img img
高级检索
地球科学进展, 2018, 33(4): 343-349
doi: 10.11867/j.issn.1001-8166.2018.04.0343
陆地系统中的露石及其生态作用
Rock Outcrop and Its Ecological Function in Terrestrial Ecosystem
沈有信1,, 赵志猛1,2, 毕胜春3, 赵高卷1,2, 刘娟1,2
1.中国科学院西双版纳热带植物园,云南 勐仑 666303
2.中国科学院大学,北京 100049
3. 石林花木有限责任公司,云南 石林 652208
Shen Youxin1,, Zhao Zhimeng1,2, Bi Shengchun3, Zhao Gaojuan1,2, Liu Juan1,2
1.Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun Yunnan 666303,China
2.University of Chinese Academy of Sciences, Beijing 100049,China
3.Shilin Flowers and Trees Co., Ltd., Shilin Yunnan 652208, China
 引用本文:
沈有信, 赵志猛, 毕胜春, 赵高卷, 刘娟. 陆地系统中的露石及其生态作用[J]. 地球科学进展, 2018, 33(4): 343-349, doi:10.11867/j.issn.1001-8166.2018.04.0343
Shen Youxin, Zhao Zhimeng, Bi Shengchun, Zhao Gaojuan, Liu Juan. Rock Outcrop and Its Ecological Function in Terrestrial Ecosystem[J]. Advances in Earth Science, 2018, 33(4): 343-349, doi:10.11867/j.issn.1001-8166.2018.04.0343

摘要:

露石在陆地生态系统中十分常见,喀斯特生态系统尤为突出。露石在各种生态系统中产生积极或负面的影响,他们承接来自大气的降水(含穿透雨)、干湿沉降,殖居菌、藻、苔藓甚至高等维管束植物,可看成与邻近土壤斑块有鲜明对比的子生态系统。其承接和生产的水分和各种有机物质及无机物质输入邻近土壤斑块,影响水分、营养物质分配,进而对生长于土壤上的各种植物产生影响。定量测量露石承接、分配降水及其内含物的研究较少,评价其生态水文效应的研究更少,严重影响喀斯特生态系统演化机制的阐明与石漠化治理方略的制订。

关键词: 露石 ; 生物植居 ; 生态水文 ; 石漠化

Abstract:

Rock Outcrop (ROC) is very common in terrestrial ecosystems, typically in karst. ROCs play both positive and negative effects in ecosystems. They may collect precipitation (including throughfall), wet/dry deposition, host bacteria, fungi, muss and lichen, and even vascular plants. Both plants and their growing matrixes on ROCs differ greatly from their nearby soil patches. Water and organic and inorganic materials received and produced on ROCs is easily redistributed to their nearby soil patches, put strong influence on water and elements process in soil patches, and thus, affect the plants growing on soil surface. However, quantitative study on water and materials received and produced is scarce, nor on the eco-hydrology effect, thus, blocking the explanation of karst ecosystem succession, block the strategy formulation on countermeasures of karst desertification.

Key words: Rock outcrop ; Biological inhabitatione ; Eco-hydrology ; Rocky desertification.

从地球的南北两极到赤道,从海拔高达几千米的冰川过渡带到接近海岸线,各种陆地生态系统中的裸露岩石个体十分常见。他们或是与地下基岩连接的尚未风化的基岩残余,或是被各种外营力搬运而远离原来基岩的碎石,其外形、大小、物理与化学性质各异,我们将其统称为“露石(rock outcrop)”。对于陆地生态系统的生物而言,无论这些裸露个体是否与基岩相连,其均会产生积极或负面的影响。

农业或林业上很早就关注到了土壤表面或是土体中的碎石(rock fragments)[1],他们是岩石到土壤的风化残余或是各种外营力搬运后的堆积物,与地下基岩无联系,个体小[2]。在干旱区,为了保水可在地表覆盖碎石[3]。中国热带、亚热带的碳酸盐经水力作用,形成了千姿百态的喀斯特地貌[46] 。此类地貌的自然林、人工林和石漠化迹地上,地表常见裸露的岩体(如石牙、溶峰和散落碎块,图1),这些独立或相连的不同形态、来源、大小、方位的裸露岩体或包围土壤斑块、或被土壤斑块包围(图2),共同组合出丰富而多样的喀斯特生态系统的植物生长基质。本文将更多关注此类露石,它们是生态系统中的自然产物,但长期以来未受到关注。

1 露石在陆地生态系统中的分布

沙漠(desert)、苔原(tundra)等植物生长困难的生态系统中,地表的露石很容易被观测到。各种权威的数据中均有含有露石的地类面积数据,如联合国粮农组织(FAO)发布的“Harmonized World Soil Database”(http:∥www.fao.org/geonetwork/srv/en/main.home)内的rock crust面积为1.2×106 km2,“Digital Soil Map of the World”(http:∥www.globalsoilmap.net/)给出rock crust的面积为0.4×106 km2。在全球性的土地利用类型分类及其分布图中,还有Barren等地类可能含有露石,如International Geo-sphere-Biosphere Programme 定义的Barren为:一年的任何时间段内植被覆盖均低于10%的、含有暴露的土壤、砂石、露石或是积雪的土地[7](遗憾的是,这些国际性的分类与分布图中,并未单独把rocks覆盖的面积区分出来,因此,尚无确切的统计数据显示含露石的陆地生态系统面积及其露石出露比例)。


图1

个体形状各异的不同岩溶生态系统露石

Fig.1

Karst rock outcrops with various sizes and shapes

全球的陆地生态系统中,喀斯特区域是被忽略了的含露石生态系统,其或许是全球面积最大的含露石生态系统。中国公布的涉及南方8个省(区、市)的石漠化和潜在石漠化(含裸露的岩体比例>30%)[8]面积是目前已知的最大喀斯特露石生态系统,其中2007年的面积分别为1.296×106和1.234×106 km2[9];2012年公布面积为1.20×106和1.332×106 km2 [10]。中国南方的喀斯特面积约为50万km2[11], 除去上述石漠化和非石漠化面积外,喀斯特山地森林系统(如广西的弄岗[12]、贵州的茂兰[13]、云南的西双版纳[14]和云南的石林[15])中,均发现很高比例的裸露岩体(图1)。喀斯特占世界陆地面积的12%15%[4],如果按照中国的石漠化及潜在石漠化的比例来推算,全球喀斯特生态系统中的含高露石比例的地域十分广阔。

