li Chang’an, Zhang Yufen, et al.

Heuristic segmentationmethod for change-point analysis of hydrological time series

[J]. Yangtze River, 2009, 40(9): 55-58.

[本文引用: 3]     

[雷文大, 李长安, 张玉芬, .

基于特征矿物示踪的长江三峡贯通研究构想

[J]. 人民长江, 2009, 40(9): 55-58.]

DOI      URL      [本文引用: 3]      摘要

长江三峡贯通问题一直是长江形成演化研究中的焦点和难点问题。运用近年来国内外广泛采用的特征矿物物源示踪法来研究长江三峡的贯通,并选择攀枝花钒钛磁铁矿床中的钛磁铁矿作为示踪矿物进行了探讨。就利用攀枝花型钛磁铁矿来示踪三峡贯通的研究思路、研究方法和实验步骤进行了讨论,结果表明该方法是可行的。并指出随着单颗粒碎屑矿物微区分析技术的迅速发展,利用特征矿物进行长江三峡贯通研究有望取得较好的效果。
[44] Liu Yingjun, Cao Liming, Li Zhaolin, et al.Element Geochemistry[M]. Beijing: Science Press, 1984.

[本文引用: 6]     

[刘英俊, 曹励明, 李兆麟, . 元素地球化学[M]. 北京: 科学出版社, 1984.]

[本文引用: 6]     

[45] Zeng Chen, Yang Shouye, Wang Lei, et al.

Elemental composition of suspended sediment from the Changjiang River and its environmental implicaition

[J]. Marine Geology and Quaternary Geology, 2012, 32(1): 19-25.

[本文引用: 1]     

[曾辰, 杨守业, 王磊, .

长江干流悬浮物中元素相态组成与环境指示

[J]. 海洋地质与第四纪地质, 2012, 32(1): 19-25.]

URL      [本文引用: 1]      摘要

三峡水库蓄水后长江中下游干流和水库内悬浮物地球化学组成如何变化是一个重要科学问题。相态分析表明,在长江重庆至南通段干流悬浮沉积物中,不同元素在酸不溶相和酸溶相所占比例不同,且存在一定的区域变化,Ca和Mg在酸溶相中比例相当高,而Al、Fe、K、Na等元素主要赋存于酸不溶相中。长江悬浮沉积物元素组成的空间变化特征主要受流域风化物质的来源、风化程度和水动力环境控制。重金属元素组成研究显示,在三峡库区及下游地区由于受人类活动影响,Pb、Zn、Co、Cu等在悬浮沉积物中呈现明显的累积趋势。三峡水库内沉积动力环境的不均一性导致水体中元素组成的垂向变化。
[46] Yang Shouye, Li Congxian.

Charactersitic element composition of the Yangtze and the Yellow River sediments and their geological background

[J]. Marine Geology and Quaternary Geology, 1999,19(2): 19-26.

[本文引用: 2]     

[杨守业, 李从先.

长江与黄河沉积物元素组成及地质背景

[J]. 海洋地质与第四纪地质, 1999,19(2): 19-26.]

DOI      URL      [本文引用: 2]      摘要

长江与黄河表层沉积物常量及微量元素组成特征明显不同。长江相对富K,Fe,Al等常量元素及绝大多数微量元素,且元素含量变化大,而黄河相对富Ca,Na,Sr,Ba,Th,Zr,Hf等少数元素,元素含量变化较小;长江流域广泛分布的中酸性岩浆岩及复杂的源岩与强烈的化学风化作用决定了长江沉积物的特征元素组成及元素含量变化大的特点:而黄土高原的黄土化学万分五强烈的物理风化作用了决定了黄河沉积物的特征元素组成。
[47] Mei Hui, Ma Zhendong, Li Chang’an.

Analysis on elementary composition of sediments in the Yangtze River and the Hanjiang River

[J]. Global Geology, 2007, 26(2): 208-212.

[本文引用: 1]     

[梅惠, 马振东, 李长安.

长江与汉江现代沉积物元素组成分析

[J]. 世界地质, 2007, 26(2): 208-212.]

DOI      URL      [本文引用: 1]      摘要

长江与汉江表层沉积物常量及微量元素组成特征分析表明,长江沉积 物的常量化学组分中CaO、MgO相对较汉江高,汉江沉积物中Fe2O3、Al2O3、K2O相对较长江高;汉江沉积物的微量化学组分中Cr+Ni、 Mo、As、Sb、F等元素相对长江高;长江沉积物Cd的赋存形式以离子交换态和碳酸盐态为主,汉江沉积物Cd的赋存形式以残余态为主.长江沉积物与汉江 沉积物组成的差异是由其源区表壳岩系决定的,前者呈现高CaO、MgO,并呈碱性(pH:8.02)的特点,而后者相对富Fe2O3,并呈中性 (pH:6.8).
[48] Qiu Jinbo, Li Xiao.Quaternary Stratigraphy and Sedimentary Environment of Shanghai[M]. Shanghai: Shanghai Science and Technology Press, 2007.

