地球科学进展  2018 , 33 (10): 1034-1047 https://doi.org/10.11867/j.issn.1001-8166.2018.10.1034.

综述与评述

颗粒破碎铀同位素年代学在风尘系统中的应用

付渊赩, 李乐, 陈骏*

南京大学 地球科学与工程学院 表生地球化学教育部重点实验室,江苏 南京 210023

Application of Uranium Isotope Chronology for Partical Comminution in the Eolian Dust System

Fu Yuanhe, Li Le, Chen Jun*

Ministry of Education Key Laboratory of Surficial Geochemistry, School of Earth Sciences and Engineering,Nanjing University, Nanjing 210023, China

中图分类号:  P597

文献标识码:  A

文章编号:  1001-8166(2018)10-1034-14

通讯作者:  *通信作者:陈骏(1954-),男,江苏扬州人,教授,主要从事风尘地球化学与全球变化研究.E-mail:chenjun@nju.edu.cn

收稿日期: 2018-06-6

修回日期:  2018-08-9

网络出版日期:  2018-10-10

版权声明:  2018 地球科学进展 编辑部 

基金资助:  国家自然科学基金项目“颗粒破碎铀同位素年代技术的发展及其在风尘系统中的应用”(编号:41730101)资助.

作者简介:

First author:Fu Yuanhe(1993-), male, Bingzhou City, Shandong Province,Master student. Research areas include uranium isptope geochemistry. E-mail:fyuanhe@163.com

作者简介:付渊赩(1993-),男,山东滨州人,硕士研究生,主要从事铀同位素地球化学研究.E-mail:fyuanhe@163.com

展开

摘要

风尘系统是陆地表层系统的重要组成部分,对诸多关键带有着重要作用。风尘的产生机制与搬运过程对理解风尘的环境功能和解读风尘沉积的古气候记录至关重要。以往传统地球化学方法只能反映最终剥蚀区的岩性或矿物结晶年龄,无法区分相同最终物源背景下不同粉沙的产生机制和搬运中间过程,是当前风尘研究的最大挑战之一。由α衰变反冲导致的细粒物质的234U/238U值反映颗粒自破碎以来经历的时间,可能能有效示踪粉尘的产生机制以及搬运中间过程,但是铀同位素破碎年代学在风尘系统中还鲜有应用。总结了限制铀同位素广泛应用的复杂因素,并根据最新的研究进展,针对在风尘系统中验证和发展铀同位素破碎年代学,以及解决风尘产生机制和搬运路径等问题展开讨论。

关键词: 铀同位素 ; 破碎年龄 ; 搬运过程 ; α衰变反冲 ; 黄土

Abstract

The wind dust system is an important part of the terrestrial surface system and plays an important role in many key belts. The mechanism of wind dust and the handling process are important to understand the environmental function of wind dust and to interpret the paleoclimate record. In the past, traditional geochemical methods can only reflect the rock composition or age in the final denudation zone, and it is not possible to distinguish the different silt mechanism and the intermediate process under the same eventual source background, which is one of the biggest challenges of the present research. The 234U/238U ratio of fine matter caused by alpha decay recoil reflects the time experienced by the particle since it was broken and may be able to effectively trace the mechanism of wind dust generation and the transport of the intermediate process, but the age of uranium isotope fragmentation is rarely used in the wind dust system. The complicated factors restricting the wide application of uranium isotope were summarized, and according to the latest research progress, the verification and development of the uranium isotope comminution age in the wind dust system, and the problem solution of the mechanism of wind dust production and the way of transporting were discussed.

Keywords: Uranium isotope ; Comminution age ; Transportation process ; α-recoil ; Loess

0

PDF (2397KB) 元数据 多维度评价 相关文章 收藏文章

本文引用格式 导出 EndNote Ris Bibtex

付渊赩, 李乐, 陈骏. 颗粒破碎铀同位素年代学在风尘系统中的应用[J]. 地球科学进展, 2018, 33(10): 1034-1047 https://doi.org/10.11867/j.issn.1001-8166.2018.10.1034.

Fu Yuanhe, Li Le, Chen Jun. Application of Uranium Isotope Chronology for Partical Comminution in the Eolian Dust System[J]. Advances in Earth Science, 2018, 33(10): 1034-1047 https://doi.org/10.11867/j.issn.1001-8166.2018.10.1034.

1 引 言

颗粒产生、搬运与沉积的过程是地表物质循环研究的核心与难点。以往研究集中在沉积物源的圈定[1,2,3,4]和沉积物汇的古环境重建[5,6,7,8],但是只有恢复物质的搬运过程才能真正理解地表循环的来龙去脉。尽管传统研究涉及示踪沉积物的传输[4,9~11],但有关沉积物从源到汇的搬运时间的研究极少。

碎屑物质的搬运时间尺度对于理解元素地表循环过程、认识硅酸盐风化对大气圈CO2消耗、测量入海陆源物质通量、解读古环境记录、重建流域侵蚀变化、了解硅酸盐和碳酸盐在海洋埋藏过程中的溶解与重结晶速率、探索构造变动—气候变化—人类活动—地貌塑造的关系、解决物质的沉积模式以及陆缘地层演化等问题具有重大意义[12,13,14,15,16,17,18,19,20,21,22,23,24,25]

然而,获取地表物质搬运时间的信息十分困难。传统定年方法难以反映物质的搬运过程,并受矿物组成、形态及数量的限制,而且这些矿物也未必存在于沉积物中。以风尘物质为例,古地磁定年需要卡准地磁事件,对年轻(<1 Ma)风尘物质的测年精度较低;14C定年需要丰富的有机质,而风尘物质中所含有机质较少;生物地层定年需要标准化石,且误差范围较大;K-Ar和Ar-Ar定年需要火山标志单元,不为风尘物质所有;非碎屑定年一般只给出沉积年龄,如自生碳酸盐的沉积年龄;释光定年需要大量碎屑长石或石英颗粒,而且存在晒图不充分的问题;宇宙核素定年需要大量的石英颗粒[14],给出的结果(如26Al/10Be埋藏年龄和10Be暴露年龄)也存在暴露后的二次埋藏问题。所以,在最终沉积前,粉尘搬运的时间一直是未知的。

中国西部各个干旱区均具有大量的风蚀地貌和现代沙尘释放。地貌学和沉积学的一般手段并不能有效区分这些潜在源区;冰期与间冰期气候条件的巨大变化也限制了现代气象观测的作用。因此,地球化学方法成为黄土风尘物源示踪最主要的手段[26]。21世纪以来大量地球化学研究表明,青藏高原北缘山脉是黄土高原黄土最主要的物源地:黄土高原黄土与青藏高原北缘地表沙漠沙、河流冲积扇、新生代河湖相地层以及黄河沉积物均主要接受来自青藏高原北缘山脉的物质,具有相似的地球化学特征,例如,Nd和Sr同位素[27],锆石U-Pb年龄谱[28]等。但是,风尘物质具体的搬运路径和破碎机理并不明晰:青藏高原北缘山脉的剥蚀物可以通过西北风来自青藏高原北缘的阿拉善干旱区[29],也可能通过西风来自柴达木盆地[30],还可能来自黄河河滩[31]。起沙的部位可能是沙漠,可能是戈壁冲积扇和干旱尾闾湖,也可能是松散的新生代河湖相地层(雅丹)。这些物质具有相似的最终源区,很多传统的地球化学成分类似,难以区分。因此,黄土高原黄土物源研究现阶段主要的争议源自传统地球化学指标的多解性,这些指标能反映最终物质剥蚀区的岩石成分或年龄,是一种岩石学示踪,但很难示踪物质搬运的具体中间过程。

最新研究表明细粒物质的234U/238U值反映颗粒自破碎以来经历的时间,与原始岩石的成分无关,在地表物质循环研究中具有巨大的应用潜力[13,20,32~34]。铀系核素能突破传统地球化学方法如Sr-Nd同位素[27]、锆石U-Pb年龄谱[35]、石英电子自旋共振ESR[36]等所指示的风尘物源多解性的限制[21,37]。相比于传统地球化学指标,铀同位素破碎年代学对样品的限制低,仅要求沉积物中富含细粒碎屑[20]。该方法已成功应用于恢复海洋沉积物[15,32,38]、河流沉积物[20,34,39,40]和冰川物质[14,33]的搬运过程。最近,铀同位素破碎年代学成功应用到了风尘系统中,揭示了风尘物质的搬运路径和停留时间[21],具有巨大的应用潜力。

2 铀同位素破碎年代学模型

2.1 原理

岩石中234U是238U系列衰变的产物(图1a)。238U核素经过α衰变变为234Th,半衰期长达4.5 Ga。234Th经过2次快速的β衰变(半衰期分别为24.1 d和6.7 h)变为234U。因此,岩石中234U核素的产率取决于238U的含量。234U核素并不稳定,经过α衰变成为230Th,半衰期为245 ka[41]。经过多个 234U230Th半衰期以后,岩石中234U的产生速度等于234U的衰变速度,达到稳态平衡:

λ238238U= λ234234U,(1)

图1   颗粒铀同位素衰变图
(a)颗粒α衰变反冲作用示意图;(b) 颗粒表面(234U/238U)与破碎年龄tcom演化图(据参考文献[40]修改)

Fig.1   Diagram showing radioactive decay of Uranium isotope
(a) Schematic diagram of recoil ejection of 234Th from a spherical grain as a result of the alpha decay of 234U, followed by beta decay of 234Th to 234U;(b)The time dependent (since the onset of weathering) evolution of (234U/238U) as a function of sediment grain size (modified after reference[40])

式中:λ为核素衰变常数,234U的衰变常数λ234=2.82629×10-6/a[41],238U的衰变常数λ238=1.55125×10-10 /a[41]。因此,在平衡条件下(>1 Ma),岩石的234U/238U同位素值为234U和238U放射性衰变常数的反比:

234U238U= λ238λ234=54.89×10-6,(2)

由于234U/238U绝对比值很小,234U/238U同位素值一般表示为与平衡比值的值(234U/238U),即放射性活度比:

234U238U=234U238Uλ234λ238 。(3)

岩石破碎以后,颗粒外表面一定区域内的234U因238U的α衰变反冲作用被弹射出颗粒表面,导致颗粒中234U的累积速度小于衰变速度[42]:

234U238U=(1-fα)+234U238U0-(1-fα)e-λ234tcom,(4)

式中:(234U/238U)0为颗粒溶解或破碎前的(234U/238U)初始值(下同);fα为被α衰变反冲出颗粒表面的234Th的比例(下同),与颗粒的粒度分布和比表面积有关,颗粒越细,表面越粗糙,fα越大[42];(1-fα)是由238U衰变产生的234U在颗粒内部的比例;tcom为颗粒自破碎到目前经历的时间(下同)。

理论上,新鲜结晶岩的(234U/238U)为1,即岩石的(234U/238U)0=1。变换公式有:

234U238U=1-fα(1-e-λ234tcom),(5)tcom=-1λ234ln234U238U-1fα+1,(6)