2 露石上的生物殖居

露石上可殖居各种微生物。细菌(如硫细菌、硝化细菌和放线菌等)和藻类是岩石上最早出现的生物之一[16]。蓝藻(蓝细菌)中的黏球藻属、念珠藻属和真枝藻属,绿藻中小球藻属、软丝藻属和裂丝藻属等最为常见[17,18]。微生物可以石面生(Epilithic)、石内生(Endolithic)和石下生(Hypolithic)[19]。Matthes等[20]对加拿大温带地区一个地方的悬崖峭壁岩石表面生长层研究发现,蓝细菌、绿藻、地衣所占的比例分别为26%,3%和20%;李冰等[21]对一处喀斯特石漠藓类结皮调查后发现共有藓类植物7科9属13种,丛藓科(Pottiaceae)和牛舌藓科(Anomodontaceae)是优势科,平均生物量为1616 690 kg/hm2;田友萍等[22]对云南石林干燥的碳酸盐岩表面微生物研究发现,95%以上藻类为气生蓝藻,其胶被色泽鲜艳、宽厚而坚硬,是适宜高山岩石表面生活的典型进化特征。藻类和蓝藻多样性、丰富度与水分可利用性密切相关,真菌是需氧生物,一般占据岩石上层[23]。岩石微生物对有机质的分解促进了元素在石表面的生物地球化学循环[23]

藻类的孢子或细胞可以通过大气散播[24],且其表面形成的特殊淀粉体结构(Amyloid structures)[25]使藻类能有效黏附在石体表面,在一定量的水供应下进行光合作用和呼吸作用。气生藻类主要从大气中获取水,比如雨水、水汽、雾水,当水分不足时,藻类通过合成糖醇(Sugar alcohols)来调节细胞渗透压,维持细胞内稳态[26]。长期干旱时藻类会产生耐旱能力很强的孢子以应对干旱和延续生命[24];石生藻类则通过生物固氮、闪电固氮、大气沉降养分、溶蚀岩石矿物、有机质分解、有机氮的氨化等途径获取养分。温度、湿度、雨水、基质表面的物理特性和其他气候因子等因素共同影响岩石上藻类的分布[27]

地衣是真菌和藻类的共生体。蓝藻地衣和绿藻地衣分别利用大气中的水汽和液态水进行光合作用[24],且生长缓慢,一些叶状地衣10年间的生长量只有数厘米,被称为“时间色素”[28]。有研究表明,地衣的分布可能受到基质表面温度的限制,能耐受一定的极端高温,但也需要一段时间的低温来恢复生长和繁殖[27]。所以,在群落演替的初期,裸岩上最先迁入并定居的物种大多是藻类和地衣。

苔藓是继藻类、地衣演替阶段之后的石生群落,生境中温度、湿度、光照、基质持水性、岩石成分等的差异,可能导致不同的苔藓生活型出现[29]。在较平缓或微生境复杂的露石上,高等维管植物群落构成顶级群落,一般根系较浅的草本植物先出现,然后是乔灌木[30]

从群落演替的角度看,露石上的生物是一个演替早期植物群落。龚子同等[30]将岩石成土过程划分为3个阶段,每一阶段有其对应的殖居生物种类。藻类等着生的阶段属于第一阶段,也叫“岩漆”阶段,是积累营养元素的阶段;地衣着生阶段为第二阶段,是生物风化层形成发展的阶段;高等维管植物的殖居代表原始成土过程的终结。

徐海清等[31]对云南石林喀斯特山地原生植被—半湿润常绿阔叶林中附生维管植物的调查结果显示:林冠附生维管植物种类相对较少,只有8科9种附生维管束植物和5种苔藓植物;而林内岩石表面则有附生维管束植物16科17种,苔藓植物3种。


图2

露石与土壤斑块的组合形态示意

Fig.2

Illustration showing the combinations of rock outcrops and soi patches

朱习爱等[32]在云南石林的石漠化、人工林和自然林内的各60个2 m×2 m样方内分别记录到了15科21属21种、15科25属25种和28科39属41种维管束植物。进一步分析发现,维管束植物组成在3个系统间差异显著,表明不同的露石生境殖居差异巨大的植物群落。

3 露石对陆地生态系统的影响

如果将露石及其周围的土壤斑块看成“露石子系统”和“土壤子系统”,则可发现,露石影响最大的就是其邻近的“土壤子系统”。露石最直接的作用是承接降水(含穿透雨),大气干湿沉降[33,34],甚至是污染物[35],凝结雾水并携带沉降物中的N,P和K等输入土壤[36],Goransson等[37]把这种效应称之为斗效应(the funneling effect)。占据一定投影面积的石面上植居的生物能固定碳和氮[38],石面自身在不断溶蚀[39]为成土产物,接收并分解植根于土斑的各种植物的枯落物。到达石面的各类固体物质会以结皮形式附着于石面[40];或被石面上稀少的腐植土固定[41],但大量的集水将通过石面的各种裂隙和石—土界面进入地下管网系统;或通过石—土界面进入土壤,产生类似于干旱区的“斗效应”,影响土壤水分、养分和植物生长(生态水文效应),影响其生物群落的发展[38]。因此,“石体子系统”在一定程度上成为临近“土壤子系统”的潜在养分库,共同孕育出“石林”与“森林”共存的生态系统。但目前对调节裸露岩体的集水和径流输出的机理和生态水文效应尚不清楚。

按现有的一些数据推算,当裸露岩体占据一定的地面面积比例后,其石面汇集的水分、有机碳、营养物质的量是可观的。欧洲的森林氮沉降年通量变动于1404 200 kg/km2 [42];中国50个站点的年无机氮沉降总量变动于2604 820 kg/km2 [43];广东鼎湖山森林生态系统大气降水中的年总氮、钠、镁分别为384,21和12 kg/km2[44];云南滇池流域58月的总氮沉降(湿沉降)达190 kg/km2[45]。 随着工业活动的增强,大气沉降的数量还在增加[46]。目前还没有直接的测量结果来反映碳酸盐岩裸露岩体的石面生产能力,但如果参照火山(0.20.3 g/(m·a))[47]和陆地生物结皮(0.210.76 g/(m·a))[48]推算,数量也不会太低。

最近的研究发现,云南石林的石面径流输出约占降水收入的50%[49]。由此推理,在1∶ 1土石比的喀斯特生态系统中,其土面面积较无石系统减少50%,但余下的50%土面接收到的水分将相当于无石系统的150%。随后的检测还发现这些径流水中含有较高含量的有机碳和氮磷钾等内含物[50]。不同石面的径流输出变异很大,各种地貌类型内的裸露岩体千姿百态(图2),其物理特征(高度、坡度、粗糙度)、化学特征(可溶性)和生物学特征(附着物及其质量、腐殖土等)将是影响石面径流及其生态效果的重要因子。这些不同的“露石子系统”和“土壤子系统”形成丰富多彩的生态斑块组合,为植物的生长、生存提供了差异巨大的“生态位”空间,奠定了生物多样性基础。