[本文引用: 7]     

[邱金波, 李晓. 上海市第四纪地层与沉积环境[M]. 上海: 上海科学技术出版社, 2007.]

[本文引用: 7]     

[49] Zhang Dan, Wang Zhanghua, Wei Wei, et al.

Rock magnetic properties and source indications of late Cenozoic sediments in Yangtze Delta area

[J]. Quaternary Science, 2009, 29(2): 308-317.

Magsci      [本文引用: 5]     

[张丹, 王张华, 魏巍, .

长江三角洲地区晚新生代沉积物岩石磁学特征极其物源指示意义

[J]. 第四纪研究, 2009, 29(2): 308-317.]

URL      Magsci      [本文引用: 5]      摘要

对长江三角洲地区7个晚新生代钻孔沉积物的岩石地层和磁化率特征进行详细对比,并进一步选择浦东机场孔(PD孔)进行了详细的岩石磁学测试,讨论了该地区的晚新生代沉积物物源的演变。结果显示沉积物磁性的4次显著变化:&nbsp; 1)各钻孔上新世磁性强弱差异明显;&nbsp;&nbsp; 2)早更新世早期本区普遍表现出弱磁性;&nbsp;&nbsp; 3)从早更新世中晚期至全新世,磁性强度一般随粒度粗细变化波动,即砂质沉积磁性强,泥质沉积磁性弱;&nbsp;&nbsp; 4)晚更新世晚期以来,细颗粒沉积物的磁性较明显增强。磁性参数分析显示上新世和早更新世早期磁性矿物晶体颗粒较细,早更新世中晚期-晚更新世以粗晶粒磁性矿物为主,全新世细晶粒磁铁矿再次占主导。我们认为上述磁性变化反映构造沉降控制下现代长江三角洲地区物源区的不断扩大。
[50] Wang Zhangqiao, Chen Zhongyuan, Wei Zixin, et al.

Coupling controls of neotectonism and paleoclimate on the Quaternary sediments of the Yangtze (Changjiang) coast

[J]. Chinese Science Bulletin, 2005, 50(16):1 775-1 784.

DOI      URL      [本文引用: 11]      摘要

Attempt has been made to discuss the coupling relation of neotectonism and paleoclimate that have played a critical role in controlling the Quaternary sediment distribu-tion and sedimentary facies evolution on the Yangtze coast. On the basis of petrological analysis, up to six sedimentary cyclicities have been identified in the Quaternary sediment boreholes on the time scale of 0.4鈥0.5 Ma. The lower sedi-mentary cyclicities (Pliocene to Early Pleistocene) are char-acterized largely by thicker gravelly coarse sands, topped by thinner fine silt and silty clay. Gravels are very angular and clayey gravels prevail. Sediments are usually of poor sorting, rich in log fragments and have no microfossils. Bedload as denoted by C-M plot occurs throughout the section. This evidence represents the alluvial fan sedimentation which took place as the basin began to subside. The middle sedimentary cyclicities (often including Early to Middle Pleistocene) con-sist of basal gravelly sands and clayey silt at the middle and upper sediment sections. Sorting becomes relatively better, and foraminifer appears sporadically. C-M plot reveals the mixture of sediment transport media via bedload, saltation and suspension, representing sedimentation of braided river system at the early stage and subsequently, the sedimentation of meandering river pattern. The upper sedimentary cyclic-ities (including Late Pleistocene to Holocene) comprise basal gravelly sands (exclusive of the Holocene sediment) and thick fine sand and silty clay on the upper section. Sorting becomes fine and foraminifer appears throughout the sediment sec-tion. C-M plot shows that saltation and suspension serve as the main sediment transport media in the sediment section and bedload transport weakens. These evidence the sedi-mentation of meandering river pattern near coast during Late Pleistocene and Holocene time, when marine transgres-sion invaded into the paleoriver valleys, which often forms drowned-valley facies and shallow marine facies. Of note is the Recent delta facies developed on the top of the cyclicities, and characterized by a large proportion of fine sand and siltyclay, and various sedimentary beddings. These phenomena have proved enhanced climate function on sedimentary fa-cies evolution on the basis of previous alluvial fan system, largely affected by tectonic subsidence setting.
[51] Zhang Hucai.Supergene Geochemistry and Its Theoretical Basis[M]. Lanzhou: Lanzhou University Press, 1997.