因此,颗粒的234U/238U值自破碎开始,会随破碎时间tcom的增加而逐渐变小,直到新的平衡[14](图1b)。

2.2 搬运时间

搬运时间tT不仅包括沉积物传输的时间,还包括在暂时储库中停留的时间,代表着物质从源到汇整个过程的时间[13,43~46]。由于目前没有办法独立测量沉积物的破碎年龄,破碎年龄tcom可以分解为沉积年龄tD和搬运时间tT,即tcom = tD+ tT

假定岩石破碎前(234U/238U)0为1。在1 Ma内,如果已知颗粒的沉积年龄tD,当确定颗粒的fα后,通过样品的234U/238U值便可计算颗粒的搬运时间tT:

tT=1λ234ln1-(1-fα)234U238U-(1-fα)-tD,(7)

倘若细颗粒的破碎年龄太短(tcom<10 ka),颗粒的(234U/238U)基本处于破碎前的稳态平衡;倘若破碎年龄太长(tcom>1 Ma),颗粒的(234U/238U)将达到新的稳态平衡[15]。因此,铀同位素破碎年代学的理想测年范围是10 ka~1 Ma。

3 铀同位素破碎年代学的难点

综上所述,由α衰变反冲导致的234U/238U值变化仅受控于岩石破碎时间,具有示踪物质地表过程的巨大应用价值。但是,铀同位素破碎年代学的应用还存在一系列问题亟待解决,例如,理论模型只在风尘系统得到验证[21],并非所有岩石的(234U/238U)0都为1[15],自然界碎屑颗粒的fα值往往不同且难以确定[21],还有一些因素[15]如颗粒表面的吸附物质和次生矿物、风化溶解、成岩压实作用等加大了颗粒铀同位素破碎年代学应用的复杂性。

3.1 理论模型的验证

由公式(5)可知,在假设沉积物的fα值不变且搬运时间很短(tT<< tD)或不变的情况下,可以根据沉积年龄tD和(234U/238U)间的函数关系验证铀同位素破碎年代学。但是,已有沉积序列或存在搬运年龄tT的巨大变化[15,34],或没有良好的独立沉积年龄 tD[20]。从而无法获取(234U/238U)和沉积年龄tD之间的良好关系来验证铀同位素破碎年代学。

最近,李乐等[21]利用黄土高原黄土初步验证了铀同位素破碎年代学理论模型的正确性。黄土高原黄土具有连续可靠的轨道调谐年龄[47]。黄土高原黄土来源于阿尔泰山和祁连山的物质,这些物质经历了长期大规模的均匀混合,黄土高原黄土物源在亚构造时间尺度(<1 Ma)上稳定,保证了风尘物质的搬运时间为常量[26]。黄土高原风尘物质由风力搬运,分选极好,同一粒级的碎屑颗粒外形比较一致,能够限定fα。黄土高原低的风化强度可以减少化学风化作用对黄土颗粒234U/238U的影响[48],同时黄土高原不同地区风化强度的差异以及冰期—间冰期风化强度的差异可以用来验证风化作用对234U/238U值的影响[48,49]。前人已对黄土高原黄土开展了大量的化学研究,积累了大量的化学清洗方法[50,51,52],为建立铀同位素化学前处理方法提供基础。黄土高原风尘颗粒之间被钙质胶结[26],能有效降低成岩压实作用对颗粒(234U/238U)的影响;同时黄土高原红黏土和中新世具有沉积时间长、成岩作用十分强的特点[53],可以用来验证成岩作用对颗粒(234U/238U)的影响。

3.2 母质初始(234U/238U)的确定

由于自然界的岩石年龄大部分都大于1 Ma,通常假设颗粒的初始(234U/238U)为1[54]。在没有大型地壳流体的地方,234U-238U和230Th-238U衰变链是长期平衡的,这在黏土、碳酸盐、花岗岩、年轻火山岩[23,55,56]及现代冰川前缘终碛物[14]中得到了验证。因此,现有研究一般直接根据公式(5)计算颗粒的破碎年龄[14,15,20,34,57]。由于岩石初始(234U/238U)较小的不确定性(2%)就能导致较大的破碎年龄误差(±178 ka)[40],岩石初始(234U/238U)的限定变得极为关键。

然而,并非所有岩石的初始(234U/238U)均为1。目前国内外研究主要考虑化学风化导致具有孔隙和层理的岩石的初始(234U/238U)<1[15],例如,新鲜的深成岩和沉积岩[39,58]、变质石英岩[39]、凝灰岩[59]、河流冲积物[20]和海洋沉积物[60]。但是有些碎屑颗粒的(234U/238U)>1,例如,土壤剖面中的碎屑颗粒[25]、河流冲积物粗颗粒[45]和悬移质[61,62,63,64,65,66,67,68]

岩石初始(234U/238U)为1的假设可应用到结晶岩石中,而对于沉积岩和凝灰岩则要慎重使用,因为其初始(234U/238U)取决于孔隙度、粒度及成岩作用强度等[15]。针对沉积颗粒初始(234U/238U)的样品,还需要进行2个方面的研究:第一,分析样品周边水样品的U同位素化学特征;第二,分析颗粒各组分的U同位素化学特征,从而探究其形成机理。

3.3 反冲系数fα的确定

fα的微小变化能引起破碎年龄的大幅度变化[40,53]。沉积物粒度变化大,表面几何形貌差别大,不能直接测量fαfα由颗粒粒度、形态和粗糙度决定,粒度与颗粒纵横比可以由传统方法测定[34],但粗糙度在不同样品中变化很大[14,20]。不同地区碎屑颗粒的fα值具有很大差异(图2)[21]

图2   反冲系数fα值与颗粒粒度的关系[21]
CLP:黄土高原;Hanford:华盛顿Hanford花岗质冲积物; Site 984:北大西洋984钻点钻孔; Dome C:南极冰芯Dome C;KRF:加州Kings河冲积扇; OT:冲绳海槽

Fig.2   Dependence of recoil fraction (fα ) on grain-size[21]
CLP. Chinese Loess Plateau; Hanford.Granitic fluvial sediments in Hanford,Washington; Site 984.Drill site 984 in North Atlantic; Dome C. Antarctic Dome C ice core (Site 984); KRF. Alluvial fan of Kings River,California; OT. Okinawa Trough

前人通过大量工作总结了4种有效计算fα的方法,不同方法对于同一对象计算的结果可能会存在较大的差异[69]

(1)通过体积参数计算 fα[15]:

fα=L2rmaxX(r)β(r)λs(r)34Lr-L312r3dr,(8)

式中:r是颗粒半径(下同);L是颗粒234Th的反冲距离(下同),约30 nm[18],硅酸盐矿物中L在20~40 nm变化[57];X(r)是以r为变量的体积函数;β(r)是颗粒的纵横比,对于粒径r <25 μm的颗粒,β(r)值在10(最小颗粒)和1(最大颗粒)之间线性变化[15,34,40];λs是颗粒表面的粗糙度,随r的增加而增加[20,70,71],在1(最小颗粒)到2[15]或17[40](最大颗粒)间变化,实验室研磨的新鲜破碎硅酸盐颗粒在r大范围变化时其λs恒为7[71,72]。粒度分布比形态和表面粗糙度对全岩fα的影响更大[15],非球形碎屑,例如云母的存在会增加fα限定的复杂性[40]。该计算方法可见于许多研究中[15,20,34,38,40,60,73]

(2)通过比表面积计算fα

比表面积测量采用BET(Brunauer-Emmett-Teller measurements)气体吸附方法,其测量尺度为0.354 nm,而α衰变反冲距离的长度尺度为30 nm[14],相差2个数量级。因为比表面积具有分形特征,所以该方法需要做维度校正[33,74]。颗粒表面的分形维数(D)可根据测量过程中相关参数得到[75]:

θ=K[ln(P0/P)]D-3,(9)

式中:θ是相对吸附;K是特征常数;P0是饱和压力;P是绝对压力;D是颗粒表面的分形维数,介于2(绝对光滑)和3(无限粗糙)之间[18,4]

获得分形维度D之后,根据测得的质量比表面积S和分形维数D就可以计算fα:

fα=142D-14-D×aLD-2LSρs,(10)

式中:a是N2分子的直径(0.354 nm);ρs是矿物密度(2.67 g/cm3)[73,74,76]; S是颗粒的BET比表面积(m2/g),一般为1~100 m2/g[18]。如果这些参数能准确测量,破碎年龄的误差上限只有2σ的20%~25%[18]。目前该方法已被广泛应用计算 fα[21,33,40,69,74,77]

(3)通过已达平衡的老样品的(234U/238U)计算fα:

fα=1-234U238Uequi,(11)

式中:(234U/238U)equi是破碎年龄达到1 Ma以上的老样品的铀同位素平衡值。

统一粒度是计算fα的一种方法。假设样品的几何特征和粗糙度没有变化,同一粒级内的颗粒的fα应该基本一致,该方法成功应用到了黄土研究中[21,37]

(4)通过测量226Ra和230Th计算 fα[14,15,20]:

fa=3437(1-226Ra/230Th),(12)

式中:系数34/37是238U和230Th衰变过程的反冲距离比值。颗粒中的226Ra由230Th通过α衰变产生,该过程与238U衰变成234U原理一致。因此对于同一个颗粒,2个衰变过程中由于α反冲而冲出颗粒的fα应该一致。由于相比于234U的半衰期(245 ka),226Ra的半衰期(1 622 a)非常短,自然界的绝大多数样品的226Ra/230Th已经达到平衡(10 ka),而对于234U/238U可能并没有达到平衡。但是化学淋滤引起的颗粒表面U和Th分离[14],以及非碎屑颗粒表面对Ra,Th,U的吸附,均会干扰获取真实的 fα[24]

3.4 化学清洗的影响

沉积物颗粒通常由碎屑矿物和非碎屑矿物组成。在物质颗粒中由于238U的α衰变反冲作用会存在3个不同(234U/238U)区域[18,40](图3)。

图3   碎屑颗粒的(234U/238U)分区图(据参考文献[15]修改)

Fig.3   Distribution of (234U/238U) in the detritus grain (modified after reference[15])

(1)区域一:(234U/238U)=1。

颗粒内部处于平衡态,(234U/238U)与破碎前相同恒为1。

(2)区域二:(234U/238U)<1。

碎屑颗粒的外表层(50 nm)由于存在α反冲导致该区域(234U/238U)<1,是234U亏损层。硅酸盐的表层厚度约30 nm[78],而234U/238U的测试精度约0.001,因此只有当颗粒足够小(<50或63 μm)[34,79]时,颗粒的比表面积才会足够大以致234U的亏损得以测量[14,15,51]

(3)区域三:(234U/238U)>1。

碎屑颗粒表层的非碎屑物质一般是风化作用的产物,例如,有机质、非碎屑碳酸盐、次生黏土矿物和生物硅等,其形成过程中因从水体中获得234U而具有较大的234U/238U[17,20,21,34,50,80],并受当地水文条件的影响而呈季节性变化[67],但这与碎屑颗粒本身的(234U/238U)无关。