地表千姿百态的露石在对邻近的土壤子系统及其生物产生影响的同时,还会对更大区域的水、土、物质转运产生重大影响,进而在更高级别的生态系统、甚至全球产生影响。现在已经有足够的证据显示,露石阻挡喀斯特系统地表径流,而将很高比例的水分导入地下管网,推动土壤失。应用137Cs证据计算得到的重庆槽谷区中地表流失的比例为74.55%,地下失比例为25.45%;而广西环江小流域土壤地面和地下流失的相对贡献率分别为12% 和88%[51],依据径流监测结果计算得到的广西峰丛洼地的山峰、垭口、山坡、山麓到峰丛洼地底部的土壤失占总流失量比例分别为92%,96%,79%,71%和39%[52]。这些巨大的数字差异或许与露石的出露比例有密切联系。土壤失后产生石漠化,已经成为中国南方十分严重的环境问题[9,10,53]。大气中的各种污染物也会通过这种富集作用,转入地下,污染地下水资源。同时,地下水的集中与溶蚀作用,还可能诱导地表塌陷等地质灾害[54]

4 未来研究

中国南方广泛分布的喀斯特露石生态系统,可以成为露石研究的模式生态系统。如果我们回头去重新审视广西的弄岗[12],贵州的茂兰[13],云南的西双版纳[14],云南的石林[15]等依然在森林掩盖下的喀斯特露石生态系统,会发现露石与植物,甚至高大的乔木“和谐相处”,维持着极高的植物多样性。我们不禁要问:露石在喀斯特生态系统中到底扮演了什么样的生态角色?我们或许忽略了太多的关于喀斯特露石—土壤—植物之间的相互作用规律。文献中能检索到喀斯特植物、土壤、土壤水分、生物地球化学[55]等的研究,也能从众多的石漠化治理实践者那直接或间接地领会到露石对植物生长的负面影响。少量研究关注到露石上生物的植居[38]、溶蚀[39],但无人关注其在露石生态系统中的潜在“正效应”。Li等[56]发现裸露岩体高度、方位均对土壤水分有影响。各喀斯特区的土壤分类中的黑色石灰土中有较高的有机质含量[30],这些研究结果均暗示了石面径流及其携带的内含物的生态水文效应,但缺乏足够的科学数据支撑,更不清楚其机制。

水是喀斯特过程中最重要的驱动因子[4,11],也是植物定居、更新与生长发育的关键因子[57]。稳定性同位素示踪结果显示,喀斯特植物能利用深层喀斯特水(与泉水具有相同同位素特征)和雾水[58],旱季尤为突出[59],但大部分的水分还是来源于土壤[60]。这些结果仍不能回答植物种群、群落与浅薄土壤水之间的关系,无法解释支撑南方喀斯特区域繁茂的森林植被及其丰富的植物物种多样性的水分格局。通过对距离露石不同远近、方位点位上的土壤水分含量变化,也推测到露石的汇水效应对土壤水分的影响[56],但缺乏足够定量的数据。未来需要扩展并完善露石径流水分研究,通过测定热带和亚热带露石汇集的径流水量,检测其内含物,系统地定量评价露石于热带、亚热带的汇水效应及其动态变化,及对土壤水分和营养物供应的影响,为阐明喀斯特生态系统演化机制做出。

植根于“土”的农耕文明遭遇到群体露石的石漠化问题时略显茫然,有人更将其看作类似于人类“癌症”的顽疾。继续沿着改造自然的大无畏指导思想努力去清除露石,砌石磊坎,植树遮掩(网上及各种政府报告中随处可见)或许能为我们带来新的植被,但付出是巨大的。当我们研究清楚露石—土壤—植物的关系后,或许我们的石漠化治理方略会展开新的视觉。

The authors have declared that no competing interests exist.

