The Study on the Land Surface Heat Fluxes over Heterogeneous Landscape of the Tibetan Plateau
Received date: 2006-10-11
Revised date: 2006-10-29
Online published: 2006-12-15
The exchange of heat fluxes between land surface and atmosphere over the Tibetan plateau area plays an important role in the Asian monsoon system, which in turn is a major component of both the energy and water cycles of the global climate system. It was also regarded as the main task in the GEWEX (Global Energy and Water Cycle Experiment) Asian Monsoon Experiment on the Tibetan plateau (GAME/Tibet, 1996-2000) and CEOP (Coordinated Enhanced Observing Period) Asia-Australia Monsoon Project (CAMP) on the Tibetan plateau (CAMP/Tibet, 2001-2006). Firstly, the field experiments of the GAME/Tibet and the CAMP/Tibet are introduced and some results on the local energy partitioning (the diurnal variations and intermonthly variations of radiation energy budget and land surface energy budget) are presented in this study.
The study of the regional distribution of land surface heat fluxes of paramount importance over heterogeneous landscape of the Tibetan Plateau is also one of the main scientific objectives of the GAME/Tibet and the CAMP/Tibet. Therefore, the regional distributions and their inter-monthly variations of surface heat fluxes (net radiation flux, soil heat flux, sensible heat flux and latent heat flux) are also presented here by combining five Landsat-7 ETM images with the field observations. The derived results were validated by using the “ground truth”, and it shows that the derived regional distributions and their inter-monthly variations of land surface heat fluxes are reasonable.
In order to upscale the land surface heat fluxes to the whole Tibetan Plateau area, the Institute of Tibetan Plateau Research (ITP) of the Chinese Academy of Sciences (CAS) is establishing a monitoring and Research Platform (MORP) for land surface and atmospheric processes on the Tibetan plateau. The establishing and monitoring plan of longterm scale (5-10 years) of the MORP, three new comprehensive observation and study stations (Mt. Qomolangma?Mt. Everest, Nam Cuo and Linzhi) and the up-scaling way were also introduced in this paper.
Ma Yaoming,Yao Tandong,Wang Jiemin,Hu Zeyong,Hirohiko Ishikawa,Ma Weiqi,et al . The Study on the Land Surface Heat Fluxes over Heterogeneous Landscape of the Tibetan Plateau[J]. Advances in Earth Science, 2006 , 21(12) : 1215 -1223 . DOI: 10.11867/j.issn.1001-8166.2006.12.1215
[1] Ye Duzheng, Gao Youxi. Tibetan Plateau Meteorology [M]. Beijing: Science Press, 1979:1-278.[叶笃正,高由禧.青藏高原气象学[M].北京:科学出版社,1979:1-278.]
[2] Yanai M, Li C, Song Z. Seasonal heating of the Tibetan Plateau and its effects on the evolution of the Asian summer monsoon[J]. Journal Meteorological Society of Japan, 1992, 70: 319-351.
[3] Ye D, Wu G. The role of heat source of the Tibetan Plateau in the general circulation [J]. Meteorological and Atmospheric Physics, 1998, 67(1/4):181-198.
[4] Wu G, Zhang Y. Tibetan Plateau forcing and timing of the Monsoon onset over south Asia and the south China sea[J]. Month Weather Review, 1998, 126: 913-927.
[5] Tao Shiyan, Chen Lianshou, Xu Xiangde, et al. Progresses of the Theoretical Study in the Second Tibetan Plateau Experiment of Atmospheric Sciences (PartⅠ) [M]. Beijing: China Meteorological Press, 1998: 1-348.[陶诗言,陈联寿,徐祥德,等.第二次靑藏高原大气科学试验理论硏究进展(一)[M].北京:气象出版社,1998:1-348.]
[6] MaYaoming, Tsukamoto Osamo, Wu Xiaoming, et al. Characteristics of energy transfer and micrometeorology in the surface layer of the atmosphere above grassy marshland of the Tibetan Plateau area [J]. Chinese Journal of Atmospheric Sciences, 2000, 24(5): 715-722.[马耀明,塚本修,吴晓鸣,等.藏北高原草甸下垫面近地层能量输送及微气象特征[J].大气科学,2000,24(5):715-722.]
[7] Zhou Mingyu, Xu Xiangde, Bian Lin'gen, et al. Observational Analysis and Dynamic Study of Atmospheric Boundary Layer on Tibetan Plateau [M]. Beijing: China Meteorological Press, 2000:1-97. [周明煜,徐祥德,卞林根,等.青藏高原大气边界层观测分析与动力学研究[M].北京:气象出版社,2000:1-97.]
[8] Chen Jiayi, Zhang Hongsheng, Liu Huizhi, et al. The characteristics of radiation balance components of the Tibetan Plateau in the summer of 1998 [J]. Chinese Journal of Atmospheric Sciences, 2001, 25(5): 577-588. [陈家宜,张宏升,刘辉志,等. 1998年夏季青藏高原辐射平衡分量分析[J].大气科学,2001, 25(5): 577-588.]
[9] Wu Guoxiong, Mao Jiangyu, Duan Anmin, et al. Recent progress in the study on the impact of Tibetan Plateau on Asian summer climate [J]. Acta Meteorologica Sinica, 2004, 62(5): 528-540. [吴国雄,毛江玉,段安民, 等. 青藏高原影响亚洲夏季气候研究的最新进展 [J]. 气象学报,2004, 62(5):528-540.]
[10] Wu Guoxiong, Liu Yimin, Liu Xin, et al. How the heating over the Tibetan Plateau affects the Asian climate in summer [J]. Chinese Journal of Atmospheric Sciences, 2005, 29(1):47-56.[吴国雄, 刘屹岷, 刘新,等,青藏高原加热如何影响亚洲夏季的气候格局 [J],大气科学,2005,29(1):47-56.]
[11] Hu Yinqiao, Qi Yuejin. The combinatory method to determine the turbulent fluxes and the universal functions in the surface layer [J]. Acta Meteorologica Sinica, 1991, 49(1):46-53. [胡隐樵,奇跃进. 组合法确定近地面层湍流通量和通用函数 [J]. 气象学报,1991, 49(1):46-53.]
[12] Ma Y, Zhong L, Su Z, et al. Determination of regional distributions and seasonal variations of land surface heat fluxes from Landsat-7 Ehanced thematic mapper data over the central Tibetan plateau area[J]. Journal of Geophysics Research, 2006, 111, D10305, doi:10.1029/2005JD006742.
[13] Berk A, Bernstein L S, Robertson D C. MODTRAN: A Moderate Resolution Model for LOTRAN 7, GL-TR-89-0122 [M].1989.
[14] Qi J, Chehbouni A, Huete A R, et al. A modified soil adjusted vegetation index[J]. Remote Sensing of Environment, 1994, 48:119-126.
[15] Mason P. The formation of areally averaged roughness lengths [J]. Quarterly Journal of the Royal Meteorological Society,1988, 114: 399-420.
[16] Ma Y, Tsukamoto O, Ishikawa H, et al. Determination of Regional land surface heat flux densities over heterogeneous landscape of HEIFE integrating satellite remote sensing with field observations[J]. Journal Meteorological Society of Japan, 2002, 80(3): 485-501.
/
〈 |
|
〉 |