为了能够有效反映α反冲对颗粒(234U/238U)的影响,需要去除表面吸附和次生矿物部分[17,20,21,39,79,81]。α反冲作用导致的(234U/238U)变化发生在硅酸盐颗粒表面30 nm的范围内[78],化学清洗可能破坏这一区域。因此,最佳的化学前处理需要尽量去除具有高(234U/238U)的表面吸附和次生组分(区域三),保留具有低(234U/238U)的颗粒表面(区域二),从而获得最低的(234U/238U)[51](图4)。化学分步提取方法是去除表面吸附和次生组分的重要手段[79]。Plater等[67]和Suresh等[79]利用化学分布提取方法成功去除了大量来自非碎屑物质,尤其是吸附在有机质上的U。Francke等[50]对湖泊和海洋沉积物进行了分布提取实验,发现用低浓度试剂和超声波辅助不仅能达到理想效果,还能缩短5倍反应时间。

图4   化学清洗程度与颗粒(234U/238U)演化示意图(据参考文献[51]修改)

Fig.4   Schematic of the expected effects of leaching treatments on the 234U/238U activity ratio of sediment samples (modified after reference[51])

碎屑颗粒中的黏土矿物因其粒度小而具有对全岩样品的fα值不容忽视的影响。黏土矿物是否为次生矿物,不同样品中的黏土矿物是否必须去除,目前并没有统一定论。某些地区的沉积物中黏土矿物的去除会导致全岩(234U/238U)值升高[40];如果是粉砂—砂级的黏土团粒,在搬运过程中难以分解,在化学清洗过程中也难以完全去除[39]

富U矿物(例如锆石、蒙脱石、铀矿石等)有更大的α反冲损失速率,但对全岩样品fα值影响目前并不清晰。Handley等[40]认为锆石的溶解会控制全岩样品的U系平衡;而Maher等[73]通过计算表明富U矿物的含量通常很低,对全岩样品的α反冲速率的影响可以忽略。

尽管很多学者为此做了大量研究[14,15,20,21,34,39,40,50,51,73,79,82~84],但目前仍无统一化学清洗标准。

李乐等[21]探索了风尘物质铀中同位素化学清洗的最佳方法,即通过醋酸浸泡去除次生碳酸盐、双氧水氧化去除有机质、一次性CBD(碳酸氢钠+二水合柠檬酸三钠+低亚硫酸钠)还原去除铁锰氧化物与氢氧化物,该方法能得到最低的且可靠的(234U/238U),整个实验流程误差低于4‰(图5)。

图5   SSB方法下的整套实验流程基于老黄土样品的(234U/238U)及其误差的长期重复性[21]

Fig.5   Long-term reproducibility and analytical uncertain-ties of the whole procedure using SSB method based on one loess sample of >1 Ma[21]

3.5 风化溶解的影响

铀同位素破碎年代学假设岩石破碎后颗粒 234U238U的不平衡单纯由放射性衰变引起。然而,硅酸盐放射性破坏晶格234U的偏好性溶解能加强颗粒表面亏损层234U的进一步损失[18,67,74,82~89];硅酸盐表面234U亏损层的风化溶解会抵消α衰变反冲作用的效果[14];风化溶解可能增加颗粒的比表面积S,使其具有更高的粗糙度λs和反冲系数 fα[20];富U或高(234U/238U)的风化产物部分可能决定了风化溶解对碎屑颗粒影响的效果[14],而且未必能在化学清洗过程中完全去除[20,50];矿物的溶解速率在不同背景[42]和时间[22]下相差很大,难以统一量化铀同位素淋滤效应。

花岗岩和矿物实验表明颗粒表层和放射性破坏晶格中的234U溶解极为快速,使颗粒(234U/238U)降低[90,91]。Latham等[92]的铀淋滤模型诠释了风化淋滤作用是花岗岩(234U/238U)降低的原因。海洋沉积物中孔隙水的(234U/238U)的变化可能由硅酸盐颗粒的溶解导致[93]

高剥蚀速率下背景的化学风化可能对河水 (234U/238U)有很大影响[94]。但是,河水的(234U/238U)受α反冲、地下水和放射性破坏晶格234U的偏好性溶解等影响,基于河水的U同位素指标并不能很好地反映风化溶解对颗粒(234U/238U)的影响。

李超等[38]通过研究长江、中国台湾浊水溪和兰阳河沉积物,认为颗粒(234U/238U)受风化溶解影响较大。然而,该研究样品较少,并且部分样品落在置信区间外;中国台湾河流沉积物(234U/238U)与化学风化相关指数(Chemical Index of Alteration,CIA)的相关系数较低;高CIA也可能反映了老沉积物的再循环[95];样品低(234U/238U)并不能指示较强的化学风化,因为颗粒风化表面会迅速老化,化学风化完全受控于物理剥蚀,且很快停止[94]

其他研究表明河流沉积物的(234U/238U)在水溶液中不受离子交换和淋滤作用影响[20,73,96,97],沿α反冲径迹的234U的溶解只可能发生在矿物暴露新鲜表面的情况下[98]

通过对比α反冲引起的矿物颗粒外层234U亏损所必需的时间(354 ka)与风化溶解掉颗粒表面厚度为Ldiss的区域所用的时间tdiss,可以估算风化溶解对矿物颗粒(234U/238U)的影响[15]:

trecoil/tdiss= Rdiss(λ234Ldissρs), (13)

式中: trecoil是α反冲作用引起的矿物颗粒外层234U亏损所必需的时间,trecoil= λ234-1=354 ka;Rdiss是特定矿物溶解速率(mol/(m2·s));Ldiss是风化溶解颗粒表面的深度。

Depaolo等[15]假设Rdiss=2.5×10-18 (mol/(m2·s)),据此公式计算了北大西洋沉积物234U亏损必需时间与溶解时间比值,认为风化溶解对颗粒(234U/238U)的影响微弱(10%)。

相比于其他沉积物,风尘物质风化程度较弱[48],其(234U/238U)变化应该可以表征α衰变反冲作用的效果。黄土高原土降水量与温度自东南向西北逐渐降低,风尘沉积速度逐渐变大。因此,黄土高原黄土的化学风化程度在空间上存在较大差别,东南部剖面的化学风化程度更强。李乐等[21]通过对比黄土高原西峰和灵台剖面风尘物质的(234U/238U),发现尽管这2个剖面的化学风化强度不同,但U同位素演化具有一致性,并在冰期—间冰期旋回中保存稳定。表明较弱的风化作用不足以影响物质颗粒的(234U/238U)。然而,西峰和灵台在空间上较为接近,风化程度差别不大,还需黄土高原相距较远的南北剖面进行验证。

3.6 成岩压实的影响

在α反冲模型中,颗粒表面生成的234Th会被弹射出颗粒表面,尽管反冲距离只有30 nm,成岩压实作用可能使得被弹射出来的234Th植入相邻颗粒,从而抵消α衰变反冲的效果。

Depaolo等[15]认为成岩压实作用对颗粒(234U/238U)影响很小,因为234Th的反冲距离仅能使234Th的植入被局限在颗粒表面很小的部分,而且在化学清洗过程中,由234Th植入后衰变而成的234U会被酸淋滤掉。

李乐等[21]发现黄土高原风尘物质在不同冰期—间冰期旋回中形成的不同和成岩作用强度,对碎屑颗粒的α衰变反冲作用的影响几乎没有差异,并且利用成岩作用十分强烈的秦安红黏土(>8 Ma)验证了成岩压实作用对颗粒(234U/238U)的影响可以忽略。然而,无论是黄土还是古土壤,其成岩作用强度可能还不足以影响颗粒的(234U/238U),中新统红黏土样品数量较少,黄土和古土壤颗粒间的次生碳酸盐可以减缓甚至隔离碎屑颗粒的压实效果。

4 铀同位素破碎年代学在风尘系统中的应用

4.1 黄土高原风尘物质的搬运时间

确定搬运时间需要确定黄土沉积时的初始234U/238U值(234U/238U)0。根据公式(8),对于新鲜沉积的黄土样品,tD= 0,其(234U/238U)可以表示为:

(234U/238U)0=1-fα×(1- e-λ234tT ), (14)

式中:(234U/238U)0是黄土沉积时的初始 234U/238U值,结合公式(5)与公式(14)可得:

1-(234U/238U)1-(234U/238U)0= 1-e-λ234(tT+tD)1-e-λ234tT, (15)

对于黄土沉积,沉积年龄tD已知,(234U/238U)为样品的U同位素组成。因此,可以通过公式(15)回归得到初始沉积的(234U/238U)与搬运时间tT

李乐等[21]研究了黄土高原西峰和灵台2个剖面和秦安老黄土样品,并选取了黄土颗粒20~25 μm组分,该粒级是黄土的主要范围,且容易人工分离,其平衡值(234U/238U)equi远偏离1。黄土沉积20~25 μm组分的初始(234U/238U)值为0.956±0.004(2σ),风尘物质颗粒从破碎搬运到黄土高原经历了(242±18)ka(2σ),反映了风尘物质在剥蚀源区的土壤或古河道的停留时间,暗示了源区的粉尘颗粒经历了广泛的河流作用以及风力混合。

但是,西峰与灵台剖面研究只是基于少数几个样品,黄土的(234U/238U)在冰期—间冰期尺度上的变化并不明晰。有必要加密测试这2个剖面的(234U/238U)值,特别末次冰期—间冰期样品的(234U/238U)值,建立黄土(234U/238U)与沉积年龄的关系曲线,从而获得更精准的初始(234U/238U)值与物质搬运时间,并探讨黄土沉积初始(234U/238U)值在冰期尺度上的稳定性。西峰与灵台剖面已经具有较好的研究基础和年代控制[47,99],为开展进一步研究奠定了基础。

4.2 风尘物质物源

4.2.1 黄土高原黄土物源

黄土高原是亚洲风尘最重要的沉积区[100]。研究表明除准格尔盆地以外,中国西部几乎所有干旱区都曾被认为是黄土高原黄土物源:青藏高原北缘山脉[35]、戈壁与北方干旱区[36]、毛乌素沙地和库布齐沙地[101]、黄河河谷和鄂尔多斯干旱区[101]、阿拉善干旱区[28]、柴达木盆地[30]及塔里木盆地[102]

建立潜在源区物质的(234U/238U)数据库是利用黄土沉积时的初始234U/238U值(234U/238U)0圈定风尘物源的基础[103],这归因于不同地貌部位的物质具有不同的搬运方式或搬运途径,其搬运时间和(234U/238U)具有很大的差别。风尘物质以高空搬运为主[104],从直接源区搬运到黄土高原仅需数天或数小时[105],这一过程所用时间相对破碎年龄可以忽略,风尘物质的(234U/238U)没有变化,因此对比潜在源区物质的(234U/238U)与黄土高原新鲜黄土的(234U/238U)能够示踪黄土物质的直接来源。

李乐等[106]发现潜在源区不同地貌单元物质的(234U/238U)差别巨大,柴达木盆地和蒙古戈壁粉尘物质具有较高的(234U/238U),而黄河沉积物、库布齐沙漠具有较低的(234U/238U),这些偏新或偏老的物质均不是黄土高原黄土物源;只有阿拉善干旱区的沙漠沙的(234U/238U)与黄土沉积时的初始(234U/238U)十分接近,支持阿拉善干旱区作为黄土高原黄土的直接源区。黄土高原物质主要来自3个端源,分别是戈壁沙漠、鄂尔多斯干旱区东部地区以及祁连山北缘。物源示踪结果表明黄土高原细颗粒主要是通过高山过程产生,部分是通过暴露的地层基岩风化解体产生,而沙漠磨蚀不太可能是黄土高原细颗粒的主要产生机制。