参考文献

[1]
Zhang Y, Zhang M, Niu J, et al. Rock fragments and soil hydrological processes: Significance and progress[J]. Catena, 2016, 147:153-166.
DOI:10.1016/j.catena.2016.07.012 URL
In this review, we explore the significance of rock fragments in studies of soil hydrological processes, because according to research, the effects of rock fragments on soil hydrological processes are inconsistent (positive/negative). Rock fragments play a critical role in the biosphere as the primary filter for water and solutions containing contaminants and heavy metals. Rock fragments have a complex influence on soil hydrological processes (e.g. soil erosion, runoff generation, water infiltration, solute transport and water flow) and are highly relevant in a typical system in the soil鈥損lant鈥揳tmosphere continuum. Cracks related to rock fragments provide preferential flow paths through which pollutants are transported into groundwater. In this paper, the published literature is reviewed concentrating on rock fragments and their effects on soil hydrological processes. Systematic studies and examples illustrate the effects of rock fragments architecture (i.e. coverage, content, size, position, spatial heterogeneity, morphology, weathering and topography) on soil hydrological processes. Methods and models applied to evaluate the effects of rock fragments on soil hydrological processes are examined in detail. We conclude that the relationship between rock fragments and soil hydrological processes is complicated and requires more international research efforts. This review concludes with a discussion of perspectives on areas of research that can improve understanding of the effects of rock fragments on soil hydrological processes, with insights and suggestions also being provided regarding potential research trends, requirements and solutions.
[本文引用: 1]
[2]
Katra I, Lavee H, Sarah P.The effect of rock fragment size and position on topsoil moisture on and and semi-arid hillslopes[J]. Catena,2008, 72(1):49-55.
DOI:10.1016/j.catena.2007.04.001 URL
Rock fragments on arid hillslopes affect rainwater redistribution and overland flow, through various hydrological processes. The present study focuses on the evolution of topsoil moisture content under rock fragments following rain events. Measurement was taken under rock fragments in various sizes (large and small) and positions (‘on top’ of the soil surface and 'partially embedded' within the soil surface) at north- and south-facing hillslopes in arid and semi-arid areas. The main findings: (1) the topsoil moisture content under rock fragments was higher over time than that of bare soil areas; (2) rock fragments affect the topsoil moisture content for a longer time in semi-arid areas than in arid areas; and (3) large rock fragments and ‘partially embedded’ ones are favorable micro-environments for accepting and retaining rainwater and overland flowing water. This may have eco-geomorphic implications regarding the mosaic-like patterns of source and sink areas on arid hillslopes.
[本文引用: 1]
[3]
Poesen J W, Torri D, Bunte K.Effects of rock fragments on soil-erosion by water at different spatial scales-a review[J].Catena, 1994,23(1/2):141-166.
DOI:10.1016/0341-8162(94)90058-2 URL
ABSTRACT This paper reviews the various effects of rock fragments on soil erosion by water. Since these effects are scale dependent, they are investigated at three different nested spatial scales: the microplot (4 × 10616–100m2), the mesoplot (10612–102 m2) and the macroplot (101–104 m2). For each scale the corresponding process mechanisms are discussed. Particular attention is paid to the effects of rock fragment cover on the intensity of soil erosion processes. At the mesoplot scale, i.e. on interrill areas, rock fragments at the soil surface can have negative as well as positive effects on sediment yield. These ambivalent effects are conditioned by the type of fine earth porosity, soil surface slope, vertical position and size of rock fragments and by the occurrence of horseshoe vortex erosion. At the microplot scale, i.e. the soil surface area which is covered by a single rock fragment, and at the macroplot scale, i.e. upland areas where both interrill and rill erosion takes place, rock fragments at the soil surface have a negative effect on sediment yield. In these two scales rock fragments can thus be considered as natural soil surface stabilizers. At the macroplot scale the mean decrease of relative interrill and rill sediment yield with rock fragment cover can be expressed by an exponential decay function. The scatter of the data indicates that a given rock fragment cover can have different efficiencies in reducing interrill and rill sediment yield depending on the varying intensities of the hydrological and erosion subprocesses. These findings have implications for erosion modelling and soil conservation.
[本文引用: 1]
[4]
Ford D C, Williams P M.Karst Hydrogeology and Geomorphology[M]. England: John Wiley & Sons Ltd., 2007.
[本文引用: 2]
[5]
DeWaele J, Plan L, Audra P. Recent developments in surface and subsurface karst geomorphology: An introduction[J]. Geomorphology, 2009, 106(1/2):1-8.
DOI:10.1016/j.geomorph.2008.09.023 URL