[本文引用: 3]     

[张虎才. 元素表生地球化学特征及理论基础[M]. 兰州: 兰州大学出版社, 1997.]

[本文引用: 3]     

[52] Gu Jiawei.

Tectonic subsidence analysis of Subei Basin and Yangtze Delta from the Pliocene

[J]. Geological Science and Technology Information, 2015, 34(1): 95-106.

[本文引用: 3]     

[顾家伟.

上新世以来苏北盆地与长江三角洲构造沉降史分析

[J]. 地质科技情报, 2015, 34(1): 95-106.]

[本文引用: 3]     

[53] Fan Daidu, Wang Yangyang, Wu Yijing.

Advances in provenance studies of Changjiang Riverine sediments

[J]. Advances in Earth Science, 2012, 27(5): 515-528.

Magsci      [本文引用: 1]     

[范代读, 王扬扬,吴伊婧.

长江沉积物源示踪研究进展

[J].地球科学进展, 2012, 27(5): 515-528.]

DOI      URL      Magsci      [本文引用: 1]      摘要

近期物源分析方法发展较快,包括稀土元素、同位素地球化学与单颗粒碎屑矿物微区分析方法的广泛运用,以及分不同粒级组分或根据需要选择特定粒级组分进行物源分析逐渐代替了全样分析法,物源示踪效果得到明显的提高。长江作为连接青藏高原与西太平洋边缘海的最重要水系,河流沉积物从源到汇的现代与历史过程备受关注。长江沉积物源示踪研究进展包括:①建立和运用河流入海沉积物示踪端元模型,定性或定量地分析长江沉积物在海域的扩散与沉积分布规律,倾向于运用细颗粒组分矿物学、元素与同位素地球化学等方法,研究程度较高,今后需注意各端元值的时空变化,及受沉积过程的分异作用与早期成岩作用的影响;②建立和运用不同支流的物源示踪模型,研究晚新生代以来长江水系的演化历史,倾向于运用粗颗粒组分的物源分析方法,尤其是单颗粒碎屑矿物微区分析。由于长江流[JP2]域面积巨大、区域地质复杂,建立支流域的精细物源分析指纹特征尚处在探索阶段,需注意运用碎屑锆石U-Pb定年与稀土元素、Hf同位素组成的综合物源分析法。综合运用多种物源分析法于长江中下游和三角洲盆地若干钻孔地层的研究,已较好地限定长江贯通的时间约在上新世晚期&mdash;早更新世之间,但仍存在较大争议,今后需在一些关键区域开展更多的深钻研究,提高物源精细示踪的效果、晚新生代地层测年的精度,并加强钻孔间的的对比研究。
[54] Zheng Hongbo, Wei Xiaochun, Wang Ping, et al.

Geological evolution of the Yangtze River

[J]. Science in China(Series D), 2017, 47(4): 385-393.

[本文引用: 1]     

[郑洪波, 魏晓椿, 王平, .

长江的前世今生

[J]. 中国科学: D辑, 2017, 47(4): 385-393.]

[本文引用: 1]     

[55] Wei Chuanyi, Liu Chunru, Li Chang’an, et al.

Research advances in ESR provenance tracing methods of quartz in sediments

[J]. Advances in Earth Science, 2017, 32(10): 1 062-1 071.

[本文引用: 1]     

[魏传义, 刘春茹, 李长安, .

石英ESR法物源示踪: 认识与进展

[J]. 地球科学进展, 2017, 32(10): 1 062-1 071.]

DOI      URL      [本文引用: 1]      摘要

石英ESR法物源示踪是一种新发展的沉积物源示踪方法。目前,用于沉积物源示踪研究的石英ESR信号心主要有热处理E'心,自然E'心、Al心和Ti心。从研究实例来看,热处理E'心、是物源示踪研究运用最广泛和最成熟的;自然E'心具有很好的应用前景;Al心和Ti心的物源示踪指示意义还处于实验观察和理论探索阶段。从研究对象来看,该方法已成功应用于东亚粉尘主要源区、黄土高原物源时空变化特征、日本群岛风成沉积物源时空变化特征及日本海沉积物源示踪的研究当中。此外,石英ESR法物源示踪在定量或半定量分析河流沉积物源示踪中也表现出了较好的应用前景。随着石英ESR测年技术的不断提高,该方法将在恢复区域性构造运动、地貌演化以及重建区域性的气候演化历史等方面具有独特的优势。

/