4.2.2 中国东部黄土物源

中国东部黄土主要分布在黄河下游沿岸、山东半岛及其滨海、长江中下游。部分研究认为中国东部黄土来自于中更新世革命后亚洲内陆干旱区所释放粉尘的远距离传输[107,108]。也有研究认为东部黄土来自于中更新世革命后近源河流冲击物在区域性风尘活动中的再搬运沉积[109,110]。传统地球化学的多解性影响中国东部黄土物源的解读,黄河沉积物与黄土高原黄土均主要接受来自青藏高原北缘山脉的物质,具有相似的地球化学特征,例如,Nd、Sr同位素[27],锆石U-Pb年龄谱[28]等。

李高军等[37]利用铀同位素破碎年代学发现中国东部黄土主要来自其附近的干旱区,具有近源性和二次搬运特征。中国东部黄土源区物质在搬运形成黄土之前经历长时间的沉积,而后由于中更新世革命后的气候变化,海平面下降,使得原先沉积物大面积暴露,区域性风尘活动导致老沉积物的近源性堆积。现代长江沉积物有更多老沉积物的再循环,归因于人类活动和气候变化导致的长江沉积物源的巨大改变。

5 铀同位素破碎年代学在其他领域的应用

5.1 冰川沉积物

Aciego等[33]计算了南极洲Dome C冰芯中沉积物的破碎年龄为85~870 ka;Depaolo等[14]验证了现代冰川前缘终碛物的(234U/238U)接近长期平衡(1.00±0.01),与基岩岩性无关。

5.2 深海沉积物

Depaolo等[15]通过研究北大西洋沉积物,发现碎屑颗粒的搬运时间受冰期—间冰期旋回导致的沉积物源变化的影响,冰期时,沉积物搬运时间长,间冰期时,搬运时间短。李超等[38]在关于冲绳海槽沉积物的研究中,也有着与Depaolo等相同的结论。

5.3 河流沉积物

Dosseto等[34]通过研究澳大利亚Murrumbidgee古河道沉积物,发现在冰期—间冰期旋回过程中,流域植被类型和密度的变化导致了物质源区和搬运时间的变化。更长的搬运时间可能反映了古老沉积物的再循环[13,20,34,45]

气候对河流沉积物的搬运时间有重要影响。例如,冰川效应可能通过移除先前存在的风化剖面来重置河流的搬运时间[17],与河床底部形态最新变化相联系的短暂搬运时间可以指示气候变化效应[111]

碎屑颗粒尺寸也影响着搬运时间。河水中悬移的细颗粒一般反映较短的搬运时间[17,46,64],粗颗粒反映较长的搬运时间(>100 ka)[17,46,63]

地形高低、区域构造、岩性差异控制着搬运时间,这可能是对剥蚀速率的响应。较短的搬运时间对应快速剥蚀区,例如高纬度[25]或高山区[17],而较长的搬运时间对应缓慢剥蚀地区,例如平坦高地[17]或坡度较缓的流域盆地[112]。全球流域盆地的地势数据汇编也显示地形与剥蚀速率呈正相关[113]。同一流域盆地内,地形高差导致的低地河流沉积物比高地河流的搬运时间长[44,63]。不同的搬运时间主要受沉积物搬运动力学差异控制[43]。构造活跃区的河流沉积物[24]比地盾区[63]具有更短的搬运时间。岩性差异造成的高剥蚀速率也会导致搬运时间的变化[64]

中国东海沉积物主要受2类河流体系控制,分别是黄河和长江代表的大河流域以及中国台湾河流代表的小型流域[35]。长江以“大河、大三角洲、巨大排水量、宽河道、沉积物缓慢传输、强烈的人为影响”为标志,中国台湾河流以“山涧河流、瞬时大通量、窄河道、极端气候事件下沉积物快速搬运”为特征[13,60]。在不同时空尺度中,2类河流体系的沉积物的搬运过程和海陆交互作用不同[114],长江沉积物搬运时间长,流域内复杂地形、人类活动与海陆格局在晚第四纪的变化导致了长江中下游古老沉积物的再循环[1,13,34,115]。相较之下,中国台湾河流的流域虽小,但是地势高、地震频繁,流域剥蚀强烈,有着更大的沉积通量[116],大部分物质经历了较短的搬运时间和小流域尺度的沉积再循环[13]

然而,珠江流域以碳酸盐岩为主,其搬运时间可能与长江等碎屑颗粒不同;青藏高原南部的大型河流,例如,恒河、Brahmaputra河与印度河等,其沉积物的搬运时间也可能是另一个结果。河流岩芯沉积物中破碎年龄的垂向变化有3种可能原因:一是沉积物源发生变化,二是冰期—间冰期旋回过程中流域植被类型与密度的变化,三是人类活动导致了古老沉积物的再循环。

6 展 望

新生代青藏高原隆升导致三级阶梯地貌和现代水系的发育,改变了亚洲大气环流格局,造就了黄土沉积;并且在晚新生代构造运动影响下,这些水系携带风化剥蚀的大量碎屑物质进入边缘海[13]。因此,在河流阶地定年、冰川区侵蚀速率测量、全球风化模型的建立[117,118]、黄土高原的侵蚀模式[119]、风化表面年龄和老化机制[94]等领域,都有铀同位素破碎年代学的用武之地。铀同位素破碎年代学的应用离不开一定时空尺度上稳定或规律改变的物源、精确的fα值测量方法、固定或随物源改变而规律地改变的搬运时间以及最佳的化学前处理流程。该方法的应用将弥补沉积物源汇过程研究的不足,在世界黄土分布范围最广的中国开展这一研究,也有利于进一步深化该方法的理论基础和应用范围。

The authors have declared that no competing interests exist.


参考文献

[1] Dou Yanguang, Yang Shouye, Liu Zhenxia, et al.

Provenance discrimination of siliciclastic sediments in the middle Okinawa Trough since 30 ka: Constraints from rare earth element compositions

[J]. Marine Geology, 2010, 275(1/4): 212-220.

DOI      URL      [本文引用: 2]     

[2] Horng C S, Huh C A.

Magnetic properties as tracers for source-to-sink dispersal of sediments: A case study in the Taiwan Strait

[J]. Earth and Planetary Science Letters, 2011, 309(1/2): 141-152.

DOI      URL      [本文引用: 1]      摘要

78 Pyrrhotite is a diagnostic provenance tracer for sediments derived from Taiwan. 78 Source-to-sink pathways of sediments can be traced from their magnetic properties. 78 A two-endmember mixing model can explain the makeup of Taiwan Strait sediments. 78 Sediment supply from Taiwan to the Taiwan Strait has increased since the 1950s. 78 Our method is useful to study sediment transport from metamorphic terrains.
[3] Huh C A, Su C C.

Sedimentation dynamics in the East China Sea elucidated from 210Pb, 137Cs and 239Pu, 240Pu

[J]. Marine Geology, 1999, 160(1/2): 183-196.

DOI      URL      [本文引用: 1]     

[4] Wang Zhongbo, Yang Shouye, Zhang Zhixun, et al.

Paleo-fluvial sedimentation on the outer shelf of the East China Sea during the last glacial maximum

[J]. Chinese Journal of Oceanology and Limnology, 2013, 31(4): 886-894.

DOI      URL      [本文引用: 3]     

[5] Ijiri A, Wang Luejiang, Oba T, et al.

Paleoenvironmental changes in the northern area of the East China Sea during the past 42,000 years

[J]. Palaeogeography Palaeoclimatology Palaeoecology, 2005, 219(3/4): 239-261.

DOI      URL      [本文引用: 1]     

[6] Torsten B.

Sea surface temperature record from the north of the East China Sea since late Holocene

[J]. Chinese Science Bulletin, 2009, 54(23): 4 507-4 513.

DOI      URL      [本文引用: 1]      摘要

Using the alkenone paleotemperature index U k3′7, a high-resolution sea surface temperature (SST) re-cord since 3600 a BP was reconstructed from the mud area in the north of the East China Sea. Combining with the grain size distribution curve of sensitive grain size group, which may reflect the East Asia Winter Monsoon activity, the palaeoenvironmental evolution cycle throughout the late Holocene in the area was obtained. The marine environment evolution during the last 3600 years displays a five-stage trend. (1) Temperature descending period from 0.85 cal. ka BP to present. The maximum temperature decrease amplitude is 2℃. The winter monsoon intensified and ‘Little Ice Age’ were recorded in this period. (2) Warming period from 1.90 to 0.85 cal. ka BP. The mean temperature increase amplitude is 0.8℃. The Sui-Tang warming period was recorded at about 0.85―1.35 cal. ka BP and a prominent cooling event was recorded at 1.4 cal. ka BP in this period. (3) Temperature descending period from 2.55 to 1.90 cal. ka BP. Temperature cooling amplitude is 0.9℃. This period is coincident with an integrated temperature circle recorded in the Antarctic ice core, with the temperature changes from a slow cooling stage to a rapid warming stage. (4) Temperature comparatively stable with a little ascending period from 3.2 to 2.55 cal. ka BP. Temperature warming amplitude is 0.3℃. This period is coincident with the temperature fluctuant ascending period recorded in Antarctic ice core. (5) Temperature comparatively stable with little descending period from 3.6 to 3.2 cal. ka BP. This period corresponds with the temperature fluctuant cooling period recorded in Antarctic ice core. Basically, those five periods were coincident with the Antarctic ice core record. During the global cooling stage, the SST change in the continental shelf sea can be adjusted simultaneously.
[7] Li Guanxue, Liu Yong, Yang Zigeng, et al.

Ancient Changjiang channel system in the East China Sea continental shelf during the last glaciation

[J].Science in China (Series D), 2005, 48(11): 1 972-1 978.

DOI      URL      PMID      [本文引用: 1]      摘要

Based on the data of high-resolution seismic profiles, an ancient river channel system of the last glaciation occurred along the Zhedong and Xihu depression in the southeast of Hupijiao rise. The distribution of the channel fill system shows that the ancient Changjiang River went through the Changjiang depression into the low land plain of the outside continental shelf during the low sea level cycle of the last glaciation. The big channel fill into Okinawa Trough is not found due to the depletion of the river kinetic energy in the low land plain. The river discharge dispersal was of an important role to the dilution of the northern Okinawa Trough sea at that time Six ancient river channel systems (A-F), which are main distributaries of ancient Changjiang in the East China Sea continental shelf during the last glaciation, may be buried off the modern Changjiang estuary. The distribution of these channels coincides with the zonal elevations in the sea floor.
[8] Liu Jian, Saito Y, Kong Xianhuai, et al.

Sedimentary record of environmental evolution off the Yangtze River Estuary, East China Sea, during the last similar to 13,000 years, with special reference to the influence of the Yellow River on the Yangtze River delta during the last 600 years

[J]. Quaternary Science Reviews, 2010, 29(17/18): 2 424-2 438.

DOI      URL      [本文引用: 1]     

[9] Xu Kehui, Li Anchun, Liu J P, et al.