Where dissolution processes of bedrock dominate peculiar morphologies develop and overrule all landforms controlled by other surface processes. Pure karst landscapes are present in many parts of the world, but most of the time landscapes are shaped by a multitude of processes. The comprehension of the dissolution processes, that act both at the surface and underground, has developed rapidly in the last half century, although major achievements had already been reached at the end of the XIXth century. This special issue gives an overview of some of the most recent developments in surface and subsurface karst geomorphology and reviews where further studies should be fostered.
[6]
Parise M.Surface and subsurface karst geomorphology in the Murge (Apulia, Southern Italy)[J]. Acta Carsologica, 2011, 40(1):79-93.
DOI:10.3986/ac.v40i1.30 URL
The Murge (Apulia, southern Italy) is the main karst area in the central part of the region, extending from the inland plateau to the Adriatic coastline. Along this transect, a relief energy of a few hundred meters is reached. Even though such relief may seem small when compared to mountain karst areas, actually it is not for Apulia, a very flat carbonate region that acted as the foreland during the building up of the Apenninic Chain in Miocene time. Murge can be subdivided into two sectors: High Murge, the inland plateau, where remnants of an ancient tropical karst are still recognizable; and Low Murge, closer to the sea, with smoother karst morphologies and landforms. Here, some of the most remarkable underground karst systems of Apulia are located: the Castellana caves, a show cave that has been opened since 1939 to tourists (only a few months after the discovery), and the Pozzo Cuc霉 karst system. Overall, the two systems (that are located few hundreds of meters apart) are more than 5,5 km long. In addition, many other karst caves are widespread in the territory, showing different typologies, from percolation shafts, to intrastratal caves, to tectonically-controlled caves, down to marine caves along the coastline. At the surface, other interesting morphological features related to karst may be observed, the main one being the Canale di Pirro polje, which cuts the SE Murge with an E-W strike, until its easternmost reach against the Murge fault line scarp. This latter is the main morphological feature intervening between the Murge plateau and the Adriatic plain. In this article the karst morphological features of Murge are depicted, putting together surface and underground data, in the effort to contribute to the recognition of the main phases of development of karst processes in the region
[7]
Kottek M, Grieser J C, Rudolf B B, et al. World map of the Koppen-Geiger climate classification updated[J]. Meteorologische Zeitschrift, 2006,15:259-263.
[本文引用: 1]
[8]
[国家林业局. 喀斯特石漠化地区植被修复技术规程:LY/T 1840-2009(2010)[S].北京:中国标准出版社,2009.]
State Forestry of China. Technological Standard on Revegetation of Rock Desertification Karst Area, China:LY/T 1840-2009(2010)[S].Beijing: Standards Press of China,2009.
[本文引用: 1]
[9]
[国家林业局. 喀斯特地区石漠化状况公报[EB/OL].[2017-12-01]..]
State Forestry of China. Rock Desertification Communique in Karst Area[EB/OL].[2017-12-01]..
URL
[本文引用: 2]
[10]
[国家林业局.中国石漠化状况公报[EB/OL]. , 2012.]
State Forestry of China. Rock Desertification Communique in Karst Area, China[EB/OL]. , 2012.
URL
[本文引用: 2]
[11]
[袁道先, 朱德浩, 翁金桃,.中国喀斯特学[M]. 北京:地质出版社,1993.]
Yuan Daoxian, Zhu Dehao, Weng Jintao, et al. Karst in China[M]. Beijing: Geographical Publisher,1993.
[本文引用: 2]
[12]
[黄俞淞, 吴望辉, 蒋日红, . 广西弄岗国家级自然保护区植物物种多样性初步研究[J]. 广西植物,2013, 33(3):346-355.]
Huang Yusong, Wu Wanghui, Jiang Rihong, et al. Primary study on species diversity of plant in Longgang National Nature Reserve of Guangxi[J]. Guihaia, 2013, 33(3):346-355.
DOI:10.3969/j.issn.1000-3142.2013.03.011 URL
对广西弄岗国家级自然保护区(以下简称弄岗保护区)维管植物物种多样性组成,包括对异名的订正、新发现类群和新发表类群的添加以及广西新记录种、特有种、国家或区级重点保护物种的统计等进行整理和研究。结果表明:弄岗保护区共计有维管植物1752种,隶属于184科810属。其中蕨类植物中国特有种39种、种子植物广西特有种101种、岩溶特有植物278种、珍稀濒危植物33种、广西重点保护野生植物73种、广西新记录种9种以及植物新类群17种。
[本文引用: 2]
[13]
[龙翠玲, 余世孝, 熊志斌,. 茂兰喀斯特森林林隙的植物多样性与更新[J]. 生物多样性,2005, 13(1):43-50.]
Long Cuiling, Yu Shixiao, Xiong Zhibin, et al. Species diversity and regeneration in forest gaps of the Karst forest in Maolan National Nature Reserve, Guizhou Province[J]. Biodiversity Science, 2005, 13(1):43-50.
DOI:10.3321/j.issn:1005-0094.2005.01.006 Magsci URL
喀斯特森林是一类特殊的森林生态系统,蕴藏着丰富的生物多样性。以贵州茂兰喀斯特森林为研究对象,比较分析了林隙和非林隙林分中主要树种的数量特征以及不同发育阶段林隙物种多样性和生活型构成的变化规律。结果如下:(1)林隙中的树种组成主要有云贵鹅耳枥(<em>Carpinus pubescens</em>)、圆叶乌桕(<em>Sapium rotundifolium</em>)、圆果化香(<em>Platycarya longipes</em>)、黄连木(<em>Pistacia chinensis</em>)、朴树(<em>Celtis sinensis</em>)等。非林隙林分中的树种组成主要有青冈(<em>Quercus glauca</em>)、翅荚香槐(<em>Cladrastis platycarpa</em>)、轮叶木姜子(<em>Litsea verticillata</em>)、椤木石楠(<em>Photinia davidsoniae</em>)、狭叶润楠(<em>Machilus rehderi</em>)等。依照它们在林隙内外重要值的差异可将其划分为3种类型:一是对林隙更新反应不显著的物种,一般选择在林下更新,多数常绿大乔木树种属于此类型;二是对林隙有显著的正更新反应的物种,一般需依靠林隙繁殖更新,多数落叶大乔木和灌木树种属于此类型;三是对林隙反应不敏感的物种,在林隙和林下均能更新,多数林下小乔木种类属于此类型。(2)林隙各阶段物种多样性的顺序为:中期林隙(15-30年)&gt;早期林隙(小于15年)&gt;晚期林隙(30年以上)&gt;非林隙,其中中期林隙阶段是物种多样性维持的重要时期。(3)早期林隙阶段常绿树种的物种数少于落叶树种;中期林隙阶段两类树种的丰富度都有大幅度增加,但落叶树种比常绿树种增幅更大;晚期林隙阶段常绿树种继续增多,而落叶树种则有明显下降趋势。(4)早期和中期林隙阶段,以灌木种类占优势,乔木所占比例介于灌木和草本之间;晚期林隙阶段,灌木种类迅速减少,而乔木的比例则增加。随着林隙的发育, 草本植物减少,而藤本植物则增加。研究结果进一步表明,林隙的存在提高了茂兰喀斯特森林的物种多样性,随着林隙的发育,群落结构趋于稳定。
[本文引用: 2]
[14]
[王洪, 朱华,李保贵.西双版纳石灰岩山森林植被[J]. 广西植物,1997, 17(2):101-117.]
Wang Hong, Zhu Hua, Li Baogui.Forests on Limestome mountains in Xishuangbanna[J]. Guihaia,1997, 17(2):101-117.