Provenance. Provenance, structure,formation of the mud wedge along inner continental shelf of the East China Sea: A synthesis of the Yangtze dispersal system

[J]. Marine Geology, 2012, 291/294(4): 176-191.

[本文引用: 1]     

[10] Yang Zuosheng, Lei Kun, Guo Zhigang, et al.

Effect of a winter storm on sediment transport and resuspension in the distal mud area, the East China Sea

[J]. Journal of Coastal Research, 2007, 23(2): 310-318.

DOI      URL      摘要

Hydrographic data and water samples for suspended matter were taken in the distal mud area in the East China Sea in winter 1997 before a winter storm, right after the storm, and 14 days later. Based on the field hydrographic data and the concentrations of total suspended matter, the effect of the winter storm on the sediment dynamic processes in the mud area was studied. The results show that the tidal currents dominate the hydrodynamic regime in the study area under calm winter weather with certain stratification of the water column. The winter storm caused strong mixing of the water column and destroyed its stratified structure; however, the high concentration of total suspended sediment (TSM) did not appear simultaneously with the well-mixed water column after the storm, as we expected, but 12 hours later. The storm-induced high TSM in the mud area seems to lag in time the occurrence of the storm in the study area. Analysis indicates that the storm cannot resuspend the surface sediment at station 111, but it could resuspend the surface sediment at shallower water depth outside of the mud area and increase the TSM in waters, which can be carried out by the Yellow Sea Coastal Current and transported to the mud area at station 111. The high TSM observed during the winter stormy period on the shelf might not be caused by the local resuspension.
[11] Wang Houjie, Saito Y, Zhang Yong, et al.

Recent changes of sediment flux to the western Pacific Ocean from major rivers in East and Southeast Asia

[J]. Earth-Science Reviews, 2011, 108(1/2): 80-100.

DOI      URL      [本文引用: 1]      摘要

78 We reviewed the sediment flux from major Asian rivers to the western Pacific Ocean over millennial and centennial scales. 78 Both the millennial increase in sediment flux and the centennial decrease are primarily dominated by human interventions. 78 Interannual variation of sediment flux is dominated by natural climatic oscillations. 78 Anthropogenic causes involving dams and land use control the decadal decrease in sediment flux to the ocean. 78 The natural and anthropogenic alteration of large river systems present severe environmental challenges in the coastal ocean.
[12] Andersen M B, Erel Y, Bourdon B.

Experimental evidence for 234U-238U fractionation during granite weathering with implications for 234U/238U in natural waters

[J]. Geochimica et Cosmochimica Acta, 2009, 73(14): 4 124-4 141.

DOI      URL      [本文引用: 1]      摘要

The daughter to parent ( 234U/ 238U) activity ratio in natural waters is often out of secular radioactive equilibrium. The major reason for this disequilibrium is related to the energetic -decay of 238U and differential release of 234U relative to 238U. This disequilibrium originates from (1) preferential release of more loosely bound 234U from damaged mineral lattice sites or; (2) direct recoil of 234Th into surrounding media from near mineral surface boundaries, however, it is unclear which of the two mechanisms is most important in nature. To better quantify the effects of preferential release of 234U, two continuous laboratory granite leaching experiments conducted over 1100 h were performed. The leachates were characterized by declining U concentrations with time and ( 234U/ 238U) initially greater than unity (up to 1.15), which changed to below unity during leaching ( 0.95). The early elevated ( 234U/ 238U) suggests that additional 234U is released into solution by preferential release of 234U from mineral phases. However, the excess 234U constitutes a finite pool of easy leachable 234U and the ( 234U/ 238U) values become lower than unity when this pool is used up. A model based on first-order kinetics, dissolution rates and preferential release of 234U from damaged lattice sites was developed and is able to quantitatively predict the observed pattern of ( 234U/ 238U) values and U concentrations for the two granite leaching experiments. Extending the modeling to longer time scales more comparable to natural systems shows that the production of waters with high ( 234U/ 238U) ratios can be achieved in two distinct regimes (1) slow weathering where the rate of directly recoiled 234U near mineral surfaces into waters is high; (2) fast weathering where the role of incipient chemical weathering and preferential release of loosely bound 234U are important. The model is able to explain apparent opposite correlations between physical erosion rates and ( 234U/ 238U) in waters and it provides a new framework that will be useful for examining weathering regimes, their timescales and their coupling with physical erosion.
[13] Li Chao, Yang Shouye, Lian Ergang, et al.

A review of comminution age method and its potential application in the East China Sea to constrain the time scale of sediment source-to-sink process

[J]. Journal of Ocean University of China, 2015, 14(3): 399-406.

DOI      URL      [本文引用: 8]      摘要

The East China Sea (ECS) is a river-dominated epicontinental sea, linking the Asian continent to the northwestern Pacific via the large rivers originating from Tibetan Plateau. The relevant huge influx of riverine detritus has developed unique sedimentary systems in the ECS during the Quaternary, offering ideal terrestrial archives for reconstructing Quaternary paleoenvironmental changes and studying land-sea interactions. Overall, two characteristic river systems dominate the sedimentary systems and sediment source to sink transport patterns in the ECS, represented by the Changjiang (Yangtze River) and Huanghe (Yellow River) for the large river system and Taiwan rivers for the small river system. Given this, the sediments derived from both river systems bear distinct features in terms of parent rock lithology, provenance weathering and sediment transport. Previous studies mostly focus on either the ‘source’ discrimination or the ‘sink’ records of the sedimentary system in the ECS, while the source to sink process linking the land and sea, in particular its time scale, has been poorly understood. Here we introduce a newly-developed dating technique, the ‘comminution age’ method, which offers a quantitative constraint on the time scale of sediment transfer from its ultimate source to the final depositional sink. This novel method is of great significance for improving our understanding on the earth surface processes including tectonic-climate driven weathering, and sediment recycling in relation to landscape evolution and marine environmental changes. The application of comminution age method in the ECS will provide important constraints on sediment source-to-sink process and more evidences for the construction of late Quaternary paleoenvironmental changes under these unique sedimentary systems.
[14] Depaolo D J, Lee V E, Christensen J N, et al.

Uranium comminution ages: Sediment transport and deposition time scales

[J]. Comptes Rendus-Géoscience, 2012, 344(11/12): 678-687.

DOI      URL      [本文引用: 14]     

[15] Depaolo D J, Maher K, Christensen J N, et al.

Sediment transport time measured with U-series isotopes: Results from ODP North Atlantic drift site 984

[J]. Earth and Planetary Science Letters, 2006, 248(1): 394-410.

DOI      URL      [本文引用: 20]      摘要

High precision uranium isotope measurements of marine clastic sediments are used to measure the transport and storage time of sediment from source to site of deposition. The approach is demonstrated on fine-grained, late Pleistocene deep-sea sediments from Ocean Drilling Program Site 984A on the Bjorn Drift in the North Atlantic. The sediments are siliciclastic with up to 30% carbonate, and dated by δ 18O of benthic foraminifera. Nd and Sr isotopes indicate that provenance has oscillated between a proximal source during the last three interglacial periods – volcanic rocks from Iceland – and a distal continental source during glacial periods. An unexpected finding is that the 234U/ 238U ratios of the silicate portion of the sediment, isolated by leaching with hydrochloric acid, are significantly less than the secular equilibrium value and show large and systematic variations that are correlated with glacial cycles and sediment provenance. The 234U depletions are inferred to be due to α-recoil loss of 234Th, and are used to calculate “comminution ages” of the sediment — the time elapsed between the generation of the small (≤ 5002μm) sediment grains in the source areas by comminution of bedrock, and the time of deposition on the seafloor. Transport times, the difference between comminution ages and depositional ages, vary from less than 1002ky to about 300 to 40002ky for the Site 984A sediments. Long transport times may reflect prior storage in soils, on continental shelves, or elsewhere on the seafloor. Transport time may also be a measure of bottom current strength. During the most recent interglacial periods the detritus from distal continental sources is diluted with sediment from Iceland that is rapidly transported to the site of deposition. The comminution age approach could be used to date Quaternary non-marine sediments, soils, and atmospheric dust, and may be enhanced by concomitant measurement of 226Ra/ 230Th, 230Th/ 234U, and cosmogenic nuclides.
[16] Dequincey O, Chabaux F, Clauer N, et al.

Chemical mobilizations in laterites: Evidence from trace elements and 238U-234U-230Th disequilibria

[J]. Geochimica et Cosmochimica Acta, 2002, 66(7): 1 197-1 210.

DOI      URL      [本文引用: 1]      摘要

Geochemical and mineralogical investigations, including measurements of major and trace elements, Sr isotope ratios, and 238U- 234U- 230Th activity ratios, were made on an old African laterite to reconstruct its formation steps and assess recent chemical mobilization. The present data support a scenario of discontinuous formation for the laterite, with different bedrock weathering conditions during the formation of each unit, rather than a scenario of continuous formation. Absolute accumulation of Fe, U, and lanthanides in the uppermost ferruginous unit suggests an autochthonous origin of this iron cap by leaching of an older overlying profile. Present chemical distributions of lanthanides, as well as of Rb, K, Ba, and Sr, within the profile cannot be linked to the mineralogical distribution of both relictual primary and authigenic secondary phases. Complementary lanthanide patterns indicate that these elements were primarily accumulated in the uppermost ferruginous unit before further remobilization and accumulation in the underlying horizons. These redistribution processes may be related to the chemical instability of the ferruginous cap. The 238U- 234U- 230Th disequilibria indicate that recent U mobilization occurs in the whole profile and that, as for lanthanides, there is a vertical redistribution of U from the uppermost ferruginous unit to the underlying horizons. Moreover, these data show that both U losses and gains exist at each level of the profile. A simple modeling of this double U mobilization process is proposed to interpret the 238U- 234U- 230Th data. Differences in the mobilization and fractionation intensities of the U input and removal processes can account for the two evolution trends, which distinguish the ferruginous unit from the underlying ones. Furthermore, on the basis of this modeling, the profile appears to be in a transient state because of recent changes in the U mobilization conditions, which could correspond to major Pleistocene climatic variations.
[17] Dosseto A, Bourdon B, Turner S P.

Uranium-series isotopes in river materials: Insights into the timescales of erosion and sediment transport

[J]. Earth and Planetary Science Letters, 2008, 265(1/2): 1-17.

DOI      URL      [本文引用: 8]      摘要

The uranium-series isotope signatures of the suspended and dissolved load of rivers have emerged as an important tool for understanding the processes of erosion and chemical weathering at the scale of a watershed. These signatures are a function of both time and weathering-induced fractionation between the different nuclides. Provided appropriate models can be developed, they can be used to constrain the residence time of river sediment. This chronometer is triggered as the bedrock starts weathering and the inferred timescale encompasses the residence time in the weathering profile, storage in temporary sediment deposits (e.g. floodplain) and transport in the river. This approach has been applied to various catchments over the past five years showing that river sediments can reside in a watershed for timescales ranging from a few hundreds of years (Iceland) to several hundreds of thousands of years (lowlands of the Amazon). Various factors control how long sediment resides in the watershed: the longest residence times are observed on stable cratons unaffected by glacial cycles (or more generally, climate variability) and human disturbance. Shorter residence times are observed in active orogens (Andes) or fast-eroding, recently glaciated catchments (Iceland). In several cases, the residence time of suspended sediments also corresponds to the time since the last major climate change. The U-series isotope composition of rivers can also be used to predict the river sediment yield assuming steady-state erosion is reached. By comparing this estimate with the modern sediment yield obtained by multi-year sediment gauging, it is clear that steady-state is seldom reached. This can be explained by climate variability and/or human disturbance. Steady-state is reached in those catchments where sediment transport is rapid (Iceland) or where the region has been unaffected by climate change and/or human disturbance. U-series are thus becoming an important tool to study the dynamics of erosion.
[18] Dosseto A, Schaller M.

The erosion response to Quaternary climate change quantified using uranium isotopes and in situ-produced cosmogenic nuclides

[J].Earth-Science Reviews, 2016, 155: 60-81.

DOI      URL      [本文引用: 7]      摘要

Studying how catchment erosion has responded to past climate change can help us better understand not only how landscape evolution operates, but also predict the consequences of future climate change on soil resource availability. Recent years have seen the development of tools that allow a quantitative assessment of past changes in catchment erosion. This work reviews the principles of the application of in situ-produced cosmogenic nuclides and uranium isotopes to quantifying past erosion rates. Results highlight the role of periglacial processes and mass wasting in dictating how catchment erosion responds to climatic variability at the 10-kyr scale. At the million-year scale, it is more difficult to untangle the role of climate and tectonics. A strong coupling exists at the 10-kyr to 100-kyr scales between climatic cycles and the transfer time of regolith from source to sink. This coupling reflects changes in sediment source that are either set by changes in vegetation cover at the catchment scale, or by the storage of sediments on continental shelves, at a larger scale. Although further analytical developments are required for these tools to reach their full potential, existing works suggest that in the near future, they will provide unprecedented quantitative insights on how soil and fluvial systems adapt to external perturbations (climatic, tectonic and/or anthropic).
[19] Harmon M I R S.

Uranium series disequilibrium: Applications to environmental problems

[J]. Quaternary Research, 1983, 20(2): 253.

URL      [本文引用: 1]     

[20] Lee V E, Depaolo D J, Christensen J N.

Uranium-series comminution ages of continental sediments: Case study of a Pleistocene alluvial fan

[J]. Earth and Planetary Science Letters, 2010, 296(3): 244-254.

DOI      URL      [本文引用: 15]      摘要

Obtaining quantitative information about the timescales associated with sediment transport, storage, and deposition in continental settings is important but challenging. The uranium-series comminution age method potentially provides a universal approach for direct dating of Quaternary detrital sediments, and can also provide estimates of the sediment transport and storage timescales. (The word “comminution” means “to reduce to powder,” reflecting the start of the comminution age clock as reduction of lithic parent material below a critical grain size threshold of 65 50 μm.) To test the comminution age method as a means to date continental sediments, we applied the method to drill-core samples of the glacially-derived Kings River Fan alluvial deposits in central California. Sediments from the 45 m core have independently-estimated depositional ages of up to 65 800 ka, based on paleomagnetism and correlations to nearby dated sediments. We characterized sequentially-leached core samples (both bulk sediment and grain size separates) for U, Nd, and Sr isotopes, grain size, surface texture, and mineralogy. In accordance with the comminution age model, where 234U is partially lost from small sediment grains due to alpha recoil, we found that ( 234U/ 238U) activity ratios generally decrease with age, depth, and specific surface area, with depletions of up to 9% relative to radioactive equilibrium. The resulting calculated comminution ages are reasonable, although they do not exactly match age estimates from previous studies and also depend on assumptions about 234U loss rates. The results indicate that the method may be a significant addition to the sparse set of available tools for dating detrital continental sediments, following further refinement. Improving the accuracy of the method requires more advanced models or measurements for both the recoil loss factor f α and weathering effects. We discuss several independent methods for obtaining f α on individual samples that may be useful for future studies.
[21] Li Le, Liu Xiangjun, Li Tao, et al.

Uranium comminution age tested by the eolian deposits on the Chinese Loess Plateau

[J]. Earth and Planetary Science Letters, 2017, 467: 64-71.

DOI      URL      [本文引用: 19]     

[22] Maher K, Depaolo D J, Lin J C F.

Rates of silicate dissolution in deep-sea sediment: In situ measurement using 234U/238U of pore fluids

[J]. Geochimica et Cosmochimica Acta, 2004, 68(22): 4 629-4 648.

DOI      URL      [本文引用: 2]      摘要

Bulk dissolution rates for sediment from ODP Site 984A in the North Atlantic are determined using the 234U/ 238U activity ratios of pore water, bulk sediment, and leachates. Site 984A is one of only several sites where closely spaced pore water samples were obtained from the upper 60 meters of the core; the sedimentation rate is high (11–15 cm/ka), hence the sediments in the upper 60 meters are less than 500 ka old. The sediment is clayey silt and composed mostly of detritus derived from Iceland with a significant component of biogenic carbonate (up to 30%). The pore water 234U/ 238U activity ratios are higher than seawater values, in the range of 1.2 to 1.6, while the bulk sediment 234U/ 238U activity ratios are close to 1.0. The 234U/ 238U of the pore water reflects a balance between the mineral dissolution rate and the supply rate of excess 234U to the pore fluid by α-recoil injection of 234Th. The fraction of 238U decays that result in α-recoil injection of 234U to pore fluid is estimated to be 0.10 to 0.20 based on the 234U/ 238U of insoluble residue fractions. The calculated bulk dissolution rates, in units of g/g/yr are in the range of 4 × 10 617 to 2 × 10 616 yr 611. There is significant down-hole variability in pore water 234U/ 238U activity ratios (and hence dissolution rates) on a scale of ca. 10 m. The inferred bulk dissolution rate constants are 100 to 10 4 times slower than laboratory-determined rates, 100 times faster than rates inferred for older sediments based on Sr isotopes, and similar to weathering rates determined for terrestrial soils of similar age. The results of this study suggest that U isotopes can be used to measure in situ dissolution rates in fine-grained clastic materials. The rate estimates for sediments from ODP Site 984 confirm the strong dependence of reactivity on the age of the solid material: the bulk dissolution rate ( R d) of soils and deep-sea sediments can be approximately described by the expression R d ≈ 0.1 Age 611 for ages spanning 1000 to 5 × 10 8 yr. The age of the material, which encompasses the grain size, surface area, and other chemical factors that contribute to the rate of dissolution, appears to be a much stronger determinant of dissolution rate than any single physical or chemical property of the system.
[23] Vigier N, Bourdon B.

Constraining Rates of Chemical and Physical Erosion Using U-Series Radionuclides

[M].Berlin Heidelberg:Handbook of Environmental Isotope Geochemistry, 2012:553-571.

[本文引用: 2]     

[24] Vigier N, Bourdon B, Turner S, et al.

Erosion timescales derived from U-decay series measurements in rivers

[J]. Earth and Planetary Science Letters, 2001, 193(3/4): 549-563.

DOI      URL      [本文引用: 2]      摘要

The relative importance of the factors influencing weathering of continental rocks has been a topic of debate for the last few decades. The principal reasons are the lack of reliable proxies for chemical weathering and the difficulty in constraining actual physical denudation rates. In this study, ( 234U/ 238U), ( 230Th/ 238U), and ( 226Ra/ 238U) were measured by TIMS and by MC–ICP–MS in the dissolved and suspended loads of rivers from the Mackenzie Basin (Northwest Territories, Canada). The data show a complementary nature between ( 234U/ 238U), ( 230Th/ 238U) in the dissolved and suspended loads while 226Ra is characterized by a more complex behavior. Modeling of fractionation of U-series nuclides in the particulate matter and the corresponding dissolved phase permits us to constrain the duration of chemical erosion for the suspended load currently sampled in the watershed (9–28±10 ka), as well as the rates of release of U-series nuclides. The results also imply significant recent changes of chemical erosion rates and underline the impact of the last glaciation on current continental fluxes of northern latitude rivers such as the Mackenzie River.
[25] Chabaux F.

U-Th-Ra fractionation during weathering and river transport

[J]. Reviews in Mineralogy and Geochemistry, 2003, 52(1): 533-576.

DOI      URL      [本文引用: 3]     

[26] Chen Jun, Li Gaojun.

Geochemical studies on the source region of Asian dust

[J]. Science in China (Series D), 2011, 41(9): 1 211-1 232.

[本文引用: 3]     

[陈骏, 李高军.

亚洲风尘系统地球化学示踪研究

[J]. 中国科学:D辑, 2011, 41(9): 1 211-1 232.]

[本文引用: 3]     

[27] Chen Jun, Li Gaojun, Yang Jiedong, et al.

Nd and Sr isotopic characteristics of Chinese deserts: Implications for the provenances of Asian dust

[J]. Geochimica et Cosmochimica Acta, 2007, 71(15): 3 904-3 914.

[本文引用: 3]     

[28] Che Xudong, Li Gaojun.

Binary sources of loess on the Chinese Loess Plateau revealed by U-Pb ages of zircon

[J]. Quaternary Research, 2013, 80(3): 545-551.

[本文引用: 3]     

[29] Li Gaojun, Chen Jun, Ji Junfeng, et al.

Natural and anthropogenic sources of East Asian dust

[J]. Geology, 2009, 37(8): 727-730.

[本文引用: 1]     

[30] Pullen A, Kapp P, Mccallister A T, et al.

Qaidam Basin and northern Tibetan Plateau as dust sources for the Chinese Loess Plateau and paleoclimatic implications

[J]. Geology, 2011, 39(11): 1 031-1 034.

[本文引用: 2]     

[31] Nie J, Stevens T, Rittner M, et al.

Corrigendum: Loess Plateau storage of Northeastern Tibetan Plateau-derived Yellow River sediment

[J]. Science Foundation in China, 2016, 6(1):8 511.

[本文引用: 1]     

[32] Aciego S M, Aarons S M, Sims K W W.

The uranium-isotopic composition of Saharan dust collected over the central Atlantic Ocean

[J]. Aeolian Research, 2015, 17: 61-66.

[本文引用: 2]     

[33] Aciego S, Bourdon B, Schwander J, et al.

Toward a radiometric ice clock: Uranium ages of the Dome C ice core

[J]. Quaternary Science Reviews, 2011, 30(19/20): 2 389-2 397.

[本文引用: 3]     

[34] Dosseto A, Hesse P P, Maher K, et al.

Climatic and vegetation control on sediment dynamics during the last glacial cycle

[J]. Geology, 2010, 38(5): 395-398.

[本文引用: 13]     

[35] Bird A, Stevens T, Rittner M, et al.

Quaternary dust source variation across the Chinese Loess Plateau

[J]. Palaeogeography Palaeoclimatology Palaeoecology, 2015, 435: 254-264.

[本文引用: 3]     

[36] Sun Youbin, Tada R J, Chen Jun, et al.

Tracing the provenance of fine-grained dust deposited on the central Chinese Loess Plateau

[J]. Geophysical Research Letters, 2008, 35(1). DOI:10.1029/2007GL031672.