URL
石灰岩山森林是组成西双版纳地区植被的主要类型之一,由于石灰岩山的特殊生境,绝大部分石灰岩山森林与非石灰岩山森林有着显著的区别。本文通过样方调查,将本区现存的石灰岩山原生植被分为3个主要的植被类型:即热带季节性雨林,热带季节性湿润林和热带山地矮树林。石灰岩山的季节性雨林是热带雨林的一个类型,仅分布于潮湿的沟谷和阴坡,森林高达30m以上,乔木层具有3层结构。根据生境和乔木层落叶树种的多寡,可将其分为湿性季节性雨林和干性季节性雨林2种类型。湿性季节性雨林以番龙眼为标志,落叶树在乔木种类和重要值上均低于10%。干性季节性雨林以毛麻楝,轮叶戟为标志,落叶树在种类和重要值上均占10%~30%。本文认为,本区石灰岩山的季节性雨林在性质上与非石灰岩季节性雨林相同,尽管二者在群落的区系组成上有所差异。热带季节性湿润林主要分布于山坡中部,森林高度通常为20~25m,乔木层具有2层结构。根据落叶树种的多寡可将其分为热带季节性常绿湿润林和热带季节性半常绿湿润林等2个类型。季节性常绿湿润林高约20m,森林常绿或有少量落叶树种,以多脉桂花,易武栎及尖叶闭花木为标志和优势。季节性半常绿湿润林高20~25m,落叶树在乔木种类上占30%~6
[本文引用: 2]
[15]
[沈有信, 刘文耀, 李玉辉,.滇中喀斯特山地半湿润常绿阔叶林的群落生态学研究[J]. 广西植物,2005,25(4):321-326.]
Shen Youxin, Liu Wenyao, Li Yuhui, et al. Community ecology study on karst semi-humid evergreen broad-leaved forest at the central part of Yunnan[J]. Guihaia, 2005,25(4):321-326.
[本文引用: 2]
[16]
[连宾. 碳酸盐岩风化成土过程中的微生物作用[J]. 矿物岩石地球化学通报, 2010, 29(1): 52-56.]
Lian Bin.Microbial roles in the genesis of soil from carbonate rock weathering[J]. Bulletin of Mineralogy Petrology and Geochemistry, 2010,29(1): 52-56.
Magsci
碳酸盐岩风化作用长期受到广泛关注,有关其成土的物源也一直是颇有争议的问题.基于前人有关碳酸盐岩风化成土作用的研究基础和对有关资料的调研与分析,结合各类研究成果,笔者提出了喀斯特地区岩石微生物的风化成土作用途径:微生物生长对矿物养料的吸收,以及分泌的代谢产物导致碳酸盐岩的破坏分解和一些次生矿物的形成;一些岩石微生物能够通过新陈代谢固定大气中的碳素和氮素,截留由雨水、风尘、大气气溶胶甚至空气流动所带来的土壤颗粒等外来物质.微生物在岩石表面与缝隙中的生长繁殖在碳酸盐岩风化成土这一漫长的地质演化过程中发挥了不可替代的重要作用.
[本文引用: 1]
[17]
Hoffmann L.Algae of terrestrial habitats[J]. The Botanical Review, 1989, 55(2): 77-105.
[本文引用: 1]
[18]
Gaylarde P, Englert G, Ortega M O, et al. Lichen-like colonies of pure Trentepohlia on limestone monuments[J]. International Biodeterioration & Biodegradation, 2006, 58(3): 119-123.
DOI:10.1016/j.ibiod.2006.05.005 URL
Biofilms were collected on discoloured limestone samples and on adhesive tape from historic buildings at the Mayan site of Edzna, in Campeche, Mexico. Grey, brown, and black areas were colonised predominantly by coccoid and colonial cyanobacteria, also detected as endoliths. The major biomass on the pink stone surface was Trentepohlia. At low power, surface micropits containing crustose-lichen-like black colonies were seen within these pink areas. These were apparently pure colonies of T. umbrina; no filamentous fungi were detected here. The black colour was produced by dense, amorphous pigment deposits in the colony centres. Insolation levels were high (65400 μmphotons m 612 s 611) and the moisture content of the stone was 0.7%. The high carotenoid:chlorophyll- α ratio of Trentepohlia biofilms (3.9:1) is an adaptation protecting against environmental stress. Trentepohlia caused severe local erosion (pitting) and, when present as a more uniform biofilm, the well-known pink surface discoloration.
[本文引用: 1]
[19]
Golubic S, Friedmann I, Schneider J.The lithobiontic ecological niche, with special reference to microorganisms[J]. Journal of Sedimentary Research, 1981, 51(2): 475-478.
[本文引用: 1]
[20]
Matthes S U, Gerrath J A, Larson D W.Abundance, biomass, and productivity of endolithic and epilithic lower plants on the temperate-zone cliffs of the Niagara Escarpment, Canada[J]. International Journal of Plant Sciences, 1997, 158(4): 451-460.
DOI:10.1086/297455 URL
To investigate the cover, frequency, biomass, and productivity of endolithic and epilithic lower plants on temperate-zone cliff faces, rock samples were randomly collected from the Niagara Escarpment in southern Ontario, Canada. Chlorophyll was extracted using dimethyl sulfoxide (DMSO), and CO2 gas exchange was measured in the laboratory using infrared gas analysis. Epilithic surface cover averaged 26% for cyanobacteria, 3% for green algae, and 20% for lichens. Endoliths were present below 6% of the surface area, with chasmoendoliths about twice as common as cryptoendoliths. Fungi were by far the most common organisms. The cliffs contained 73.0 mg chl a and 19.8 mg chl b per square meter; 15% and 23% of these, respectively, were in the endolithic zone. Biomass of primary producers (algae, cyanobacteria, and lichen photobionts) was 1.5-73 g dry mass m-2 total, and $0.3-14\ {\rm g}\ {\rm m}^{-2}$ in the endolithic zone alone. Photosynthetic carbon uptake was 0.0021 mg ${\rm CO}_{2}\ {\rm cm}^{-2}\ {\rm h}^{-1}$ at 700 脦录 mol m-2 s-1 photosynthetically active radiation (PAR). At ${\rm PAR}=130\ \mu {\rm mol}\ {\rm m}^{-2}\ {\rm s}^{-1}$, a small amount of carbon was released $(0.5\ {\rm mg}\ {\rm CO}_{2}\ {\rm m}^{-2}\ {\rm s}^{-1})$; dark respiration was 0.0096 mg ${\rm CO}_{2}\ {\rm cm}^{-2}\ {\rm h}^{-1}$. The upper limit for carbon fixation by primary producers was estimated from this to be 2.3 mg ${\rm CO}_{2}\ {\rm cm}^{-2}\ {\rm yr}^{-1}$, but endolithic and epilithic zones as a whole were shown to be net consumers of CO2. Cover, occurrence, biomass, and productivity of endoliths and epiliths showed most of their variability on a scale smaller than a square meter; there was little or no consistent variation from north to south or from cliff top to bottom. Seasonal changes were absent when chlorophyll and gas exchange rates were expressed on a unit cliff surface basis. Gas exchange on a chlorophyll a basis, as well as the chl a:phaeophytin a ratio, showed a general decline between spring and fall.
[本文引用: 1]
[21]
[李冰, 张朝晖. 喀斯特石漠结皮层藓类物种多样性及在石漠化治理中的作用研究. 中国岩溶, 2009, 28(1): 55-60.]
Li Bing, Zhang Chaohui.Species diversity of mosses crust and the effect in karst rocky desertification control[J]. Carsologica Sinica, 2009,28(1): 55-60.
DOI:10.3969/j.issn.1001-4810.2009.01.010 URL
根据对烂泥沟金矿区附近喀斯特石漠区域生物结皮的物种调查,藓类植物共7科9属13种,丛藓科(Pottiaceae)和牛舌藓科(Anom odontaceae)是该区的优势科。13种结皮藓类植物的生物量、成土量、饱和吸水率和饱和吸水量的测定结果显示,平均生物量为161~6690kg/hm2;平均成土量为438~18350kg/hm2;平均饱和吸水率在780.43~1705.56%,最高的达到2228.57%,最低的也有512.99%;平均饱和吸水量在1256.5~18434.1kg/hm2,最高的达到68140.3kg/hm2。该结果说明,在喀斯特石漠这种缺少土壤、极度干旱且保水能力弱的环境区域,生物结皮层藓类植物以其特有的生态功能在石漠化治理、退化生态系统的恢复中具有十分重要的作用。
[本文引用: 1]
[22]
[田友萍, 张捷, 宋林华, . 云南石林碳酸盐岩表面气生蓝藻 (蓝细菌) 研究[J]. 生态学报, 2002, 22(11): 1 793-2 020.]
Tian Youping, Zhang Jie, Song Linhua, et al. A study on aerial cyanophyta (Cyanobacteria) on the surface of carbonate rock in Yunnan Stone Forest,Yunnan Province,China[J]. Acta Ecologica Sinica, 2002, 22(11): 1 793-2 020.
DOI:10.3321/j.issn:1000-0933.2002.11.001 URL
云南石林的黑石头及其颜色会随着天气的变化而变化的自然景观,是由于其碳酸盐岩表面长满黑色气生蓝藻(蓝细菌)之故。经鉴定,气生蓝藻共4目,11科,31届,188种。种类十分丰富。其优势种主要为寄生微囊藻、红色星球藻、伯氏伪枝藻和皮壳伪枝藻等;寄生微囊藻和红色星球藻呈面状分布,相对均衡,伯氏伪枝藻和皮壳伪枝藻呈点状分布,相对集中。这些气生蓝藻的胶被色泽鲜艳,宽厚而坚硬,是适宜高山岩石表面生活的典型进化特征。在野外肉限观察时,气生蓝藻还表现出不同形态的微群落;发现气生蓝藻能溶解石灰石,形成钻孔,加速岩石的溶蚀与风化。这些现象表明,气生蓝藻与云南石林岩石表面的微形态及整个石林景观的形成都有着十分密切的关系。
[本文引用: 1]
[23]
Gorbushina A A.Life on the rocks[J]. Environmental Microbiology, 2007, 9(7): 1 613-1 631.
[本文引用: 2]
[24]
Karsten U, Schumann R, Mostaert A.Aeroterrestrial algae growing on man-made surfaces[M]∥Seckbach J, ed. Algae and Cyanobacteria in Extreme Environments. The Netherlands: Springer,2007:583-597.
[本文引用: 3]
[25]
Mostaert A S, Higgins M J, Fukuma T, et al. Nanoscale mechanical characterisation of amyloid fibrils discovered in a natural adhesive[J]. Journal of Biological Physics, 2006,32(5):393-401.
DOI:10.1007/s10867-006-9023-y PMID:19669445 URL
Using the atomic force microscope, we have investigated the nanoscale mechanical response of the attachment adhesive of the terrestrial alga Prasiola linearis (Prasiolales, Chlorophyta). We were able to locate and extend highly ordered mechanical structures directly from the natural adhesive matrix of the living plant. The in vivo mechanical response of the structured biopolymer often displayed the repetitive sawtooth force-extension characteristics of a material exhibiting high mechanical strength at the molecular level. Mechanical and histological evidence leads us to propose a mechanism for mechanical strength in our sample based on amyloid fibrils. These proteinaceous, pleated 尾-sheet complexes are usually associated with neurodegenerative diseases. However, we now conclude that the amyloid protein quaternary structures detected in our material should be considered as a possible generic mechanism for mechanical strength in natural adhesives.
[本文引用: 1]
[26]
Feige G B, Kremer B P.Unusual carbohydrate pattern in Trentepohlia species[J]. Phytochemistry, 1980, 19(8):1 844-1 845.
DOI:10.1016/S0031-9422(00)83826-1 URL
Four Trentepohlia species and the related Cephaleuros virescens (Chroolepidaceae, Trentepohliales, Chlorophyceae) photosynthesize and accumulate mannitol, arabinitol, erythritol and glycerol, while Trentepohlia spp. additionally synthesize a second pentitol, ribitol (adonitol). T. umbrina also contains small amounts of a heptitol, volemitol.
[本文引用: 1]
[27]
Rindi F.Diversity, distribution and ecology of green algae and cyanobacteria in urban habitats[M]∥Seckbach J, ed. Algae and Cyanobacteria in Extreme Environments. The Netherlands: Springer, 2007:619-638.
[本文引用: 2]
[28]
[吴金陵. 中国地衣植物图鉴. 北京: 中国展望出版社,1987.]
Wu Jinlin.Lichen Iconography of China[M]. Beijing: China Prospect Publishing House,1987.
[本文引用: 1]
[29]
Smith A.Bryophyte Ecology[M]. The Netherlands: Springer,1982.
[本文引用: 1]
[30]
[龚子同, 张甘霖, 陈志诚.土壤发生与系统分类[M]. 北京:科学出版社, 2007.]
Gong Zitong, Zhang Ganlin, Chen Zhicheng.Pedogenesisand Soil Teminology[M]. Beijing:Science Press,2007.
[本文引用: 3]
[31]
[徐海清, 刘文耀, 沈有信,.云南石林喀斯特地区半湿润常绿阔叶林附生植物的初步研究[J]. 广西植物, 2006,26(1): 43-48.]
Xu Haiqing, Liu Wenyao, Shen Youxin, et al. A preliminary study of epiphytes in semi-humid evergreen broad-leaved forest in stone-forest Karst region, Yunnan Province[J]. Guihaia, 2006,26(1): 43-48.
[本文引用: 1]
[32]
[朱习爱, 沈有信, 何贝贝,.云南石林岩生维管植物多样性及生物量特征[J], 山地学报 , 2016, 34(2): 165-172.]
Zhu Xiai, Shen Youxin,He Beibei, et al. Species diversity and biomass of vascular plant on rocky outcrops in karst area[J]. Journal of Mountain Research, 2016, 34(2): 165-172.
[本文引用: 1]
[33]
[田彪,丁明虎,孙维君,. 大气CO研究进展. 地球科学进展,2017,32(1):34-43.]
Tian Biao, Ding Minghu, Sun Weijun, et al. Research progress of atomspheric canbon monoxide[J]. Advances in Earth Science,2017,32(1):34-43.
[本文引用: 1]
[34]
Shen J L, Li Y, Liu X J, et al. Atmospheric dry and wet nitrogen deposition on three contrasting land use types of an agricultural catchment in subtropical central China[J]. Atmospheric Environment, 2013,67(2):415-424.
[本文引用: 1]
[35]
Holmes C D.Air pollution and forest water use[J]. Nature, 2014,507(7 491):E1-E2.
[本文引用: 1]
[36]
Kidron G J, Starinsky A.Chemical composition of dew and rain in an extreme desert (Negev): Cobbles serve as sink for nutrients[J]. Journal of Hydrology, 2012, 420(7):284-291.
[本文引用: 1]
[37]
Goransson H, Edwards P J, Perreijn K, et al. Rocks create nitrogen hotspots and N∶ P heterogeneity by funnelling rain[J]. Biogeochemistry, 2014, 121(2):329-338.
[本文引用: 1]
[38]
Elbert W, Weber B, Büdel B, et al. Microbiotic crusts on soil, rock and plants: Neglected major players in the global cycles of carbon and nitrogen?[J]. Biogeosciences Discussions,2009,6:6 983-7 015.