[本文引用: 2]     

[37] Li Gaojun, Li Le, Xu Shujian, et al.

Dust source of the loess deposits in the Eastern China constrained by Uranium comminution age

[J]. Quaternary Sciences, 2017, 37(5): 1 037-1 044.

[本文引用: 3]     

[李高军,李乐, 徐树建, .

中国东部黄土物源铀同位素碎粒年代学研究

[J]. 第四纪研究, 2017, 37(5): 1 037-1 044.]

[本文引用: 3]     

[38] Li Chao, Yang Shouye, Zhao Jianxin, et al.

The time scale of river sediment source-to-sink processes in East Asia

[J]. Chemical Geology, 2016, 446: 138-146.

[本文引用: 4]     

[39] Handley H K, Turner S P, Dosseto A, et al.

Considerations for U-series dating of sediments: Insights from the Flinders Ranges, South Australia

[J]. Chemical Geology, 2013, 340(2): 40-48.

[本文引用: 6]     

[40] Handley H K, Turner S, Afonso J C, et al.

Sediment residence times constrained by uranium-series isotopes: A critical appraisal of the comminution approach

[J]. Geochimica et Cosmochimica Acta, 2013, 103: 245-262.

[本文引用: 12]     

[41] Cheng Hai, Edwards R L, Shen Chuanchou, et al.

Improvements in 230Th dating. Improvements in 230Th dating, 230Th and 234U half-life values,U-Th isotopic measurements by multi-collector inductively coupled plasma mass spectrometry

[J]. Earth and Planetary Science Letters, 2013, 371/372: 82-91.

[本文引用: 3]     

[42] Dosseto A, Schaller M.

The erosion response to Quaternary climate change quantified using uranium isotopes and in situ-produced cosmogenic nuclides

[J]. Earth-Science Reviews, 2016, 155: 60-81.

[本文引用: 3]     

[43] Chabaux F, Granet M, Pelt E, et al.

238U-234U-230Th disequilibria and timescale of sedimentary transfers in rivers: Clues from the Gangetic plain rivers

[J]. Journal of Geochemical Exploration, 2006, 88(1): 373-375.

[本文引用: 2]     

[44] Dosseto A, Bourdon B, Gaillardet J, et al.

Weathering and transport of sediments in the Bolivian Andes: Time constraints from uranium-series isotopes

[J]. Earth and Planetary Science Letters, 2006, 248(3/4): 759-771.

[本文引用: 1]     

[45] Granet M, Chabaux F, Stille P, et al.

Time-scales of sedimentary transfer and weathering processes from U-series nuclides: Clues from the Himalayan rivers

[J]. Earth and Planetary Science Letters, 2007, 261(3): 389-406.

[本文引用: 2]     

[46] Granet M, Chabaux F, Stille P, et al.

U-series disequilibria in suspended river sediments and implication for sediment transfer time in alluvial plains: The case of the Himalayan rivers

[J]. Geochimica et Cosmochimica Acta, 2010, 74(10): 2 851-2 865.

[本文引用: 3]     

[47] Sun Youbin, Clemens S C, An Zhisheng, et al.

Astronomical timescale and palaeoclimatic implication of stacked 3.6-Myr monsoon records from the Chinese Loess Plateau

[J]. Quaternary Science Reviews, 2006, 25(1): 33-48.

[本文引用: 2]     

[48] Chen Jun, Ji Junfeng, Qiu Gang, et al.

Geochemical studies on the intensity of chemical weathering in Luochuan loess-paleosol sequence, China

[J]. Science in China, 1998, 41(3): 235-241.

[本文引用: 3]     

[49] Chen Jun, Liu Lianwen, Ji Junfeng, et al.

Variations in chemical compositions of the eolian dust in Chinese Loess Plateau over the past 2.5 Ma and chemical weathering in the Asian inland

[J]. Science in China, 2001, 44(5): 403-413.

[本文引用: 1]     

[50] Francke A, Carney S, Wilcox P, et al.

Sample preparation for determination of comminution ages in lacustrine and marine sediments

[J]. Chemical Geology, 2018, 479:123-135.

[本文引用: 5]     

[51] Martin A N, Dosseto A, Kinsley L P J.

Evaluating the removal of non-detrital matter from soils and sediment using uranium isotopes

[J]. Chemical Geology, 2015, 396: 124-133.

[本文引用: 5]     

[52] Liu Lianwen, Chen Jun, Wang Hongtao, et al.

A chemical index of weathering without effect of wind sorting: Fe/Mg ratios in the acid-insoluble phases of loess deposits

[J]. Science Bulletin, 2001, 46(16): 1 384-1 387.

[本文引用: 1]     

[53] Guo Zhengtang, Ruddiman W F, Hao Qingzhen, et al.

Onset of Asian desertification by 22 Myr ago inferred from loess deposits in China

[J]. Nature, 2002, 416(6 877): 159-163.

[本文引用: 2]     

[54] Bourdon B, Turner S, Henderson G M, et al.

Introduction to U-series geochemistry

[J]. Uranium-Series Geochemistry, 2003, 52: 1-21.

[本文引用: 1]     

[55] Sims K W W, Goldstein S J, Blichert-Toft J, et al.

Chemical and isotopic constraints on the generation and transport of magma beneath the East Pacific Rise

[J]. Geochimica et Cosmochimica Acta, 2002, 66(19): 3 481-3 504.

[本文引用: 1]     

[56] Sims K W W, Depaolo D J, Murrell M T, et al.

Porosity of the melting zone and variations in the solid mantle upwelling rate beneath Hawaii: Inferences from 238U- 230Th- 226Ra and 235U- 231Pa disequilibria

[J]. Geochimica et Cosmochimica Acta, 1999, 63(23/24): 4 119-4 138.

[本文引用: 1]     

[57] Maher K, Depaolo D J, Christensen J N.

U-Sr isotopic speedometer: Fluid flow and chemical weathering rates in aquifers

[J]. Geochimica et Cosmochimica Acta, 2005, 70(17): 4 417-4 435.

[本文引用: 2]     

[58] Dosseto A, Buss H, Suresh P O.

The delicate balance between soil production and erosion, and its role on landscape evolution

[J]. Applied Geochemistry, 2011, 26(26): S24-S27.

[本文引用: 1]     

[59] Gascoyne M, Miller N H, Neymark L A.

Uranium-series disequilibrium in tuffs from Yucca Mountain, Nevada, as evidence of pore-fluid flow over the last million years

[J]. Applied Geochemistry, 2002, 17(6): 781-792.

[本文引用: 1]     

[60] Li Chao, Francois R, Yang Shouye, et al.

Constraining the transport time of lithogenic sediments to the Okinawa Trough (East China Sea)

[J]. Chemical Geology, 2016, 445: 199-207.

[本文引用: 3]     

[61] Vigier N, Burton K W, Gislason S R, et al.

The relationship between riverine U-series disequilibria and erosion rates in a basaltic terrain

[J]. Earth and Planetary Science Letters, 2006, 249(3): 258-273.

[本文引用: 1]     

[62] Van Strandmann P A E P, Burton K W, James R H, et al.

Riverine behaviour of uranium and lithium isotopes in an actively glaciated basaltic terrain

[J]. Earth and Planetary Science Letters, 2006, 251(1/2): 134-147.

[本文引用: 1]     

[63] Dosseto A, Bourdon B, Gaillardet J, et al.

Time scale and conditions of weathering under tropical climate: Study of the Amazon basin with U-series

[J]. Geochimica et Cosmochimica Acta, 2006, 70(1): 71-89.

[本文引用: 4]     

[64] Vigier N, Bourdon B, Lewin E, et al.

Mobility of U-series nuclides during basalt weathering: An example from the Deccan Traps (India)

[J]. Chemical Geology, 2005, 219(1): 69-91.

[本文引用: 3]     

[65] Porcelli D, Andersson P S, Baskaran M, et al.

Transport of U-and Th-series nuclides in a Baltic Shield watershed and the Baltic Sea

[J]. Geochimica et Cosmochimica Acta, 2001, 65(15): 2 439-2 459.

[本文引用: 1]     

[66] Andersson P S, Porcelli D, Wasserburg G J, et al.

Particle transport of 234U-238U in the Kalix River and in the Baltic Sea

[J]. Geochimica et Cosmochimica Acta, 1998, 62(3): 385-392.

[本文引用: 1]     

[67] Plater A J, Ivanovich M, Dugdale R E.

Uranium series disequilibrium in river sediments and waters: The significance of anomalous activity ratios

[J]. Applied Geochemistry, 1992, 7(2): 101-110.

[本文引用: 4]     

[68] Sarin M M, Krishnaswami S, Somayajulu B L K, et al.

Chemistry of uranium, thorium, and radium isotopes in the ganga-brahmaputra river system-weathering processes and fluxes to the bay of bengal

[J]. Geochimica et Cosmochimica Acta, 1990, 54(5): 1 387-1 396.

[本文引用: 1]     

[69] Oster J L, Ibarra D E, Harris C R, et al.

Influence of eolian deposition and rainfall amounts on the U-isotopic composition of soil water and soil minerals

[J]. Geochimica et Cosmochimica Acta, 2012, 88(7): 146-166.

[本文引用: 1]     

[70] Anbeek C, Vanbreemen N, Meijer E L, et al.

The dissolution of naturally weathered feldspar and quartz

[J]. Geochimica et Cosmochimica Acta, 1994, 58(21): 4 601-4 613.

[本文引用: 1]     

[71] White A F, Peterson M L.

Role of reactive-surface-area characterization in geochemical kinetic models

[J]. Acs Symposium, 1990, 416(1): 461-475.

[本文引用: 2]     

[72] Brantley S L, Mellott N P.

Surface area and porosity of primary silicate minerals

[J]. American Mineralogist, 2000, 85(11/12): 1 767-1 783.

[本文引用: 1]     

[73] Maher K, Steefel C I, Depaolo D J, et al.

The mineral dissolution rate conundrum: Insights from reactive transport modeling of U isotopes and pore fluid chemistry in marine sediments

[J]. Geochimica et Cosmochimica Acta, 2006, 70(2): 337-363.

[本文引用: 5]     

[74] Bourdon B, Bureau S, Andersen M B, et al.

Weathering rates from top to bottom in a carbonate environment

[J]. Chemical Geology, 2009, 258(3): 275-287.

[本文引用: 3]     

[75] Avnir D, Jaroniec M.

An isotherm equation for adsorption on fractal surfaces of heterogeneous porous materials

[J]. Langmuir, 1989, 5(6): 1 431-1 433.

[本文引用: 1]     

[76] Kigoshi K.

Alpha-Recoil Thorium-234: Dissolution into water and the Uranium-234/Uranium-238 disequilibrium in nature

[J]. Science, 1971, 173(3 991): 47.

[本文引用: 1]     

[77] Olley J M, Roberts R G, Murray A S.

A novel method for determining residence times of river and lake sediments based on disequilibrium in the thorium decay series

[J]. Water Resources Research, 1997, 33(6): 1 319-1 326.

[78] Hashimoto T, Aoyagi Y, Kudo H, et al.

Range calculation of alpha-recoil atoms in some minerals using LSS-theory

[J]. Journal of Radioanalytical and Nuclear Chemistry, 1985, 90(2): 415-438.

[本文引用: 2]     

[79] Suresh P O, Dosseto A, Handley H K, et al.

Assessment of a sequential phase extraction procedure for uranium-series isotope analysis of soils and sediments

[J]. Applied Radiation and Isotopes, 2014, 83(1): 47-55.

[本文引用: 5]     

[80] Li Laifeng, Chen Jun, Chen Tianyu, et al.

Weathering dynamics reflected by the response of riverine uranium isotope disequilibrium to changes in denudation rate

[J]. Earth and Planetary Science Letters, 2018, 500:136-144.

[本文引用: 1]     

[81] Blanco P, Tomé F V, Lozano J C.

Sequential extraction for radionuclide fractionation in soil samples: A comparative study

[J]. Applied Radiation and Isotopes Including Data Instrumentation and Methods for Use in Agriculture Industry and Medicine, 2004, 61(2/3): 345.

[本文引用: 1]     

[82] Väisänen A, Kiljunen A.

Ultrasound-assisted sequential extraction method for the evaluation of mobility of toxic elements in contaminated soils

[J]. International Journal of Environmental Analytical Chemistry, 2005, 85(14): 1 037-1 049.

[本文引用: 2]     

[83] Schultz M K, Burnett W C, Inn K G W.

Evaluation of a sequential extraction method for determining actinide fractionation in soils and sediments

[J]. Journal of Environmental Radioactivity, 1998, 40(2): 155-174.

[84] Tessier A, Campbell P G C, Bisson M.

Sequential extraction procedure for the speciation of particulate trace metals

[J]. Analytical Chemistry, 1979, 51(7): 844-851.

[本文引用: 1]     

[85] Menozzi D, Dosseto A, Kinsley L P J.

Assessing the effect of sequential extraction on the uranium-series isotopic composition of a basaltic weathering profile

[J]. Chemical Geology, 2016, 446:126-137.

[86] Andersen M B, Vance D, Keech A R, et al.

Estimating U fluxes in a high-latitude, boreal post-glacial setting using U-series isotopes in soils and rivers

[J]. Chemical Geology, 2013, 354(5): 22-32.

[87] Romer R L, Rocholl A.

Activity disequilibrium of 230Th,234U, and 238U in old stilbite: Effects of young U mobility and α-recoil

[J]. Geochimica et Cosmochimica Acta, 2004, 68(22): 4 705-4 719.

[88] Davis D W, Krogh T E.

Preferential dissolution of 234U and radiogenic Pb from α-recoil-damaged lattice sites in zircon: Implications for thermal histories and Pb isotopic fractionation in the near surface environment

[J]. Chemical Geology, 2001, 172(1/2): 41-58.

[89] Sheng Ζ Z, Kuroda P K.

Isotopic fractionation of uranium: Extremely high enrichments of 234U in the acid-residues of a colorado carnotite

[J]. Radiochimica Acta, 1986, 39(3): 131-138.

[本文引用: 1]     

[90] Andersen M B, Erel Y, Bourdon B.

Experimental evidence for 234U-238U fractionation during granite weathering with implications for 234U/238U in natural waters

[J]. Geochimica et Cosmochimica Acta, 2009, 73(14): 4 124-4 141.

[本文引用: 1]     

[91] Fleischer R L.

Isotopic disequilibrium of uranium: Alpha-recoil damage and preferential solution effects

[J]. Science, 1980, 207(4 434): 979-981.

[本文引用: 1]     

[92] Latham A G, Schwarcz H P.

The relative mobility of U, Th and Ra isotopes in the weathered zones of the Eye-Dashwa Lakes granite pluton, northwestern Ontario, Canada

[J]. Geochimica et Cosmochimica Acta, 1987, 51(10): 2 787-2 793.

[本文引用: 1]     

[93] Fantle M S, Maher K M, Depaolo D J.

Isotopic approaches for quantifying the rates of marine burial diagenesis

[J]. Reviews of Geophysics, 2010, 48(3). DOI:10.1029/2009RG000306.

[本文引用: 1]     

[94] Li Gaojun, Li Laifeng, Li Le.

Short-lived weathering surfaces: Evidence from U isotopes

[C]∥The Ninth National Congress and the Sixteenth Annual Academic Conference of the Minerals, Rocks and Geochemistry Society of China. Xi'an, 2017.

[本文引用: 3]     

[李高军, 李来峰, 李乐.

短命的风化表面:来自U同位素的证据

[C]∥中国矿物岩石地球化学学会第九次全国会员代表大会暨第16届学术年会.西安, 2017.]

[本文引用: 3]     

[95] Dou Yanguang, Yang Shouye, Shi Xuefa, et al.

Provenance weathering and erosion records in southern Okinawa Trough sediments since 28 ka: Geochemical and Sr-Nd-Pb isotopic evidences

[J]. Chemical Geology, 2016, 425: 93-109.

[本文引用: 1]     

[96] Grzymko T J, Marcantonio F, Mckee B A, et al.

Temporal variability of uranium concentrations and 234U/238U activity ratios in the Mississippi River and its tributaries

[J]. Chemical Geology, 2007, 243(3/4): 344-356.

[本文引用: 1]     

[97] Andersson P S, Porcelli D, Gustafsson O, et al.

The importance of colloids for the behavior of uranium isotopes in the low-salinity zone of a stable estuary

[J]. Geochimica et Cosmochimica Acta, 2001, 65(1): 13-25.

[本文引用: 1]     

[98] Porcelli D, Swarzenski P W.

The behavior of U-and Th-series nuclides in groundwater

[J]. Uranium-Series Geochemistry, 2003, 52: 317-361.

[本文引用: 1]     

[99] Ding Zhongli, Xiong Shangfa, Sun Jimin, et al.

Pedostratigraphy and paleomagnetism of a similar to 7.0 Ma eolian loess-red clay sequence at Lingtai, Loess Plateau, north-central China and the implications for paleomonsoon evolution

[J]. Palaeogeography Palaeoclimatology Palaeoecology, 1999, 152(1/2): 49-66.

[本文引用: 1]     

[100] Engelbrecht J P, Derbyshire E.

Airborne mineral dust

[J]. Elements, 2010, 6(4): 241-246.

[本文引用: 1]     

[101] Kapp P, Pullen A, Pelletier J D, et al.

From dust to dust: Quaternary wind erosion of the Mu Us Desert and Loess Plateau, China

[J]. Geology, 2015, 43(9): 835-838.

[本文引用: 2]     

[102] Liu Congqiang, Masuda A, Okada A, et al.

Isotope geochemistry of Quaternary deposits from the arid lands in Northern China

[J]. Earth and Planetary Science Letters, 1994, 127(1/4): 25-38.

[本文引用: 1]     

[103] White A F, Brantley S L.

The effect of time on the weathering of silicate minerals: Why do weathering rates differ in the laboratory and field?

[J]. Chemical Geology, 2003, 202(3): 479-506.

[本文引用: 1]     

[104] Uno I, Eguchi K, Yumimoto K, et al.

Asian dust transported one full circuit around the globe

[J]. Nature Geoscience, 2009, 2(8): 557-560.

[本文引用: 1]     

[105] Pye K.

The nature, origin and accumulation of loess

[J]. Quaternary Science Reviews, 1995, 14(7/8): 653-667.

[本文引用: 1]     

[106] Li Le, Chen Jun, Chen Yang, et al.

Uranium isotopic constraints on the provenance of dust on the Chinese Loess Plateau

[J]. Geology, 2018,46(9): 747-750.

[本文引用: 1]     

[107] Li Xusheng, Yang Dayuan, Lu Huayu.

Grain-size features and genesis of the Xiashu Loess in Zhenjiang

[J]. Marine Geology and Quaternary Geology, 2001, 21(1): 25-32.

[本文引用: 1]     

[108] Xiong Shangfa, Sun Donghuai, Ding Zhongli.

Aeolian origin of the red earth in southeast China

[J]. Journal of Quaternary Science, 2002, 17(2): 181-191.

[本文引用: 1]     

[109] Peng Shuzhen, Hao Qingzhen, Luo Wang, et al.

Geochemical and grain-size evidence for the provenance of loess deposits in the Central Shandong Mountains region, Northern China

[J]. Quaternary Research, 2016, 85(2): 290-298.

[本文引用: 1]     

[110] Liu Fei, Li Gaojun, Chen Jun.

U-Pb ages of zircon grains reveal a proximal dust source of the Xiashu Loess, Lower Yangtze River region, China

[J]. Science Bulletin, 2014, 59(20): 2 391-2 395.

[本文引用: 1]     

[111] Dosseto A, Turner S P, Douglas G B.

Uranium-series isotopes in colloids and suspended sediments: Timescale for sediment production and transport in the Murray-Darling River system

[J]. Earth and Planetary Science Letters, 2006, 246(3/4): 418-431.

[本文引用: 1]     

[112] Suresh P O, Dosseto A, Hesse P P, et al.

Very long hillslope transport timescales determined from uranium-series isotopes in river sediments from a large, tectonically stable catchment

[J]. Geochimica et Cosmochimica Acta, 2014, 142: 442-457.

[本文引用: 1]     

[113] Portenga E W, Bierman P R.

Understanding Earth's eroding surface with 10Be

[J]. Gsa Today, 2011, 21(8): 4-10.

[本文引用: 1]     

[114] Gao Shu.

Holocene shelf-coastal sedimentary systems associated with the Changjiang River: An overview

[J]. Marine Sciences, 2013, 32(12): 4-12.

[本文引用: 1]     

[115] Chen Zhongyuan, Wang Zhanghua, Finlayson B, et al.

Implications of flow control by the Three Gorges Dam on sediment and channel dynamics of the middle Yangtze (Changjiang) River, China

[J]. Geology, 2010, 38(11): 1 043-1 046.

[本文引用: 1]     

[116] Dadson S J, Hovius N, Chen H G, et al.

Links between erosion, runoff variability and seismicity in the Taiwan orogen

[J]. Nature, 2003, 426(6 967): 648-651.

[本文引用: 1]     

[117] Li Laifeng, Li Gaojun.

Uranium comminution age responds to erosion rate semiquantitatively

[J]. Chinese Journal of Geochemistry, 2017, 36(3): 426-428.

[本文引用: 1]     

[118] Huang Laiming, Shao Ming'an, Jia Xiaoxu, et al.

A review of the methods and controls of soil weathering rates

[J]. Advances in Earth Science, 2016,31(10): 1 021-1 031.

[本文引用: 1]     

[黄来明, 邵明安, 贾小旭, .

土壤风化速率测定方法及其影响因素研究进展

[J]. 地球科学进展, 2016, 31(10): 1 021-1 031.]

[本文引用: 1]     

[119] Zhang Qilin, Wang Zhanlin, Wang Dongdong, et al.

Advances in researches of the effects of grassland vegetation on soil erosion in Loess Plateau

[J]. Advances in Earth Science, 2017, 32(10): 1 093-1 101.

[本文引用: 1]     

[张琪琳, 王占礼, 王栋栋, .

黄土高原草地植被对土壤侵蚀影响研究进展

[J]. 地球科学进展, 2017, 32(10): 1 093-1 101.]

[本文引用: 1]     

/