[本文引用: 3]
[39]
Chen J, Blume H P, Beyer L.Weathering of rocks induced by lichen colonization—A review[J]. Catena,2000, 39(2):121-146.
[本文引用: 2]
[40]
[王电杰, 沈有信,黄金.石林3种喀斯特生态系统的石面有机质和养分含量研究[J]. 山地学报,2015, 33(1):16-24.]
Wang Dianjie, Shen Youxin, Huang Jin.Epilithic organic matter and nutrient contents in three different karst ecosystems[J]. Journal of Mountain Research, 2015, 33(1):16-24.
[本文引用: 1]
[41]
[朱习爱,沈有信, 何贝贝, .喀斯特石冠腐殖土及其N-N的吸附性能—以云南石林为例[J]. 中国岩溶,2015, 34(6):616-623.]
Zhu Xiai, Shen Youxin, He Beibei, et al. Humus on karst rock outcrops and their adsorption of ammonia nitrogen: A case from three ecosystems of Shilin, Yunnan[J]. Carsologica Sinica,2015, 34(6):616-623.
[本文引用: 1]
[42]
DeVries W, Reinds G J, Vel E. Intensive monitoring of forest ecosystems in Europe 2: Atmospheric deposition and its impacts on soil solution chemistry[J]. Forest Ecology and Management, 2003, 174:97-115.
[本文引用: 1]
[43]
Fang Y T, Gundersen P, Vogt R D, et al. Atmospheric deposition and leaching of nitrogen in Chinese forest ecosystems[J]. Journal of Forest Research, 2011, 16:341-350.
[本文引用: 1]
[44]
[周国逸, 闫俊华. 鼎湖山区域大气降水特征和物质元素输入对森林生态系统存在和发育的影响[J]. 生态学报, 2001,21(12):2 002-2 012.]
Zhou Guoyi, Yan Junhua.The influences of regional atmospheric precipitation characteristics and its element inputs on the existence and development of Dinghushan forest ecosystems[J]. Acta Ecologica Sinica, 2001,21(12):2 002-2 012.
[本文引用: 1]
[45]
[李欠欠,汤利.大气氮沉降的研究进展[J]. 云南农业大学学报, 2010, 25(6):889-894.]
Li Qianqian, Tang Li.A mini-review on atmospheric nitrogen deposition[J]. Journal of Yunnan Agricultural University, 2010, 25(6):889-894.
[本文引用: 1]
[46]
Lu C Q, Tian H Q, Liu M L, et al. Effect of nitrogen deposition on China’s terrestrial carbon uptake in the context of multifactor environmental changes[J]. Ecological Applications, 2012,22(1):53-75.
[本文引用: 2]
[47]
Crews T E, Kurina L M, Vitousek P M.Organic matter and nitrogen accumulation and nitrogen fixation during early ecosystem development in Hawaii[J]. Biogeochemistry,2001, 52(3):259-279.
[本文引用: 1]
[48]
Elbert W, Weber B, Burrows S, et al. Contribution of cryptogamic covers to the global cycles of carbon and nitrogen[J]. Nature Geoscience,2012, 5:459-462.
[本文引用: 1]
[49]
Wang D J, Shen Y X, Huang J, et al. Rock outcrops redistribute water to nearby soil patches in karst landscapes[J]. Environmental Science and Pollution Research, 2016, 23(9):8 610-8 616.
[本文引用: 1]
[50]
Wang D J, Shen Y X, Li Y H, et al. Rock outcrops redistribute organic carbon and nutrients to nearby soil patches in three karst ecosystems in SW China[J]. PLoS ONE, 2016: e0160773. DOI:10.1371/journal.pone.0160773.
[本文引用: 1]
[51]
[王克林, 苏以荣, 曾馥平, .西南喀斯特典型生态系统土壤特征与植被适应性恢复研究[J]. 农业现代化研究, 2008, 29(6):641-645.]
Wang Kelin, Su Yirong, Zeng Fuping, et al. Ecological process and vegetation restoration in karst region of southwest China[J]. Research of Agricultural Modernization, 2008, 29(6):641-645.
[本文引用: 1]
[52]
[蒋忠诚, 罗为群, 邓艳,.岩溶峰丛洼地水土失及防治研究[J]. 地球学报,2014, 35(5):535-542.]
Jiang Zhongcheng, Luo Weiqun, Deng Yan, et al. The leakage of water and soil in the karst peak cluster depression and its prevention and treatment[J].Acta Geoscientica Sinica, 2014, 35(5):535-542.
[本文引用: 1]
[53]
[李强,蒲俊兵,黄妮,.断陷盆地生态环境地质分异及石漠化演变机理的研究途径[J]. 地球科学进展,2017,32(9):899-908.]
Li Qiang, Pu Junbing, Huang Ni, et al. A research approach for ecological, environmental and geological differentiation of rocky desertification and its driving mechanism in karst graben basin[J]. Advances in Earth Science,2017,32(9):899-908.
[本文引用: 1]
[54]
DeWaele J, Gutierrez F, Parise M, et al. Geomorphology and natural hazards in karst areas: A review[J]. Geomorphology, 2011, 134(1/2):1-8.
[本文引用: 1]
[55]
[刘丛强. 生物地球化学过程与地表物质循环: 西南喀斯特土壤—植被系统生源要素循环[M]. 北京:科学出版社,2009.]
Liu Congqiang.Biogeochemistry Process and Surface Material Recycle[M].Beijing:Science Press, 2009.
[本文引用: 1]
[56]
Li S, Ren H D, Xue L, et al. Influence of bare rocks on surrounding soil moisture in the karst rocky desertification regions under drought conditions[J].Catena, 2014,116(3):157-162.
[本文引用: 2]
[57]
Kirkham M B.Principles of Soil and Plant Water Relations (Second Edition)[M]. Boston: Academic Press, 2014.
[本文引用: 1]
[58]
Liu W J, Li P J, Duan W P, et al. Dry-season water utilization by trees growing on thin karst soils in a seasonal tropical rainforest of Xishuangbanna, Southwest China[J]. Ecohydrology, 2014, 7(3):927-935.
[本文引用: 1]
[59]
Rong L, Chen X, Chen X H, et al. Isotopic analysis of water sources of mountainous plant uptake in a karst plateau of southwest China[J]. Hydrological Processes, 2011,25(23):3 666-3 675.
[本文引用: 1]
[60]
[容丽, 王世杰, 俞国松, .荔波喀斯特森林4种木本植物水分来源的稳定同位素分析[J]. 林业科学,2012, 48(7):14-22.]
Rong Li, Wang Shijie, Yu Guosong, et al. Stable isotope analysis of water sources of four woody species in the Libo karst forest[J]. Scientia Silvae Sinicae, 2012, 48(7):14-22.
[本文引用: 1]
Resource
PDF downloaded times    
RichHTML read times    
Abstract viewed times    

Share
Export

External search by key words
露石     
生物植居     
生态水文     
石漠化     

Rock outcrop     
Biological inhabitatione     
Eco-hydrology     
Rocky desertification.     

External search by authors
沈有信     
赵志猛     
毕胜春     
赵高卷     
刘娟     

Shen Youxin    
Zhao Zhimeng    
Bi Shengchun    
Zhao Gaojuan    
Liu Juan    

Related articles(if any):